qemu-e2k/target/arm/cpu64.c
Aaron Lindsay 57a4a11b2b target/arm: Add array for supported PMU events, generate PMCEID[01]_EL0
This commit doesn't add any supported events, but provides the framework
for adding them. We store the pm_event structs in a simple array, and
provide the mapping from the event numbers to array indexes in the
supported_event_map array. Because the value of PMCEID[01] depends upon
which events are supported at runtime, generate it dynamically.

Signed-off-by: Aaron Lindsay <alindsay@codeaurora.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20181211151945.29137-10-aaron@os.amperecomputing.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2019-01-21 10:38:56 +00:00

570 lines
19 KiB
C

/*
* QEMU AArch64 CPU
*
* Copyright (c) 2013 Linaro Ltd
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see
* <http://www.gnu.org/licenses/gpl-2.0.html>
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "cpu.h"
#include "qemu-common.h"
#if !defined(CONFIG_USER_ONLY)
#include "hw/loader.h"
#endif
#include "hw/arm/arm.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "kvm_arm.h"
#include "qapi/visitor.h"
static inline void set_feature(CPUARMState *env, int feature)
{
env->features |= 1ULL << feature;
}
static inline void unset_feature(CPUARMState *env, int feature)
{
env->features &= ~(1ULL << feature);
}
#ifndef CONFIG_USER_ONLY
static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
ARMCPU *cpu = arm_env_get_cpu(env);
/* Number of cores is in [25:24]; otherwise we RAZ */
return (cpu->core_count - 1) << 24;
}
#endif
static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = {
#ifndef CONFIG_USER_ONLY
{ .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
.access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
.writefn = arm_cp_write_ignore },
{ .name = "L2CTLR",
.cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
.access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
.writefn = arm_cp_write_ignore },
#endif
{ .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "L2ECTLR",
.cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUACTLR",
.cp = 15, .opc1 = 0, .crm = 15,
.access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
{ .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUECTLR",
.cp = 15, .opc1 = 1, .crm = 15,
.access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
{ .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUMERRSR",
.cp = 15, .opc1 = 2, .crm = 15,
.access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
{ .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "L2MERRSR",
.cp = 15, .opc1 = 3, .crm = 15,
.access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
REGINFO_SENTINEL
};
static void aarch64_a57_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,cortex-a57";
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_VFP4);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
cpu->midr = 0x411fd070;
cpu->revidr = 0x00000000;
cpu->reset_fpsid = 0x41034070;
cpu->isar.mvfr0 = 0x10110222;
cpu->isar.mvfr1 = 0x12111111;
cpu->isar.mvfr2 = 0x00000043;
cpu->ctr = 0x8444c004;
cpu->reset_sctlr = 0x00c50838;
cpu->id_pfr0 = 0x00000131;
cpu->id_pfr1 = 0x00011011;
cpu->id_dfr0 = 0x03010066;
cpu->id_afr0 = 0x00000000;
cpu->id_mmfr0 = 0x10101105;
cpu->id_mmfr1 = 0x40000000;
cpu->id_mmfr2 = 0x01260000;
cpu->id_mmfr3 = 0x02102211;
cpu->isar.id_isar0 = 0x02101110;
cpu->isar.id_isar1 = 0x13112111;
cpu->isar.id_isar2 = 0x21232042;
cpu->isar.id_isar3 = 0x01112131;
cpu->isar.id_isar4 = 0x00011142;
cpu->isar.id_isar5 = 0x00011121;
cpu->isar.id_isar6 = 0;
cpu->isar.id_aa64pfr0 = 0x00002222;
cpu->id_aa64dfr0 = 0x10305106;
cpu->isar.id_aa64isar0 = 0x00011120;
cpu->isar.id_aa64mmfr0 = 0x00001124;
cpu->dbgdidr = 0x3516d000;
cpu->clidr = 0x0a200023;
cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
cpu->dcz_blocksize = 4; /* 64 bytes */
cpu->gic_num_lrs = 4;
cpu->gic_vpribits = 5;
cpu->gic_vprebits = 5;
define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
}
static void aarch64_a53_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,cortex-a53";
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_VFP4);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
cpu->midr = 0x410fd034;
cpu->revidr = 0x00000000;
cpu->reset_fpsid = 0x41034070;
cpu->isar.mvfr0 = 0x10110222;
cpu->isar.mvfr1 = 0x12111111;
cpu->isar.mvfr2 = 0x00000043;
cpu->ctr = 0x84448004; /* L1Ip = VIPT */
cpu->reset_sctlr = 0x00c50838;
cpu->id_pfr0 = 0x00000131;
cpu->id_pfr1 = 0x00011011;
cpu->id_dfr0 = 0x03010066;
cpu->id_afr0 = 0x00000000;
cpu->id_mmfr0 = 0x10101105;
cpu->id_mmfr1 = 0x40000000;
cpu->id_mmfr2 = 0x01260000;
cpu->id_mmfr3 = 0x02102211;
cpu->isar.id_isar0 = 0x02101110;
cpu->isar.id_isar1 = 0x13112111;
cpu->isar.id_isar2 = 0x21232042;
cpu->isar.id_isar3 = 0x01112131;
cpu->isar.id_isar4 = 0x00011142;
cpu->isar.id_isar5 = 0x00011121;
cpu->isar.id_isar6 = 0;
cpu->isar.id_aa64pfr0 = 0x00002222;
cpu->id_aa64dfr0 = 0x10305106;
cpu->isar.id_aa64isar0 = 0x00011120;
cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
cpu->dbgdidr = 0x3516d000;
cpu->clidr = 0x0a200023;
cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
cpu->dcz_blocksize = 4; /* 64 bytes */
cpu->gic_num_lrs = 4;
cpu->gic_vpribits = 5;
cpu->gic_vprebits = 5;
define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
}
static void aarch64_a72_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,cortex-a72";
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_VFP4);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
cpu->midr = 0x410fd083;
cpu->revidr = 0x00000000;
cpu->reset_fpsid = 0x41034080;
cpu->isar.mvfr0 = 0x10110222;
cpu->isar.mvfr1 = 0x12111111;
cpu->isar.mvfr2 = 0x00000043;
cpu->ctr = 0x8444c004;
cpu->reset_sctlr = 0x00c50838;
cpu->id_pfr0 = 0x00000131;
cpu->id_pfr1 = 0x00011011;
cpu->id_dfr0 = 0x03010066;
cpu->id_afr0 = 0x00000000;
cpu->id_mmfr0 = 0x10201105;
cpu->id_mmfr1 = 0x40000000;
cpu->id_mmfr2 = 0x01260000;
cpu->id_mmfr3 = 0x02102211;
cpu->isar.id_isar0 = 0x02101110;
cpu->isar.id_isar1 = 0x13112111;
cpu->isar.id_isar2 = 0x21232042;
cpu->isar.id_isar3 = 0x01112131;
cpu->isar.id_isar4 = 0x00011142;
cpu->isar.id_isar5 = 0x00011121;
cpu->isar.id_aa64pfr0 = 0x00002222;
cpu->id_aa64dfr0 = 0x10305106;
cpu->isar.id_aa64isar0 = 0x00011120;
cpu->isar.id_aa64mmfr0 = 0x00001124;
cpu->dbgdidr = 0x3516d000;
cpu->clidr = 0x0a200023;
cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
cpu->dcz_blocksize = 4; /* 64 bytes */
cpu->gic_num_lrs = 4;
cpu->gic_vpribits = 5;
cpu->gic_vprebits = 5;
define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
}
static void cpu_max_get_sve_vq(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
visit_type_uint32(v, name, &cpu->sve_max_vq, errp);
}
static void cpu_max_set_sve_vq(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
Error *err = NULL;
visit_type_uint32(v, name, &cpu->sve_max_vq, &err);
if (!err && (cpu->sve_max_vq == 0 || cpu->sve_max_vq > ARM_MAX_VQ)) {
error_setg(&err, "unsupported SVE vector length");
error_append_hint(&err, "Valid sve-max-vq in range [1-%d]\n",
ARM_MAX_VQ);
}
error_propagate(errp, err);
}
#ifdef CONFIG_USER_ONLY
static void cpu_max_get_packey(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
const uint64_t *bit = opaque;
bool enabled = (cpu->env.cp15.sctlr_el[1] & *bit) != 0;
visit_type_bool(v, name, &enabled, errp);
}
static void cpu_max_set_packey(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
Error *err = NULL;
const uint64_t *bit = opaque;
bool enabled;
visit_type_bool(v, name, &enabled, errp);
if (!err) {
if (enabled) {
cpu->env.cp15.sctlr_el[1] |= *bit;
} else {
cpu->env.cp15.sctlr_el[1] &= ~*bit;
}
}
error_propagate(errp, err);
}
#endif
/* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
* otherwise, a CPU with as many features enabled as our emulation supports.
* The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
* this only needs to handle 64 bits.
*/
static void aarch64_max_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
if (kvm_enabled()) {
kvm_arm_set_cpu_features_from_host(cpu);
} else {
uint64_t t;
uint32_t u;
aarch64_a57_initfn(obj);
t = cpu->isar.id_aa64isar0;
t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */
t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);
t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */
t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);
t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);
t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);
t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);
t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);
t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);
cpu->isar.id_aa64isar0 = t;
t = cpu->isar.id_aa64isar1;
t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);
t = FIELD_DP64(t, ID_AA64ISAR1, APA, 1); /* PAuth, architected only */
t = FIELD_DP64(t, ID_AA64ISAR1, API, 0);
t = FIELD_DP64(t, ID_AA64ISAR1, GPA, 1);
t = FIELD_DP64(t, ID_AA64ISAR1, GPI, 0);
cpu->isar.id_aa64isar1 = t;
t = cpu->isar.id_aa64pfr0;
t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);
t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);
cpu->isar.id_aa64pfr0 = t;
t = cpu->isar.id_aa64mmfr1;
t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */
t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);
cpu->isar.id_aa64mmfr1 = t;
/* Replicate the same data to the 32-bit id registers. */
u = cpu->isar.id_isar5;
u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */
u = FIELD_DP32(u, ID_ISAR5, SHA1, 1);
u = FIELD_DP32(u, ID_ISAR5, SHA2, 1);
u = FIELD_DP32(u, ID_ISAR5, CRC32, 1);
u = FIELD_DP32(u, ID_ISAR5, RDM, 1);
u = FIELD_DP32(u, ID_ISAR5, VCMA, 1);
cpu->isar.id_isar5 = u;
u = cpu->isar.id_isar6;
u = FIELD_DP32(u, ID_ISAR6, DP, 1);
cpu->isar.id_isar6 = u;
/*
* FIXME: We do not yet support ARMv8.2-fp16 for AArch32 yet,
* so do not set MVFR1.FPHP. Strictly speaking this is not legal,
* but it is also not legal to enable SVE without support for FP16,
* and enabling SVE in system mode is more useful in the short term.
*/
#ifdef CONFIG_USER_ONLY
/* For usermode -cpu max we can use a larger and more efficient DCZ
* blocksize since we don't have to follow what the hardware does.
*/
cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
cpu->dcz_blocksize = 7; /* 512 bytes */
/*
* Note that Linux will enable enable all of the keys at once.
* But doing it this way will allow experimentation beyond that.
*/
{
static const uint64_t apia_bit = SCTLR_EnIA;
static const uint64_t apib_bit = SCTLR_EnIB;
static const uint64_t apda_bit = SCTLR_EnDA;
static const uint64_t apdb_bit = SCTLR_EnDB;
object_property_add(obj, "apia", "bool", cpu_max_get_packey,
cpu_max_set_packey, NULL,
(void *)&apia_bit, &error_fatal);
object_property_add(obj, "apib", "bool", cpu_max_get_packey,
cpu_max_set_packey, NULL,
(void *)&apib_bit, &error_fatal);
object_property_add(obj, "apda", "bool", cpu_max_get_packey,
cpu_max_set_packey, NULL,
(void *)&apda_bit, &error_fatal);
object_property_add(obj, "apdb", "bool", cpu_max_get_packey,
cpu_max_set_packey, NULL,
(void *)&apdb_bit, &error_fatal);
/* Enable all PAC keys by default. */
cpu->env.cp15.sctlr_el[1] |= SCTLR_EnIA | SCTLR_EnIB;
cpu->env.cp15.sctlr_el[1] |= SCTLR_EnDA | SCTLR_EnDB;
}
#endif
cpu->sve_max_vq = ARM_MAX_VQ;
object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_vq,
cpu_max_set_sve_vq, NULL, NULL, &error_fatal);
}
}
struct ARMCPUInfo {
const char *name;
void (*initfn)(Object *obj);
void (*class_init)(ObjectClass *oc, void *data);
};
static const ARMCPUInfo aarch64_cpus[] = {
{ .name = "cortex-a57", .initfn = aarch64_a57_initfn },
{ .name = "cortex-a53", .initfn = aarch64_a53_initfn },
{ .name = "cortex-a72", .initfn = aarch64_a72_initfn },
{ .name = "max", .initfn = aarch64_max_initfn },
{ .name = NULL }
};
static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
}
static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
/* At this time, this property is only allowed if KVM is enabled. This
* restriction allows us to avoid fixing up functionality that assumes a
* uniform execution state like do_interrupt.
*/
if (!kvm_enabled()) {
error_setg(errp, "'aarch64' feature cannot be disabled "
"unless KVM is enabled");
return;
}
if (value == false) {
unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
} else {
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
}
}
static void aarch64_cpu_initfn(Object *obj)
{
object_property_add_bool(obj, "aarch64", aarch64_cpu_get_aarch64,
aarch64_cpu_set_aarch64, NULL);
object_property_set_description(obj, "aarch64",
"Set on/off to enable/disable aarch64 "
"execution state ",
NULL);
}
static void aarch64_cpu_finalizefn(Object *obj)
{
}
static void aarch64_cpu_set_pc(CPUState *cs, vaddr value)
{
ARMCPU *cpu = ARM_CPU(cs);
/* It's OK to look at env for the current mode here, because it's
* never possible for an AArch64 TB to chain to an AArch32 TB.
* (Otherwise we would need to use synchronize_from_tb instead.)
*/
if (is_a64(&cpu->env)) {
cpu->env.pc = value;
} else {
cpu->env.regs[15] = value;
}
}
static gchar *aarch64_gdb_arch_name(CPUState *cs)
{
return g_strdup("aarch64");
}
static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
{
CPUClass *cc = CPU_CLASS(oc);
cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
cc->set_pc = aarch64_cpu_set_pc;
cc->gdb_read_register = aarch64_cpu_gdb_read_register;
cc->gdb_write_register = aarch64_cpu_gdb_write_register;
cc->gdb_num_core_regs = 34;
cc->gdb_core_xml_file = "aarch64-core.xml";
cc->gdb_arch_name = aarch64_gdb_arch_name;
}
static void aarch64_cpu_instance_init(Object *obj)
{
ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
acc->info->initfn(obj);
arm_cpu_post_init(obj);
}
static void cpu_register_class_init(ObjectClass *oc, void *data)
{
ARMCPUClass *acc = ARM_CPU_CLASS(oc);
acc->info = data;
}
static void aarch64_cpu_register(const ARMCPUInfo *info)
{
TypeInfo type_info = {
.parent = TYPE_AARCH64_CPU,
.instance_size = sizeof(ARMCPU),
.instance_init = aarch64_cpu_instance_init,
.class_size = sizeof(ARMCPUClass),
.class_init = info->class_init ?: cpu_register_class_init,
.class_data = (void *)info,
};
type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
type_register(&type_info);
g_free((void *)type_info.name);
}
static const TypeInfo aarch64_cpu_type_info = {
.name = TYPE_AARCH64_CPU,
.parent = TYPE_ARM_CPU,
.instance_size = sizeof(ARMCPU),
.instance_init = aarch64_cpu_initfn,
.instance_finalize = aarch64_cpu_finalizefn,
.abstract = true,
.class_size = sizeof(AArch64CPUClass),
.class_init = aarch64_cpu_class_init,
};
static void aarch64_cpu_register_types(void)
{
const ARMCPUInfo *info = aarch64_cpus;
type_register_static(&aarch64_cpu_type_info);
while (info->name) {
aarch64_cpu_register(info);
info++;
}
}
type_init(aarch64_cpu_register_types)