qemu-e2k/hw/ppc/spapr_irq.c
David Gibson 9f53c0db19 spapr: Fix indexing of XICS irqs
spapr global irq numbers are different from the source numbers on the ICS
when using XICS - they're offset by XICS_IRQ_BASE (0x1000).  But
spapr_irq_set_irq_xics() was passing through the global irq number to
the ICS code unmodified.

We only got away with this because of a counteracting bug - we were
incorrectly adjusting the qemu_irq we returned for a requested global irq
number.

That approach mostly worked but is very confusing, incorrectly relies on
the way the qemu_irq array is allocated, and undermines the intention of
having the global array of qemu_irqs for spapr have a consistent meaning
regardless of irq backend.

So, fix both set_irq and qemu_irq indexing.  We rename some parameters at
the same time to make it clear that they are referring to spapr global
irq numbers.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
2019-10-04 19:08:22 +10:00

811 lines
22 KiB
C

/*
* QEMU PowerPC sPAPR IRQ interface
*
* Copyright (c) 2018, IBM Corporation.
*
* This code is licensed under the GPL version 2 or later. See the
* COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "hw/irq.h"
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_cpu_core.h"
#include "hw/ppc/spapr_xive.h"
#include "hw/ppc/xics.h"
#include "hw/ppc/xics_spapr.h"
#include "hw/qdev-properties.h"
#include "cpu-models.h"
#include "sysemu/kvm.h"
#include "trace.h"
void spapr_irq_msi_init(SpaprMachineState *spapr, uint32_t nr_msis)
{
spapr->irq_map_nr = nr_msis;
spapr->irq_map = bitmap_new(spapr->irq_map_nr);
}
int spapr_irq_msi_alloc(SpaprMachineState *spapr, uint32_t num, bool align,
Error **errp)
{
int irq;
/*
* The 'align_mask' parameter of bitmap_find_next_zero_area()
* should be one less than a power of 2; 0 means no
* alignment. Adapt the 'align' value of the former allocator
* to fit the requirements of bitmap_find_next_zero_area()
*/
align -= 1;
irq = bitmap_find_next_zero_area(spapr->irq_map, spapr->irq_map_nr, 0, num,
align);
if (irq == spapr->irq_map_nr) {
error_setg(errp, "can't find a free %d-IRQ block", num);
return -1;
}
bitmap_set(spapr->irq_map, irq, num);
return irq + SPAPR_IRQ_MSI;
}
void spapr_irq_msi_free(SpaprMachineState *spapr, int irq, uint32_t num)
{
bitmap_clear(spapr->irq_map, irq - SPAPR_IRQ_MSI, num);
}
static void spapr_irq_init_kvm(SpaprMachineState *spapr,
SpaprIrq *irq, Error **errp)
{
MachineState *machine = MACHINE(spapr);
Error *local_err = NULL;
if (kvm_enabled() && machine_kernel_irqchip_allowed(machine)) {
irq->init_kvm(spapr, &local_err);
if (local_err && machine_kernel_irqchip_required(machine)) {
error_prepend(&local_err,
"kernel_irqchip requested but unavailable: ");
error_propagate(errp, local_err);
return;
}
if (!local_err) {
return;
}
/*
* We failed to initialize the KVM device, fallback to
* emulated mode
*/
error_prepend(&local_err, "kernel_irqchip allowed but unavailable: ");
error_append_hint(&local_err, "Falling back to kernel-irqchip=off\n");
warn_report_err(local_err);
}
}
/*
* XICS IRQ backend.
*/
static void spapr_irq_init_xics(SpaprMachineState *spapr, Error **errp)
{
Object *obj;
Error *local_err = NULL;
obj = object_new(TYPE_ICS_SPAPR);
object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
&error_fatal);
object_property_set_int(obj, spapr->irq->nr_xirqs,
"nr-irqs", &error_fatal);
object_property_set_bool(obj, true, "realized", &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
spapr->ics = ICS_SPAPR(obj);
}
static int spapr_irq_claim_xics(SpaprMachineState *spapr, int irq, bool lsi,
Error **errp)
{
ICSState *ics = spapr->ics;
assert(ics);
if (!ics_valid_irq(ics, irq)) {
error_setg(errp, "IRQ %d is invalid", irq);
return -1;
}
if (!ics_irq_free(ics, irq - ics->offset)) {
error_setg(errp, "IRQ %d is not free", irq);
return -1;
}
ics_set_irq_type(ics, irq - ics->offset, lsi);
return 0;
}
static void spapr_irq_free_xics(SpaprMachineState *spapr, int irq, int num)
{
ICSState *ics = spapr->ics;
uint32_t srcno = irq - ics->offset;
int i;
if (ics_valid_irq(ics, irq)) {
trace_spapr_irq_free(0, irq, num);
for (i = srcno; i < srcno + num; ++i) {
if (ics_irq_free(ics, i)) {
trace_spapr_irq_free_warn(0, i);
}
memset(&ics->irqs[i], 0, sizeof(ICSIRQState));
}
}
}
static qemu_irq spapr_qirq_xics(SpaprMachineState *spapr, int irq)
{
ICSState *ics = spapr->ics;
if (ics_valid_irq(ics, irq)) {
return spapr->qirqs[irq];
}
return NULL;
}
static void spapr_irq_print_info_xics(SpaprMachineState *spapr, Monitor *mon)
{
CPUState *cs;
CPU_FOREACH(cs) {
PowerPCCPU *cpu = POWERPC_CPU(cs);
icp_pic_print_info(spapr_cpu_state(cpu)->icp, mon);
}
ics_pic_print_info(spapr->ics, mon);
}
static void spapr_irq_cpu_intc_create_xics(SpaprMachineState *spapr,
PowerPCCPU *cpu, Error **errp)
{
Error *local_err = NULL;
Object *obj;
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
obj = icp_create(OBJECT(cpu), TYPE_ICP, XICS_FABRIC(spapr),
&local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
spapr_cpu->icp = ICP(obj);
}
static int spapr_irq_post_load_xics(SpaprMachineState *spapr, int version_id)
{
if (!kvm_irqchip_in_kernel()) {
CPUState *cs;
CPU_FOREACH(cs) {
PowerPCCPU *cpu = POWERPC_CPU(cs);
icp_resend(spapr_cpu_state(cpu)->icp);
}
}
return 0;
}
static void spapr_irq_set_irq_xics(void *opaque, int irq, int val)
{
SpaprMachineState *spapr = opaque;
uint32_t srcno = irq - spapr->ics->offset;
ics_set_irq(spapr->ics, srcno, val);
}
static void spapr_irq_reset_xics(SpaprMachineState *spapr, Error **errp)
{
Error *local_err = NULL;
spapr_irq_init_kvm(spapr, &spapr_irq_xics, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
}
static const char *spapr_irq_get_nodename_xics(SpaprMachineState *spapr)
{
return XICS_NODENAME;
}
static void spapr_irq_init_kvm_xics(SpaprMachineState *spapr, Error **errp)
{
if (kvm_enabled()) {
xics_kvm_connect(spapr, errp);
}
}
SpaprIrq spapr_irq_xics = {
.nr_xirqs = SPAPR_NR_XIRQS,
.nr_msis = SPAPR_NR_MSIS,
.ov5 = SPAPR_OV5_XIVE_LEGACY,
.init = spapr_irq_init_xics,
.claim = spapr_irq_claim_xics,
.free = spapr_irq_free_xics,
.qirq = spapr_qirq_xics,
.print_info = spapr_irq_print_info_xics,
.dt_populate = spapr_dt_xics,
.cpu_intc_create = spapr_irq_cpu_intc_create_xics,
.post_load = spapr_irq_post_load_xics,
.reset = spapr_irq_reset_xics,
.set_irq = spapr_irq_set_irq_xics,
.get_nodename = spapr_irq_get_nodename_xics,
.init_kvm = spapr_irq_init_kvm_xics,
};
/*
* XIVE IRQ backend.
*/
static void spapr_irq_init_xive(SpaprMachineState *spapr, Error **errp)
{
uint32_t nr_servers = spapr_max_server_number(spapr);
DeviceState *dev;
int i;
dev = qdev_create(NULL, TYPE_SPAPR_XIVE);
qdev_prop_set_uint32(dev, "nr-irqs",
spapr->irq->nr_xirqs + SPAPR_XIRQ_BASE);
/*
* 8 XIVE END structures per CPU. One for each available priority
*/
qdev_prop_set_uint32(dev, "nr-ends", nr_servers << 3);
qdev_init_nofail(dev);
spapr->xive = SPAPR_XIVE(dev);
/* Enable the CPU IPIs */
for (i = 0; i < nr_servers; ++i) {
spapr_xive_irq_claim(spapr->xive, SPAPR_IRQ_IPI + i, false);
}
spapr_xive_hcall_init(spapr);
}
static int spapr_irq_claim_xive(SpaprMachineState *spapr, int irq, bool lsi,
Error **errp)
{
if (!spapr_xive_irq_claim(spapr->xive, irq, lsi)) {
error_setg(errp, "IRQ %d is invalid", irq);
return -1;
}
return 0;
}
static void spapr_irq_free_xive(SpaprMachineState *spapr, int irq, int num)
{
int i;
for (i = irq; i < irq + num; ++i) {
spapr_xive_irq_free(spapr->xive, i);
}
}
static qemu_irq spapr_qirq_xive(SpaprMachineState *spapr, int irq)
{
SpaprXive *xive = spapr->xive;
if ((irq < SPAPR_XIRQ_BASE) || (irq >= xive->nr_irqs)) {
return NULL;
}
/* The sPAPR machine/device should have claimed the IRQ before */
assert(xive_eas_is_valid(&xive->eat[irq]));
return spapr->qirqs[irq];
}
static void spapr_irq_print_info_xive(SpaprMachineState *spapr,
Monitor *mon)
{
CPUState *cs;
CPU_FOREACH(cs) {
PowerPCCPU *cpu = POWERPC_CPU(cs);
xive_tctx_pic_print_info(spapr_cpu_state(cpu)->tctx, mon);
}
spapr_xive_pic_print_info(spapr->xive, mon);
}
static void spapr_irq_cpu_intc_create_xive(SpaprMachineState *spapr,
PowerPCCPU *cpu, Error **errp)
{
Error *local_err = NULL;
Object *obj;
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(spapr->xive), &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
spapr_cpu->tctx = XIVE_TCTX(obj);
/*
* (TCG) Early setting the OS CAM line for hotplugged CPUs as they
* don't beneficiate from the reset of the XIVE IRQ backend
*/
spapr_xive_set_tctx_os_cam(spapr_cpu->tctx);
}
static int spapr_irq_post_load_xive(SpaprMachineState *spapr, int version_id)
{
return spapr_xive_post_load(spapr->xive, version_id);
}
static void spapr_irq_reset_xive(SpaprMachineState *spapr, Error **errp)
{
CPUState *cs;
Error *local_err = NULL;
CPU_FOREACH(cs) {
PowerPCCPU *cpu = POWERPC_CPU(cs);
/* (TCG) Set the OS CAM line of the thread interrupt context. */
spapr_xive_set_tctx_os_cam(spapr_cpu_state(cpu)->tctx);
}
spapr_irq_init_kvm(spapr, &spapr_irq_xive, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
/* Activate the XIVE MMIOs */
spapr_xive_mmio_set_enabled(spapr->xive, true);
}
static void spapr_irq_set_irq_xive(void *opaque, int irq, int val)
{
SpaprMachineState *spapr = opaque;
if (kvm_irqchip_in_kernel()) {
kvmppc_xive_source_set_irq(&spapr->xive->source, irq, val);
} else {
xive_source_set_irq(&spapr->xive->source, irq, val);
}
}
static const char *spapr_irq_get_nodename_xive(SpaprMachineState *spapr)
{
return spapr->xive->nodename;
}
static void spapr_irq_init_kvm_xive(SpaprMachineState *spapr, Error **errp)
{
if (kvm_enabled()) {
kvmppc_xive_connect(spapr->xive, errp);
}
}
SpaprIrq spapr_irq_xive = {
.nr_xirqs = SPAPR_NR_XIRQS,
.nr_msis = SPAPR_NR_MSIS,
.ov5 = SPAPR_OV5_XIVE_EXPLOIT,
.init = spapr_irq_init_xive,
.claim = spapr_irq_claim_xive,
.free = spapr_irq_free_xive,
.qirq = spapr_qirq_xive,
.print_info = spapr_irq_print_info_xive,
.dt_populate = spapr_dt_xive,
.cpu_intc_create = spapr_irq_cpu_intc_create_xive,
.post_load = spapr_irq_post_load_xive,
.reset = spapr_irq_reset_xive,
.set_irq = spapr_irq_set_irq_xive,
.get_nodename = spapr_irq_get_nodename_xive,
.init_kvm = spapr_irq_init_kvm_xive,
};
/*
* Dual XIVE and XICS IRQ backend.
*
* Both interrupt mode, XIVE and XICS, objects are created but the
* machine starts in legacy interrupt mode (XICS). It can be changed
* by the CAS negotiation process and, in that case, the new mode is
* activated after an extra machine reset.
*/
/*
* Returns the sPAPR IRQ backend negotiated by CAS. XICS is the
* default.
*/
static SpaprIrq *spapr_irq_current(SpaprMachineState *spapr)
{
return spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT) ?
&spapr_irq_xive : &spapr_irq_xics;
}
static void spapr_irq_init_dual(SpaprMachineState *spapr, Error **errp)
{
Error *local_err = NULL;
spapr_irq_xics.init(spapr, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
spapr_irq_xive.init(spapr, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
}
static int spapr_irq_claim_dual(SpaprMachineState *spapr, int irq, bool lsi,
Error **errp)
{
Error *local_err = NULL;
int ret;
ret = spapr_irq_xics.claim(spapr, irq, lsi, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return ret;
}
ret = spapr_irq_xive.claim(spapr, irq, lsi, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return ret;
}
return ret;
}
static void spapr_irq_free_dual(SpaprMachineState *spapr, int irq, int num)
{
spapr_irq_xics.free(spapr, irq, num);
spapr_irq_xive.free(spapr, irq, num);
}
static qemu_irq spapr_qirq_dual(SpaprMachineState *spapr, int irq)
{
return spapr_irq_current(spapr)->qirq(spapr, irq);
}
static void spapr_irq_print_info_dual(SpaprMachineState *spapr, Monitor *mon)
{
spapr_irq_current(spapr)->print_info(spapr, mon);
}
static void spapr_irq_dt_populate_dual(SpaprMachineState *spapr,
uint32_t nr_servers, void *fdt,
uint32_t phandle)
{
spapr_irq_current(spapr)->dt_populate(spapr, nr_servers, fdt, phandle);
}
static void spapr_irq_cpu_intc_create_dual(SpaprMachineState *spapr,
PowerPCCPU *cpu, Error **errp)
{
Error *local_err = NULL;
spapr_irq_xive.cpu_intc_create(spapr, cpu, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
spapr_irq_xics.cpu_intc_create(spapr, cpu, errp);
}
static int spapr_irq_post_load_dual(SpaprMachineState *spapr, int version_id)
{
/*
* Force a reset of the XIVE backend after migration. The machine
* defaults to XICS at startup.
*/
if (spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
if (kvm_irqchip_in_kernel()) {
xics_kvm_disconnect(spapr, &error_fatal);
}
spapr_irq_xive.reset(spapr, &error_fatal);
}
return spapr_irq_current(spapr)->post_load(spapr, version_id);
}
static void spapr_irq_reset_dual(SpaprMachineState *spapr, Error **errp)
{
Error *local_err = NULL;
/*
* Deactivate the XIVE MMIOs. The XIVE backend will reenable them
* if selected.
*/
spapr_xive_mmio_set_enabled(spapr->xive, false);
/* Destroy all KVM devices */
if (kvm_irqchip_in_kernel()) {
xics_kvm_disconnect(spapr, &local_err);
if (local_err) {
error_propagate(errp, local_err);
error_prepend(errp, "KVM XICS disconnect failed: ");
return;
}
kvmppc_xive_disconnect(spapr->xive, &local_err);
if (local_err) {
error_propagate(errp, local_err);
error_prepend(errp, "KVM XIVE disconnect failed: ");
return;
}
}
spapr_irq_current(spapr)->reset(spapr, errp);
}
static void spapr_irq_set_irq_dual(void *opaque, int irq, int val)
{
SpaprMachineState *spapr = opaque;
spapr_irq_current(spapr)->set_irq(spapr, irq, val);
}
static const char *spapr_irq_get_nodename_dual(SpaprMachineState *spapr)
{
return spapr_irq_current(spapr)->get_nodename(spapr);
}
/*
* Define values in sync with the XIVE and XICS backend
*/
SpaprIrq spapr_irq_dual = {
.nr_xirqs = SPAPR_NR_XIRQS,
.nr_msis = SPAPR_NR_MSIS,
.ov5 = SPAPR_OV5_XIVE_BOTH,
.init = spapr_irq_init_dual,
.claim = spapr_irq_claim_dual,
.free = spapr_irq_free_dual,
.qirq = spapr_qirq_dual,
.print_info = spapr_irq_print_info_dual,
.dt_populate = spapr_irq_dt_populate_dual,
.cpu_intc_create = spapr_irq_cpu_intc_create_dual,
.post_load = spapr_irq_post_load_dual,
.reset = spapr_irq_reset_dual,
.set_irq = spapr_irq_set_irq_dual,
.get_nodename = spapr_irq_get_nodename_dual,
.init_kvm = NULL, /* should not be used */
};
static void spapr_irq_check(SpaprMachineState *spapr, Error **errp)
{
MachineState *machine = MACHINE(spapr);
/*
* Sanity checks on non-P9 machines. On these, XIVE is not
* advertised, see spapr_dt_ov5_platform_support()
*/
if (!ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00,
0, spapr->max_compat_pvr)) {
/*
* If the 'dual' interrupt mode is selected, force XICS as CAS
* negotiation is useless.
*/
if (spapr->irq == &spapr_irq_dual) {
spapr->irq = &spapr_irq_xics;
return;
}
/*
* Non-P9 machines using only XIVE is a bogus setup. We have two
* scenarios to take into account because of the compat mode:
*
* 1. POWER7/8 machines should fail to init later on when creating
* the XIVE interrupt presenters because a POWER9 exception
* model is required.
* 2. POWER9 machines using the POWER8 compat mode won't fail and
* will let the OS boot with a partial XIVE setup : DT
* properties but no hcalls.
*
* To cover both and not confuse the OS, add an early failure in
* QEMU.
*/
if (spapr->irq == &spapr_irq_xive) {
error_setg(errp, "XIVE-only machines require a POWER9 CPU");
return;
}
}
/*
* On a POWER9 host, some older KVM XICS devices cannot be destroyed and
* re-created. Detect that early to avoid QEMU to exit later when the
* guest reboots.
*/
if (kvm_enabled() &&
spapr->irq == &spapr_irq_dual &&
machine_kernel_irqchip_required(machine) &&
xics_kvm_has_broken_disconnect(spapr)) {
error_setg(errp, "KVM is too old to support ic-mode=dual,kernel-irqchip=on");
return;
}
}
/*
* sPAPR IRQ frontend routines for devices
*/
void spapr_irq_init(SpaprMachineState *spapr, Error **errp)
{
MachineState *machine = MACHINE(spapr);
Error *local_err = NULL;
if (machine_kernel_irqchip_split(machine)) {
error_setg(errp, "kernel_irqchip split mode not supported on pseries");
return;
}
if (!kvm_enabled() && machine_kernel_irqchip_required(machine)) {
error_setg(errp,
"kernel_irqchip requested but only available with KVM");
return;
}
spapr_irq_check(spapr, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
/* Initialize the MSI IRQ allocator. */
if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
spapr_irq_msi_init(spapr, spapr->irq->nr_msis);
}
spapr->irq->init(spapr, errp);
spapr->qirqs = qemu_allocate_irqs(spapr->irq->set_irq, spapr,
spapr->irq->nr_xirqs + SPAPR_XIRQ_BASE);
}
int spapr_irq_claim(SpaprMachineState *spapr, int irq, bool lsi, Error **errp)
{
return spapr->irq->claim(spapr, irq, lsi, errp);
}
void spapr_irq_free(SpaprMachineState *spapr, int irq, int num)
{
spapr->irq->free(spapr, irq, num);
}
qemu_irq spapr_qirq(SpaprMachineState *spapr, int irq)
{
return spapr->irq->qirq(spapr, irq);
}
int spapr_irq_post_load(SpaprMachineState *spapr, int version_id)
{
return spapr->irq->post_load(spapr, version_id);
}
void spapr_irq_reset(SpaprMachineState *spapr, Error **errp)
{
assert(!spapr->irq_map || bitmap_empty(spapr->irq_map, spapr->irq_map_nr));
if (spapr->irq->reset) {
spapr->irq->reset(spapr, errp);
}
}
int spapr_irq_get_phandle(SpaprMachineState *spapr, void *fdt, Error **errp)
{
const char *nodename = spapr->irq->get_nodename(spapr);
int offset, phandle;
offset = fdt_subnode_offset(fdt, 0, nodename);
if (offset < 0) {
error_setg(errp, "Can't find node \"%s\": %s", nodename,
fdt_strerror(offset));
return -1;
}
phandle = fdt_get_phandle(fdt, offset);
if (!phandle) {
error_setg(errp, "Can't get phandle of node \"%s\"", nodename);
return -1;
}
return phandle;
}
/*
* XICS legacy routines - to deprecate one day
*/
static int ics_find_free_block(ICSState *ics, int num, int alignnum)
{
int first, i;
for (first = 0; first < ics->nr_irqs; first += alignnum) {
if (num > (ics->nr_irqs - first)) {
return -1;
}
for (i = first; i < first + num; ++i) {
if (!ics_irq_free(ics, i)) {
break;
}
}
if (i == (first + num)) {
return first;
}
}
return -1;
}
int spapr_irq_find(SpaprMachineState *spapr, int num, bool align, Error **errp)
{
ICSState *ics = spapr->ics;
int first = -1;
assert(ics);
/*
* MSIMesage::data is used for storing VIRQ so
* it has to be aligned to num to support multiple
* MSI vectors. MSI-X is not affected by this.
* The hint is used for the first IRQ, the rest should
* be allocated continuously.
*/
if (align) {
assert((num == 1) || (num == 2) || (num == 4) ||
(num == 8) || (num == 16) || (num == 32));
first = ics_find_free_block(ics, num, num);
} else {
first = ics_find_free_block(ics, num, 1);
}
if (first < 0) {
error_setg(errp, "can't find a free %d-IRQ block", num);
return -1;
}
return first + ics->offset;
}
#define SPAPR_IRQ_XICS_LEGACY_NR_XIRQS 0x400
SpaprIrq spapr_irq_xics_legacy = {
.nr_xirqs = SPAPR_IRQ_XICS_LEGACY_NR_XIRQS,
.nr_msis = SPAPR_IRQ_XICS_LEGACY_NR_XIRQS,
.ov5 = SPAPR_OV5_XIVE_LEGACY,
.init = spapr_irq_init_xics,
.claim = spapr_irq_claim_xics,
.free = spapr_irq_free_xics,
.qirq = spapr_qirq_xics,
.print_info = spapr_irq_print_info_xics,
.dt_populate = spapr_dt_xics,
.cpu_intc_create = spapr_irq_cpu_intc_create_xics,
.post_load = spapr_irq_post_load_xics,
.reset = spapr_irq_reset_xics,
.set_irq = spapr_irq_set_irq_xics,
.get_nodename = spapr_irq_get_nodename_xics,
.init_kvm = spapr_irq_init_kvm_xics,
};