qemu-e2k/hw/net/mcf_fec.c

693 lines
18 KiB
C

/*
* ColdFire Fast Ethernet Controller emulation.
*
* Copyright (c) 2007 CodeSourcery.
*
* This code is licensed under the GPL
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "hw/irq.h"
#include "net/net.h"
#include "qemu/module.h"
#include "hw/m68k/mcf.h"
#include "hw/m68k/mcf_fec.h"
#include "hw/net/mii.h"
#include "hw/qdev-properties.h"
#include "hw/sysbus.h"
/* For crc32 */
#include <zlib.h>
//#define DEBUG_FEC 1
#ifdef DEBUG_FEC
#define DPRINTF(fmt, ...) \
do { printf("mcf_fec: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) do {} while(0)
#endif
#define FEC_MAX_DESC 1024
#define FEC_MAX_FRAME_SIZE 2032
#define FEC_MIB_SIZE 64
struct mcf_fec_state {
SysBusDevice parent_obj;
MemoryRegion iomem;
qemu_irq irq[FEC_NUM_IRQ];
NICState *nic;
NICConf conf;
uint32_t irq_state;
uint32_t eir;
uint32_t eimr;
int rx_enabled;
uint32_t rx_descriptor;
uint32_t tx_descriptor;
uint32_t ecr;
uint32_t mmfr;
uint32_t mscr;
uint32_t rcr;
uint32_t tcr;
uint32_t tfwr;
uint32_t rfsr;
uint32_t erdsr;
uint32_t etdsr;
uint32_t emrbr;
uint32_t mib[FEC_MIB_SIZE];
};
#define FEC_INT_HB 0x80000000
#define FEC_INT_BABR 0x40000000
#define FEC_INT_BABT 0x20000000
#define FEC_INT_GRA 0x10000000
#define FEC_INT_TXF 0x08000000
#define FEC_INT_TXB 0x04000000
#define FEC_INT_RXF 0x02000000
#define FEC_INT_RXB 0x01000000
#define FEC_INT_MII 0x00800000
#define FEC_INT_EB 0x00400000
#define FEC_INT_LC 0x00200000
#define FEC_INT_RL 0x00100000
#define FEC_INT_UN 0x00080000
#define FEC_EN 2
#define FEC_RESET 1
/* Map interrupt flags onto IRQ lines. */
static const uint32_t mcf_fec_irq_map[FEC_NUM_IRQ] = {
FEC_INT_TXF,
FEC_INT_TXB,
FEC_INT_UN,
FEC_INT_RL,
FEC_INT_RXF,
FEC_INT_RXB,
FEC_INT_MII,
FEC_INT_LC,
FEC_INT_HB,
FEC_INT_GRA,
FEC_INT_EB,
FEC_INT_BABT,
FEC_INT_BABR
};
/* Buffer Descriptor. */
typedef struct {
uint16_t flags;
uint16_t length;
uint32_t data;
} mcf_fec_bd;
#define FEC_BD_R 0x8000
#define FEC_BD_E 0x8000
#define FEC_BD_O1 0x4000
#define FEC_BD_W 0x2000
#define FEC_BD_O2 0x1000
#define FEC_BD_L 0x0800
#define FEC_BD_TC 0x0400
#define FEC_BD_ABC 0x0200
#define FEC_BD_M 0x0100
#define FEC_BD_BC 0x0080
#define FEC_BD_MC 0x0040
#define FEC_BD_LG 0x0020
#define FEC_BD_NO 0x0010
#define FEC_BD_CR 0x0004
#define FEC_BD_OV 0x0002
#define FEC_BD_TR 0x0001
#define MIB_RMON_T_DROP 0
#define MIB_RMON_T_PACKETS 1
#define MIB_RMON_T_BC_PKT 2
#define MIB_RMON_T_MC_PKT 3
#define MIB_RMON_T_CRC_ALIGN 4
#define MIB_RMON_T_UNDERSIZE 5
#define MIB_RMON_T_OVERSIZE 6
#define MIB_RMON_T_FRAG 7
#define MIB_RMON_T_JAB 8
#define MIB_RMON_T_COL 9
#define MIB_RMON_T_P64 10
#define MIB_RMON_T_P65TO127 11
#define MIB_RMON_T_P128TO255 12
#define MIB_RMON_T_P256TO511 13
#define MIB_RMON_T_P512TO1023 14
#define MIB_RMON_T_P1024TO2047 15
#define MIB_RMON_T_P_GTE2048 16
#define MIB_RMON_T_OCTETS 17
#define MIB_IEEE_T_DROP 18
#define MIB_IEEE_T_FRAME_OK 19
#define MIB_IEEE_T_1COL 20
#define MIB_IEEE_T_MCOL 21
#define MIB_IEEE_T_DEF 22
#define MIB_IEEE_T_LCOL 23
#define MIB_IEEE_T_EXCOL 24
#define MIB_IEEE_T_MACERR 25
#define MIB_IEEE_T_CSERR 26
#define MIB_IEEE_T_SQE 27
#define MIB_IEEE_T_FDXFC 28
#define MIB_IEEE_T_OCTETS_OK 29
#define MIB_RMON_R_DROP 32
#define MIB_RMON_R_PACKETS 33
#define MIB_RMON_R_BC_PKT 34
#define MIB_RMON_R_MC_PKT 35
#define MIB_RMON_R_CRC_ALIGN 36
#define MIB_RMON_R_UNDERSIZE 37
#define MIB_RMON_R_OVERSIZE 38
#define MIB_RMON_R_FRAG 39
#define MIB_RMON_R_JAB 40
#define MIB_RMON_R_RESVD_0 41
#define MIB_RMON_R_P64 42
#define MIB_RMON_R_P65TO127 43
#define MIB_RMON_R_P128TO255 44
#define MIB_RMON_R_P256TO511 45
#define MIB_RMON_R_P512TO1023 46
#define MIB_RMON_R_P1024TO2047 47
#define MIB_RMON_R_P_GTE2048 48
#define MIB_RMON_R_OCTETS 49
#define MIB_IEEE_R_DROP 50
#define MIB_IEEE_R_FRAME_OK 51
#define MIB_IEEE_R_CRC 52
#define MIB_IEEE_R_ALIGN 53
#define MIB_IEEE_R_MACERR 54
#define MIB_IEEE_R_FDXFC 55
#define MIB_IEEE_R_OCTETS_OK 56
static void mcf_fec_read_bd(mcf_fec_bd *bd, uint32_t addr)
{
cpu_physical_memory_read(addr, bd, sizeof(*bd));
be16_to_cpus(&bd->flags);
be16_to_cpus(&bd->length);
be32_to_cpus(&bd->data);
}
static void mcf_fec_write_bd(mcf_fec_bd *bd, uint32_t addr)
{
mcf_fec_bd tmp;
tmp.flags = cpu_to_be16(bd->flags);
tmp.length = cpu_to_be16(bd->length);
tmp.data = cpu_to_be32(bd->data);
cpu_physical_memory_write(addr, &tmp, sizeof(tmp));
}
static void mcf_fec_update(mcf_fec_state *s)
{
uint32_t active;
uint32_t changed;
uint32_t mask;
int i;
active = s->eir & s->eimr;
changed = active ^s->irq_state;
for (i = 0; i < FEC_NUM_IRQ; i++) {
mask = mcf_fec_irq_map[i];
if (changed & mask) {
DPRINTF("IRQ %d = %d\n", i, (active & mask) != 0);
qemu_set_irq(s->irq[i], (active & mask) != 0);
}
}
s->irq_state = active;
}
static void mcf_fec_tx_stats(mcf_fec_state *s, int size)
{
s->mib[MIB_RMON_T_PACKETS]++;
s->mib[MIB_RMON_T_OCTETS] += size;
if (size < 64) {
s->mib[MIB_RMON_T_FRAG]++;
} else if (size == 64) {
s->mib[MIB_RMON_T_P64]++;
} else if (size < 128) {
s->mib[MIB_RMON_T_P65TO127]++;
} else if (size < 256) {
s->mib[MIB_RMON_T_P128TO255]++;
} else if (size < 512) {
s->mib[MIB_RMON_T_P256TO511]++;
} else if (size < 1024) {
s->mib[MIB_RMON_T_P512TO1023]++;
} else if (size < 2048) {
s->mib[MIB_RMON_T_P1024TO2047]++;
} else {
s->mib[MIB_RMON_T_P_GTE2048]++;
}
s->mib[MIB_IEEE_T_FRAME_OK]++;
s->mib[MIB_IEEE_T_OCTETS_OK] += size;
}
static void mcf_fec_do_tx(mcf_fec_state *s)
{
uint32_t addr;
mcf_fec_bd bd;
int frame_size;
int len, descnt = 0;
uint8_t frame[FEC_MAX_FRAME_SIZE];
uint8_t *ptr;
DPRINTF("do_tx\n");
ptr = frame;
frame_size = 0;
addr = s->tx_descriptor;
while (descnt++ < FEC_MAX_DESC) {
mcf_fec_read_bd(&bd, addr);
DPRINTF("tx_bd %x flags %04x len %d data %08x\n",
addr, bd.flags, bd.length, bd.data);
if ((bd.flags & FEC_BD_R) == 0) {
/* Run out of descriptors to transmit. */
break;
}
len = bd.length;
if (frame_size + len > FEC_MAX_FRAME_SIZE) {
len = FEC_MAX_FRAME_SIZE - frame_size;
s->eir |= FEC_INT_BABT;
}
cpu_physical_memory_read(bd.data, ptr, len);
ptr += len;
frame_size += len;
if (bd.flags & FEC_BD_L) {
/* Last buffer in frame. */
DPRINTF("Sending packet\n");
qemu_send_packet(qemu_get_queue(s->nic), frame, frame_size);
mcf_fec_tx_stats(s, frame_size);
ptr = frame;
frame_size = 0;
s->eir |= FEC_INT_TXF;
}
s->eir |= FEC_INT_TXB;
bd.flags &= ~FEC_BD_R;
/* Write back the modified descriptor. */
mcf_fec_write_bd(&bd, addr);
/* Advance to the next descriptor. */
if ((bd.flags & FEC_BD_W) != 0) {
addr = s->etdsr;
} else {
addr += 8;
}
}
s->tx_descriptor = addr;
}
static void mcf_fec_enable_rx(mcf_fec_state *s)
{
NetClientState *nc = qemu_get_queue(s->nic);
mcf_fec_bd bd;
mcf_fec_read_bd(&bd, s->rx_descriptor);
s->rx_enabled = ((bd.flags & FEC_BD_E) != 0);
if (s->rx_enabled) {
qemu_flush_queued_packets(nc);
}
}
static void mcf_fec_reset(DeviceState *dev)
{
mcf_fec_state *s = MCF_FEC_NET(dev);
s->eir = 0;
s->eimr = 0;
s->rx_enabled = 0;
s->ecr = 0;
s->mscr = 0;
s->rcr = 0x05ee0001;
s->tcr = 0;
s->tfwr = 0;
s->rfsr = 0x500;
}
#define MMFR_WRITE_OP (1 << 28)
#define MMFR_READ_OP (2 << 28)
#define MMFR_PHYADDR(v) (((v) >> 23) & 0x1f)
#define MMFR_REGNUM(v) (((v) >> 18) & 0x1f)
static uint64_t mcf_fec_read_mdio(mcf_fec_state *s)
{
uint64_t v;
if (s->mmfr & MMFR_WRITE_OP)
return s->mmfr;
if (MMFR_PHYADDR(s->mmfr) != 1)
return s->mmfr |= 0xffff;
switch (MMFR_REGNUM(s->mmfr)) {
case MII_BMCR:
v = MII_BMCR_SPEED | MII_BMCR_AUTOEN | MII_BMCR_FD;
break;
case MII_BMSR:
v = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
MII_BMSR_10T_HD | MII_BMSR_MFPS | MII_BMSR_AN_COMP |
MII_BMSR_AUTONEG | MII_BMSR_LINK_ST;
break;
case MII_PHYID1:
v = DP83848_PHYID1;
break;
case MII_PHYID2:
v = DP83848_PHYID2;
break;
case MII_ANAR:
v = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD |
MII_ANAR_10 | MII_ANAR_CSMACD;
break;
case MII_ANLPAR:
v = MII_ANLPAR_ACK | MII_ANLPAR_TXFD | MII_ANLPAR_TX |
MII_ANLPAR_10FD | MII_ANLPAR_10 | MII_ANLPAR_CSMACD;
break;
default:
v = 0xffff;
break;
}
s->mmfr = (s->mmfr & ~0xffff) | v;
return s->mmfr;
}
static uint64_t mcf_fec_read(void *opaque, hwaddr addr,
unsigned size)
{
mcf_fec_state *s = (mcf_fec_state *)opaque;
switch (addr & 0x3ff) {
case 0x004: return s->eir;
case 0x008: return s->eimr;
case 0x010: return s->rx_enabled ? (1 << 24) : 0; /* RDAR */
case 0x014: return 0; /* TDAR */
case 0x024: return s->ecr;
case 0x040: return mcf_fec_read_mdio(s);
case 0x044: return s->mscr;
case 0x064: return 0; /* MIBC */
case 0x084: return s->rcr;
case 0x0c4: return s->tcr;
case 0x0e4: /* PALR */
return (s->conf.macaddr.a[0] << 24) | (s->conf.macaddr.a[1] << 16)
| (s->conf.macaddr.a[2] << 8) | s->conf.macaddr.a[3];
break;
case 0x0e8: /* PAUR */
return (s->conf.macaddr.a[4] << 24) | (s->conf.macaddr.a[5] << 16) | 0x8808;
case 0x0ec: return 0x10000; /* OPD */
case 0x118: return 0;
case 0x11c: return 0;
case 0x120: return 0;
case 0x124: return 0;
case 0x144: return s->tfwr;
case 0x14c: return 0x600;
case 0x150: return s->rfsr;
case 0x180: return s->erdsr;
case 0x184: return s->etdsr;
case 0x188: return s->emrbr;
case 0x200 ... 0x2e0: return s->mib[(addr & 0x1ff) / 4];
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address 0x%" HWADDR_PRIX "\n",
__func__, addr);
return 0;
}
}
static void mcf_fec_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
mcf_fec_state *s = (mcf_fec_state *)opaque;
switch (addr & 0x3ff) {
case 0x004:
s->eir &= ~value;
break;
case 0x008:
s->eimr = value;
break;
case 0x010: /* RDAR */
if ((s->ecr & FEC_EN) && !s->rx_enabled) {
DPRINTF("RX enable\n");
mcf_fec_enable_rx(s);
}
break;
case 0x014: /* TDAR */
if (s->ecr & FEC_EN) {
mcf_fec_do_tx(s);
}
break;
case 0x024:
s->ecr = value;
if (value & FEC_RESET) {
DPRINTF("Reset\n");
mcf_fec_reset(opaque);
}
if ((s->ecr & FEC_EN) == 0) {
s->rx_enabled = 0;
}
break;
case 0x040:
s->mmfr = value;
s->eir |= FEC_INT_MII;
break;
case 0x044:
s->mscr = value & 0xfe;
break;
case 0x064:
/* TODO: Implement MIB. */
break;
case 0x084:
s->rcr = value & 0x07ff003f;
/* TODO: Implement LOOP mode. */
break;
case 0x0c4: /* TCR */
/* We transmit immediately, so raise GRA immediately. */
s->tcr = value;
if (value & 1)
s->eir |= FEC_INT_GRA;
break;
case 0x0e4: /* PALR */
s->conf.macaddr.a[0] = value >> 24;
s->conf.macaddr.a[1] = value >> 16;
s->conf.macaddr.a[2] = value >> 8;
s->conf.macaddr.a[3] = value;
break;
case 0x0e8: /* PAUR */
s->conf.macaddr.a[4] = value >> 24;
s->conf.macaddr.a[5] = value >> 16;
break;
case 0x0ec:
/* OPD */
break;
case 0x118:
case 0x11c:
case 0x120:
case 0x124:
/* TODO: implement MAC hash filtering. */
break;
case 0x144:
s->tfwr = value & 3;
break;
case 0x14c:
/* FRBR writes ignored. */
break;
case 0x150:
s->rfsr = (value & 0x3fc) | 0x400;
break;
case 0x180:
s->erdsr = value & ~3;
s->rx_descriptor = s->erdsr;
break;
case 0x184:
s->etdsr = value & ~3;
s->tx_descriptor = s->etdsr;
break;
case 0x188:
s->emrbr = value > 0 ? value & 0x7F0 : 0x7F0;
break;
case 0x200 ... 0x2e0:
s->mib[(addr & 0x1ff) / 4] = value;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address 0x%" HWADDR_PRIX "\n",
__func__, addr);
return;
}
mcf_fec_update(s);
}
static void mcf_fec_rx_stats(mcf_fec_state *s, int size)
{
s->mib[MIB_RMON_R_PACKETS]++;
s->mib[MIB_RMON_R_OCTETS] += size;
if (size < 64) {
s->mib[MIB_RMON_R_FRAG]++;
} else if (size == 64) {
s->mib[MIB_RMON_R_P64]++;
} else if (size < 128) {
s->mib[MIB_RMON_R_P65TO127]++;
} else if (size < 256) {
s->mib[MIB_RMON_R_P128TO255]++;
} else if (size < 512) {
s->mib[MIB_RMON_R_P256TO511]++;
} else if (size < 1024) {
s->mib[MIB_RMON_R_P512TO1023]++;
} else if (size < 2048) {
s->mib[MIB_RMON_R_P1024TO2047]++;
} else {
s->mib[MIB_RMON_R_P_GTE2048]++;
}
s->mib[MIB_IEEE_R_FRAME_OK]++;
s->mib[MIB_IEEE_R_OCTETS_OK] += size;
}
static int mcf_fec_have_receive_space(mcf_fec_state *s, size_t want)
{
mcf_fec_bd bd;
uint32_t addr;
/* Walk descriptor list to determine if we have enough buffer */
addr = s->rx_descriptor;
while (want > 0) {
mcf_fec_read_bd(&bd, addr);
if ((bd.flags & FEC_BD_E) == 0) {
return 0;
}
if (want < s->emrbr) {
return 1;
}
want -= s->emrbr;
/* Advance to the next descriptor. */
if ((bd.flags & FEC_BD_W) != 0) {
addr = s->erdsr;
} else {
addr += 8;
}
}
return 0;
}
static ssize_t mcf_fec_receive(NetClientState *nc, const uint8_t *buf, size_t size)
{
mcf_fec_state *s = qemu_get_nic_opaque(nc);
mcf_fec_bd bd;
uint32_t flags = 0;
uint32_t addr;
uint32_t crc;
uint32_t buf_addr;
uint8_t *crc_ptr;
unsigned int buf_len;
size_t retsize;
DPRINTF("do_rx len %d\n", size);
if (!s->rx_enabled) {
return -1;
}
/* 4 bytes for the CRC. */
size += 4;
crc = cpu_to_be32(crc32(~0, buf, size));
crc_ptr = (uint8_t *)&crc;
/* Huge frames are truncted. */
if (size > FEC_MAX_FRAME_SIZE) {
size = FEC_MAX_FRAME_SIZE;
flags |= FEC_BD_TR | FEC_BD_LG;
}
/* Frames larger than the user limit just set error flags. */
if (size > (s->rcr >> 16)) {
flags |= FEC_BD_LG;
}
/* Check if we have enough space in current descriptors */
if (!mcf_fec_have_receive_space(s, size)) {
return 0;
}
addr = s->rx_descriptor;
retsize = size;
while (size > 0) {
mcf_fec_read_bd(&bd, addr);
buf_len = (size <= s->emrbr) ? size: s->emrbr;
bd.length = buf_len;
size -= buf_len;
DPRINTF("rx_bd %x length %d\n", addr, bd.length);
/* The last 4 bytes are the CRC. */
if (size < 4)
buf_len += size - 4;
buf_addr = bd.data;
cpu_physical_memory_write(buf_addr, buf, buf_len);
buf += buf_len;
if (size < 4) {
cpu_physical_memory_write(buf_addr + buf_len, crc_ptr, 4 - size);
crc_ptr += 4 - size;
}
bd.flags &= ~FEC_BD_E;
if (size == 0) {
/* Last buffer in frame. */
bd.flags |= flags | FEC_BD_L;
DPRINTF("rx frame flags %04x\n", bd.flags);
s->eir |= FEC_INT_RXF;
} else {
s->eir |= FEC_INT_RXB;
}
mcf_fec_write_bd(&bd, addr);
/* Advance to the next descriptor. */
if ((bd.flags & FEC_BD_W) != 0) {
addr = s->erdsr;
} else {
addr += 8;
}
}
s->rx_descriptor = addr;
mcf_fec_rx_stats(s, retsize);
mcf_fec_enable_rx(s);
mcf_fec_update(s);
return retsize;
}
static const MemoryRegionOps mcf_fec_ops = {
.read = mcf_fec_read,
.write = mcf_fec_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static NetClientInfo net_mcf_fec_info = {
.type = NET_CLIENT_DRIVER_NIC,
.size = sizeof(NICState),
.receive = mcf_fec_receive,
};
static void mcf_fec_realize(DeviceState *dev, Error **errp)
{
mcf_fec_state *s = MCF_FEC_NET(dev);
s->nic = qemu_new_nic(&net_mcf_fec_info, &s->conf,
object_get_typename(OBJECT(dev)), dev->id, s);
qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
}
static void mcf_fec_instance_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
mcf_fec_state *s = MCF_FEC_NET(obj);
int i;
memory_region_init_io(&s->iomem, obj, &mcf_fec_ops, s, "fec", 0x400);
sysbus_init_mmio(sbd, &s->iomem);
for (i = 0; i < FEC_NUM_IRQ; i++) {
sysbus_init_irq(sbd, &s->irq[i]);
}
}
static Property mcf_fec_properties[] = {
DEFINE_NIC_PROPERTIES(mcf_fec_state, conf),
DEFINE_PROP_END_OF_LIST(),
};
static void mcf_fec_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
dc->realize = mcf_fec_realize;
dc->desc = "MCF Fast Ethernet Controller network device";
dc->reset = mcf_fec_reset;
device_class_set_props(dc, mcf_fec_properties);
}
static const TypeInfo mcf_fec_info = {
.name = TYPE_MCF_FEC_NET,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(mcf_fec_state),
.instance_init = mcf_fec_instance_init,
.class_init = mcf_fec_class_init,
};
static void mcf_fec_register_types(void)
{
type_register_static(&mcf_fec_info);
}
type_init(mcf_fec_register_types)