qemu-e2k/hw/i386/kvm/pci-assign.c
Markus Armbruster d313858dfc pci-assign: Convert to realize
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Gonglei <arei.gonglei@huawei.com>
2015-02-26 12:42:17 +01:00

1966 lines
65 KiB
C

/*
* Copyright (c) 2007, Neocleus Corporation.
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*
* Assign a PCI device from the host to a guest VM.
*
* This implementation uses the classic device assignment interface of KVM
* and is only available on x86 hosts. It is expected to be obsoleted by VFIO
* based device assignment.
*
* Adapted for KVM (qemu-kvm) by Qumranet. QEMU version was based on qemu-kvm
* revision 4144fe9d48. See its repository for the history.
*
* Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com)
* Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com)
* Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com)
* Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com)
* Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com)
*/
#include <stdio.h>
#include <unistd.h>
#include <sys/io.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "hw/hw.h"
#include "hw/i386/pc.h"
#include "qemu/error-report.h"
#include "ui/console.h"
#include "hw/loader.h"
#include "monitor/monitor.h"
#include "qemu/range.h"
#include "sysemu/sysemu.h"
#include "hw/pci/pci.h"
#include "hw/pci/msi.h"
#include "kvm_i386.h"
#define MSIX_PAGE_SIZE 0x1000
/* From linux/ioport.h */
#define IORESOURCE_IO 0x00000100 /* Resource type */
#define IORESOURCE_MEM 0x00000200
#define IORESOURCE_IRQ 0x00000400
#define IORESOURCE_DMA 0x00000800
#define IORESOURCE_PREFETCH 0x00002000 /* No side effects */
#define IORESOURCE_MEM_64 0x00100000
//#define DEVICE_ASSIGNMENT_DEBUG
#ifdef DEVICE_ASSIGNMENT_DEBUG
#define DEBUG(fmt, ...) \
do { \
fprintf(stderr, "%s: " fmt, __func__ , __VA_ARGS__); \
} while (0)
#else
#define DEBUG(fmt, ...)
#endif
typedef struct PCIRegion {
int type; /* Memory or port I/O */
int valid;
uint64_t base_addr;
uint64_t size; /* size of the region */
int resource_fd;
} PCIRegion;
typedef struct PCIDevRegions {
uint8_t bus, dev, func; /* Bus inside domain, device and function */
int irq; /* IRQ number */
uint16_t region_number; /* number of active regions */
/* Port I/O or MMIO Regions */
PCIRegion regions[PCI_NUM_REGIONS - 1];
int config_fd;
} PCIDevRegions;
typedef struct AssignedDevRegion {
MemoryRegion container;
MemoryRegion real_iomem;
union {
uint8_t *r_virtbase; /* mmapped access address for memory regions */
uint32_t r_baseport; /* the base guest port for I/O regions */
} u;
pcibus_t e_size; /* emulated size of region in bytes */
pcibus_t r_size; /* real size of region in bytes */
PCIRegion *region;
} AssignedDevRegion;
#define ASSIGNED_DEVICE_PREFER_MSI_BIT 0
#define ASSIGNED_DEVICE_SHARE_INTX_BIT 1
#define ASSIGNED_DEVICE_PREFER_MSI_MASK (1 << ASSIGNED_DEVICE_PREFER_MSI_BIT)
#define ASSIGNED_DEVICE_SHARE_INTX_MASK (1 << ASSIGNED_DEVICE_SHARE_INTX_BIT)
typedef struct MSIXTableEntry {
uint32_t addr_lo;
uint32_t addr_hi;
uint32_t data;
uint32_t ctrl;
} MSIXTableEntry;
typedef enum AssignedIRQType {
ASSIGNED_IRQ_NONE = 0,
ASSIGNED_IRQ_INTX_HOST_INTX,
ASSIGNED_IRQ_INTX_HOST_MSI,
ASSIGNED_IRQ_MSI,
ASSIGNED_IRQ_MSIX
} AssignedIRQType;
typedef struct AssignedDevice {
PCIDevice dev;
PCIHostDeviceAddress host;
uint32_t dev_id;
uint32_t features;
int intpin;
AssignedDevRegion v_addrs[PCI_NUM_REGIONS - 1];
PCIDevRegions real_device;
PCIINTxRoute intx_route;
AssignedIRQType assigned_irq_type;
struct {
#define ASSIGNED_DEVICE_CAP_MSI (1 << 0)
#define ASSIGNED_DEVICE_CAP_MSIX (1 << 1)
uint32_t available;
#define ASSIGNED_DEVICE_MSI_ENABLED (1 << 0)
#define ASSIGNED_DEVICE_MSIX_ENABLED (1 << 1)
#define ASSIGNED_DEVICE_MSIX_MASKED (1 << 2)
uint32_t state;
} cap;
uint8_t emulate_config_read[PCI_CONFIG_SPACE_SIZE];
uint8_t emulate_config_write[PCI_CONFIG_SPACE_SIZE];
int msi_virq_nr;
int *msi_virq;
MSIXTableEntry *msix_table;
hwaddr msix_table_addr;
uint16_t msix_max;
MemoryRegion mmio;
char *configfd_name;
int32_t bootindex;
} AssignedDevice;
static void assigned_dev_update_irq_routing(PCIDevice *dev);
static void assigned_dev_load_option_rom(AssignedDevice *dev);
static void assigned_dev_unregister_msix_mmio(AssignedDevice *dev);
static uint64_t assigned_dev_ioport_rw(AssignedDevRegion *dev_region,
hwaddr addr, int size,
uint64_t *data)
{
uint64_t val = 0;
int fd = dev_region->region->resource_fd;
if (data) {
DEBUG("pwrite data=%" PRIx64 ", size=%d, e_phys=" TARGET_FMT_plx
", addr="TARGET_FMT_plx"\n", *data, size, addr, addr);
if (pwrite(fd, data, size, addr) != size) {
error_report("%s - pwrite failed %s", __func__, strerror(errno));
}
} else {
if (pread(fd, &val, size, addr) != size) {
error_report("%s - pread failed %s", __func__, strerror(errno));
val = (1UL << (size * 8)) - 1;
}
DEBUG("pread val=%" PRIx64 ", size=%d, e_phys=" TARGET_FMT_plx
", addr=" TARGET_FMT_plx "\n", val, size, addr, addr);
}
return val;
}
static void assigned_dev_ioport_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
assigned_dev_ioport_rw(opaque, addr, size, &data);
}
static uint64_t assigned_dev_ioport_read(void *opaque,
hwaddr addr, unsigned size)
{
return assigned_dev_ioport_rw(opaque, addr, size, NULL);
}
static uint32_t slow_bar_readb(void *opaque, hwaddr addr)
{
AssignedDevRegion *d = opaque;
uint8_t *in = d->u.r_virtbase + addr;
uint32_t r;
r = *in;
DEBUG("addr=0x" TARGET_FMT_plx " val=0x%08x\n", addr, r);
return r;
}
static uint32_t slow_bar_readw(void *opaque, hwaddr addr)
{
AssignedDevRegion *d = opaque;
uint16_t *in = (uint16_t *)(d->u.r_virtbase + addr);
uint32_t r;
r = *in;
DEBUG("addr=0x" TARGET_FMT_plx " val=0x%08x\n", addr, r);
return r;
}
static uint32_t slow_bar_readl(void *opaque, hwaddr addr)
{
AssignedDevRegion *d = opaque;
uint32_t *in = (uint32_t *)(d->u.r_virtbase + addr);
uint32_t r;
r = *in;
DEBUG("addr=0x" TARGET_FMT_plx " val=0x%08x\n", addr, r);
return r;
}
static void slow_bar_writeb(void *opaque, hwaddr addr, uint32_t val)
{
AssignedDevRegion *d = opaque;
uint8_t *out = d->u.r_virtbase + addr;
DEBUG("addr=0x" TARGET_FMT_plx " val=0x%02x\n", addr, val);
*out = val;
}
static void slow_bar_writew(void *opaque, hwaddr addr, uint32_t val)
{
AssignedDevRegion *d = opaque;
uint16_t *out = (uint16_t *)(d->u.r_virtbase + addr);
DEBUG("addr=0x" TARGET_FMT_plx " val=0x%04x\n", addr, val);
*out = val;
}
static void slow_bar_writel(void *opaque, hwaddr addr, uint32_t val)
{
AssignedDevRegion *d = opaque;
uint32_t *out = (uint32_t *)(d->u.r_virtbase + addr);
DEBUG("addr=0x" TARGET_FMT_plx " val=0x%08x\n", addr, val);
*out = val;
}
static const MemoryRegionOps slow_bar_ops = {
.old_mmio = {
.read = { slow_bar_readb, slow_bar_readw, slow_bar_readl, },
.write = { slow_bar_writeb, slow_bar_writew, slow_bar_writel, },
},
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void assigned_dev_iomem_setup(PCIDevice *pci_dev, int region_num,
pcibus_t e_size)
{
AssignedDevice *r_dev = DO_UPCAST(AssignedDevice, dev, pci_dev);
AssignedDevRegion *region = &r_dev->v_addrs[region_num];
PCIRegion *real_region = &r_dev->real_device.regions[region_num];
if (e_size > 0) {
memory_region_init(&region->container, OBJECT(pci_dev),
"assigned-dev-container", e_size);
memory_region_add_subregion(&region->container, 0, &region->real_iomem);
/* deal with MSI-X MMIO page */
if (real_region->base_addr <= r_dev->msix_table_addr &&
real_region->base_addr + real_region->size >
r_dev->msix_table_addr) {
uint64_t offset = r_dev->msix_table_addr - real_region->base_addr;
memory_region_add_subregion_overlap(&region->container,
offset,
&r_dev->mmio,
1);
}
}
}
static const MemoryRegionOps assigned_dev_ioport_ops = {
.read = assigned_dev_ioport_read,
.write = assigned_dev_ioport_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void assigned_dev_ioport_setup(PCIDevice *pci_dev, int region_num,
pcibus_t size)
{
AssignedDevice *r_dev = DO_UPCAST(AssignedDevice, dev, pci_dev);
AssignedDevRegion *region = &r_dev->v_addrs[region_num];
region->e_size = size;
memory_region_init(&region->container, OBJECT(pci_dev),
"assigned-dev-container", size);
memory_region_init_io(&region->real_iomem, OBJECT(pci_dev),
&assigned_dev_ioport_ops, r_dev->v_addrs + region_num,
"assigned-dev-iomem", size);
memory_region_add_subregion(&region->container, 0, &region->real_iomem);
}
static uint32_t assigned_dev_pci_read(PCIDevice *d, int pos, int len)
{
AssignedDevice *pci_dev = DO_UPCAST(AssignedDevice, dev, d);
uint32_t val;
ssize_t ret;
int fd = pci_dev->real_device.config_fd;
again:
ret = pread(fd, &val, len, pos);
if (ret != len) {
if ((ret < 0) && (errno == EINTR || errno == EAGAIN)) {
goto again;
}
hw_error("pci read failed, ret = %zd errno = %d\n", ret, errno);
}
return val;
}
static uint8_t assigned_dev_pci_read_byte(PCIDevice *d, int pos)
{
return (uint8_t)assigned_dev_pci_read(d, pos, 1);
}
static void assigned_dev_pci_write(PCIDevice *d, int pos, uint32_t val, int len)
{
AssignedDevice *pci_dev = DO_UPCAST(AssignedDevice, dev, d);
ssize_t ret;
int fd = pci_dev->real_device.config_fd;
again:
ret = pwrite(fd, &val, len, pos);
if (ret != len) {
if ((ret < 0) && (errno == EINTR || errno == EAGAIN)) {
goto again;
}
hw_error("pci write failed, ret = %zd errno = %d\n", ret, errno);
}
}
static void assigned_dev_emulate_config_read(AssignedDevice *dev,
uint32_t offset, uint32_t len)
{
memset(dev->emulate_config_read + offset, 0xff, len);
}
static void assigned_dev_direct_config_read(AssignedDevice *dev,
uint32_t offset, uint32_t len)
{
memset(dev->emulate_config_read + offset, 0, len);
}
static void assigned_dev_direct_config_write(AssignedDevice *dev,
uint32_t offset, uint32_t len)
{
memset(dev->emulate_config_write + offset, 0, len);
}
static uint8_t pci_find_cap_offset(PCIDevice *d, uint8_t cap, uint8_t start)
{
int id;
int max_cap = 48;
int pos = start ? start : PCI_CAPABILITY_LIST;
int status;
status = assigned_dev_pci_read_byte(d, PCI_STATUS);
if ((status & PCI_STATUS_CAP_LIST) == 0) {
return 0;
}
while (max_cap--) {
pos = assigned_dev_pci_read_byte(d, pos);
if (pos < 0x40) {
break;
}
pos &= ~3;
id = assigned_dev_pci_read_byte(d, pos + PCI_CAP_LIST_ID);
if (id == 0xff) {
break;
}
if (id == cap) {
return pos;
}
pos += PCI_CAP_LIST_NEXT;
}
return 0;
}
static void assigned_dev_register_regions(PCIRegion *io_regions,
unsigned long regions_num,
AssignedDevice *pci_dev,
Error **errp)
{
uint32_t i;
PCIRegion *cur_region = io_regions;
for (i = 0; i < regions_num; i++, cur_region++) {
if (!cur_region->valid) {
continue;
}
/* handle memory io regions */
if (cur_region->type & IORESOURCE_MEM) {
int t = PCI_BASE_ADDRESS_SPACE_MEMORY;
if (cur_region->type & IORESOURCE_PREFETCH) {
t |= PCI_BASE_ADDRESS_MEM_PREFETCH;
}
if (cur_region->type & IORESOURCE_MEM_64) {
t |= PCI_BASE_ADDRESS_MEM_TYPE_64;
}
/* map physical memory */
pci_dev->v_addrs[i].u.r_virtbase = mmap(NULL, cur_region->size,
PROT_WRITE | PROT_READ,
MAP_SHARED,
cur_region->resource_fd,
(off_t)0);
if (pci_dev->v_addrs[i].u.r_virtbase == MAP_FAILED) {
pci_dev->v_addrs[i].u.r_virtbase = NULL;
error_setg_errno(errp, errno, "Couldn't mmap 0x%" PRIx64 "!",
cur_region->base_addr);
return;
}
pci_dev->v_addrs[i].r_size = cur_region->size;
pci_dev->v_addrs[i].e_size = 0;
/* add offset */
pci_dev->v_addrs[i].u.r_virtbase +=
(cur_region->base_addr & 0xFFF);
if (cur_region->size & 0xFFF) {
error_report("PCI region %d at address 0x%" PRIx64 " has "
"size 0x%" PRIx64 ", which is not a multiple of "
"4K. You might experience some performance hit "
"due to that.",
i, cur_region->base_addr, cur_region->size);
memory_region_init_io(&pci_dev->v_addrs[i].real_iomem,
OBJECT(pci_dev), &slow_bar_ops,
&pci_dev->v_addrs[i],
"assigned-dev-slow-bar",
cur_region->size);
} else {
void *virtbase = pci_dev->v_addrs[i].u.r_virtbase;
char name[32];
snprintf(name, sizeof(name), "%s.bar%d",
object_get_typename(OBJECT(pci_dev)), i);
memory_region_init_ram_ptr(&pci_dev->v_addrs[i].real_iomem,
OBJECT(pci_dev), name,
cur_region->size, virtbase);
vmstate_register_ram(&pci_dev->v_addrs[i].real_iomem,
&pci_dev->dev.qdev);
}
assigned_dev_iomem_setup(&pci_dev->dev, i, cur_region->size);
pci_register_bar((PCIDevice *) pci_dev, i, t,
&pci_dev->v_addrs[i].container);
continue;
} else {
/* handle port io regions */
uint32_t val;
int ret;
/* Test kernel support for ioport resource read/write. Old
* kernels return EIO. New kernels only allow 1/2/4 byte reads
* so should return EINVAL for a 3 byte read */
ret = pread(pci_dev->v_addrs[i].region->resource_fd, &val, 3, 0);
if (ret >= 0) {
error_report("Unexpected return from I/O port read: %d", ret);
abort();
} else if (errno != EINVAL) {
error_report("Kernel doesn't support ioport resource "
"access, hiding this region.");
close(pci_dev->v_addrs[i].region->resource_fd);
cur_region->valid = 0;
continue;
}
pci_dev->v_addrs[i].u.r_baseport = cur_region->base_addr;
pci_dev->v_addrs[i].r_size = cur_region->size;
pci_dev->v_addrs[i].e_size = 0;
assigned_dev_ioport_setup(&pci_dev->dev, i, cur_region->size);
pci_register_bar((PCIDevice *) pci_dev, i,
PCI_BASE_ADDRESS_SPACE_IO,
&pci_dev->v_addrs[i].container);
}
}
/* success */
}
static void get_real_id(const char *devpath, const char *idname, uint16_t *val,
Error **errp)
{
FILE *f;
char name[128];
long id;
snprintf(name, sizeof(name), "%s%s", devpath, idname);
f = fopen(name, "r");
if (f == NULL) {
error_setg_file_open(errp, errno, name);
return;
}
if (fscanf(f, "%li\n", &id) == 1) {
*val = id;
} else {
error_setg(errp, "Failed to parse contents of '%s'", name);
}
fclose(f);
}
static void get_real_vendor_id(const char *devpath, uint16_t *val,
Error **errp)
{
get_real_id(devpath, "vendor", val, errp);
}
static void get_real_device_id(const char *devpath, uint16_t *val,
Error **errp)
{
get_real_id(devpath, "device", val, errp);
}
static void get_real_device(AssignedDevice *pci_dev, Error **errp)
{
char dir[128], name[128];
int fd, r = 0;
FILE *f;
uint64_t start, end, size, flags;
uint16_t id;
PCIRegion *rp;
PCIDevRegions *dev = &pci_dev->real_device;
Error *local_err = NULL;
dev->region_number = 0;
snprintf(dir, sizeof(dir), "/sys/bus/pci/devices/%04x:%02x:%02x.%x/",
pci_dev->host.domain, pci_dev->host.bus,
pci_dev->host.slot, pci_dev->host.function);
snprintf(name, sizeof(name), "%sconfig", dir);
if (pci_dev->configfd_name && *pci_dev->configfd_name) {
dev->config_fd = monitor_fd_param(cur_mon, pci_dev->configfd_name,
&local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
} else {
dev->config_fd = open(name, O_RDWR);
if (dev->config_fd == -1) {
error_setg_file_open(errp, errno, name);
return;
}
}
again:
r = read(dev->config_fd, pci_dev->dev.config,
pci_config_size(&pci_dev->dev));
if (r < 0) {
if (errno == EINTR || errno == EAGAIN) {
goto again;
}
error_setg_errno(errp, errno, "read(\"%s\")",
(pci_dev->configfd_name && *pci_dev->configfd_name) ?
pci_dev->configfd_name : name);
return;
}
/* Restore or clear multifunction, this is always controlled by qemu */
if (pci_dev->dev.cap_present & QEMU_PCI_CAP_MULTIFUNCTION) {
pci_dev->dev.config[PCI_HEADER_TYPE] |= PCI_HEADER_TYPE_MULTI_FUNCTION;
} else {
pci_dev->dev.config[PCI_HEADER_TYPE] &= ~PCI_HEADER_TYPE_MULTI_FUNCTION;
}
/* Clear host resource mapping info. If we choose not to register a
* BAR, such as might be the case with the option ROM, we can get
* confusing, unwritable, residual addresses from the host here. */
memset(&pci_dev->dev.config[PCI_BASE_ADDRESS_0], 0, 24);
memset(&pci_dev->dev.config[PCI_ROM_ADDRESS], 0, 4);
snprintf(name, sizeof(name), "%sresource", dir);
f = fopen(name, "r");
if (f == NULL) {
error_setg_file_open(errp, errno, name);
return;
}
for (r = 0; r < PCI_ROM_SLOT; r++) {
if (fscanf(f, "%" SCNi64 " %" SCNi64 " %" SCNi64 "\n",
&start, &end, &flags) != 3) {
break;
}
rp = dev->regions + r;
rp->valid = 0;
rp->resource_fd = -1;
size = end - start + 1;
flags &= IORESOURCE_IO | IORESOURCE_MEM | IORESOURCE_PREFETCH
| IORESOURCE_MEM_64;
if (size == 0 || (flags & ~IORESOURCE_PREFETCH) == 0) {
continue;
}
if (flags & IORESOURCE_MEM) {
flags &= ~IORESOURCE_IO;
} else {
flags &= ~IORESOURCE_PREFETCH;
}
snprintf(name, sizeof(name), "%sresource%d", dir, r);
fd = open(name, O_RDWR);
if (fd == -1) {
continue;
}
rp->resource_fd = fd;
rp->type = flags;
rp->valid = 1;
rp->base_addr = start;
rp->size = size;
pci_dev->v_addrs[r].region = rp;
DEBUG("region %d size %" PRIu64 " start 0x%" PRIx64
" type %d resource_fd %d\n",
r, rp->size, start, rp->type, rp->resource_fd);
}
fclose(f);
/* read and fill vendor ID */
get_real_vendor_id(dir, &id, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
pci_dev->dev.config[0] = id & 0xff;
pci_dev->dev.config[1] = (id & 0xff00) >> 8;
/* read and fill device ID */
get_real_device_id(dir, &id, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
pci_dev->dev.config[2] = id & 0xff;
pci_dev->dev.config[3] = (id & 0xff00) >> 8;
pci_word_test_and_clear_mask(pci_dev->emulate_config_write + PCI_COMMAND,
PCI_COMMAND_MASTER | PCI_COMMAND_INTX_DISABLE);
dev->region_number = r;
}
static void free_msi_virqs(AssignedDevice *dev)
{
int i;
for (i = 0; i < dev->msi_virq_nr; i++) {
if (dev->msi_virq[i] >= 0) {
kvm_irqchip_release_virq(kvm_state, dev->msi_virq[i]);
dev->msi_virq[i] = -1;
}
}
g_free(dev->msi_virq);
dev->msi_virq = NULL;
dev->msi_virq_nr = 0;
}
static void free_assigned_device(AssignedDevice *dev)
{
int i;
if (dev->cap.available & ASSIGNED_DEVICE_CAP_MSIX) {
assigned_dev_unregister_msix_mmio(dev);
}
for (i = 0; i < dev->real_device.region_number; i++) {
PCIRegion *pci_region = &dev->real_device.regions[i];
AssignedDevRegion *region = &dev->v_addrs[i];
if (!pci_region->valid) {
continue;
}
if (pci_region->type & IORESOURCE_IO) {
if (region->u.r_baseport) {
memory_region_del_subregion(&region->container,
&region->real_iomem);
}
} else if (pci_region->type & IORESOURCE_MEM) {
if (region->u.r_virtbase) {
memory_region_del_subregion(&region->container,
&region->real_iomem);
/* Remove MSI-X table subregion */
if (pci_region->base_addr <= dev->msix_table_addr &&
pci_region->base_addr + pci_region->size >
dev->msix_table_addr) {
memory_region_del_subregion(&region->container,
&dev->mmio);
}
if (munmap(region->u.r_virtbase,
(pci_region->size + 0xFFF) & 0xFFFFF000)) {
error_report("Failed to unmap assigned device region: %s",
strerror(errno));
}
}
}
if (pci_region->resource_fd >= 0) {
close(pci_region->resource_fd);
}
}
if (dev->real_device.config_fd >= 0) {
close(dev->real_device.config_fd);
}
free_msi_virqs(dev);
}
/* This function tries to determine the cause of the PCI assignment failure. It
* always returns the cause as a dynamically allocated, human readable string.
* If the function fails to determine the cause for any internal reason, then
* the returned string will state that fact.
*/
static char *assign_failed_examine(const AssignedDevice *dev)
{
char name[PATH_MAX], dir[PATH_MAX], driver[PATH_MAX] = {}, *ns;
uint16_t vendor_id, device_id;
int r;
Error *local_err = NULL;
snprintf(dir, sizeof(dir), "/sys/bus/pci/devices/%04x:%02x:%02x.%01x/",
dev->host.domain, dev->host.bus, dev->host.slot,
dev->host.function);
snprintf(name, sizeof(name), "%sdriver", dir);
r = readlink(name, driver, sizeof(driver));
if ((r <= 0) || r >= sizeof(driver)) {
goto fail;
}
driver[r] = 0;
ns = strrchr(driver, '/');
if (!ns) {
goto fail;
}
ns++;
if ((get_real_vendor_id(dir, &vendor_id, &local_err), local_err) ||
(get_real_device_id(dir, &device_id, &local_err), local_err)) {
/* We're already analyzing an assignment error, so we suppress this
* one just like the others above.
*/
error_free(local_err);
goto fail;
}
return g_strdup_printf(
"*** The driver '%s' is occupying your device %04x:%02x:%02x.%x.\n"
"***\n"
"*** You can try the following commands to free it:\n"
"***\n"
"*** $ echo \"%04x %04x\" > /sys/bus/pci/drivers/pci-stub/new_id\n"
"*** $ echo \"%04x:%02x:%02x.%x\" > /sys/bus/pci/drivers/%s/unbind\n"
"*** $ echo \"%04x:%02x:%02x.%x\" > /sys/bus/pci/drivers/"
"pci-stub/bind\n"
"*** $ echo \"%04x %04x\" > /sys/bus/pci/drivers/pci-stub/remove_id\n"
"***",
ns, dev->host.domain, dev->host.bus, dev->host.slot,
dev->host.function, vendor_id, device_id,
dev->host.domain, dev->host.bus, dev->host.slot, dev->host.function,
ns, dev->host.domain, dev->host.bus, dev->host.slot,
dev->host.function, vendor_id, device_id);
fail:
return g_strdup("Couldn't find out why.");
}
static void assign_device(AssignedDevice *dev, Error **errp)
{
uint32_t flags = KVM_DEV_ASSIGN_ENABLE_IOMMU;
int r;
/* Only pass non-zero PCI segment to capable module */
if (!kvm_check_extension(kvm_state, KVM_CAP_PCI_SEGMENT) &&
dev->host.domain) {
error_setg(errp, "Can't assign device inside non-zero PCI segment "
"as this KVM module doesn't support it.");
return;
}
if (!kvm_check_extension(kvm_state, KVM_CAP_IOMMU)) {
error_setg(errp, "No IOMMU found. Unable to assign device \"%s\"",
dev->dev.qdev.id);
return;
}
if (dev->features & ASSIGNED_DEVICE_SHARE_INTX_MASK &&
kvm_has_intx_set_mask()) {
flags |= KVM_DEV_ASSIGN_PCI_2_3;
}
r = kvm_device_pci_assign(kvm_state, &dev->host, flags, &dev->dev_id);
if (r < 0) {
switch (r) {
case -EBUSY: {
char *cause;
cause = assign_failed_examine(dev);
error_setg_errno(errp, -r, "Failed to assign device \"%s\"\n%s",
dev->dev.qdev.id, cause);
g_free(cause);
break;
}
default:
error_setg_errno(errp, -r, "Failed to assign device \"%s\"",
dev->dev.qdev.id);
break;
}
}
}
static void verify_irqchip_in_kernel(Error **errp)
{
if (kvm_irqchip_in_kernel()) {
return;
}
error_setg(errp, "pci-assign requires KVM with in-kernel irqchip enabled");
}
static int assign_intx(AssignedDevice *dev, Error **errp)
{
AssignedIRQType new_type;
PCIINTxRoute intx_route;
bool intx_host_msi;
int r;
Error *local_err = NULL;
/* Interrupt PIN 0 means don't use INTx */
if (assigned_dev_pci_read_byte(&dev->dev, PCI_INTERRUPT_PIN) == 0) {
pci_device_set_intx_routing_notifier(&dev->dev, NULL);
return 0;
}
verify_irqchip_in_kernel(&local_err);
if (local_err) {
error_propagate(errp, local_err);
return -ENOTSUP;
}
pci_device_set_intx_routing_notifier(&dev->dev,
assigned_dev_update_irq_routing);
intx_route = pci_device_route_intx_to_irq(&dev->dev, dev->intpin);
assert(intx_route.mode != PCI_INTX_INVERTED);
if (!pci_intx_route_changed(&dev->intx_route, &intx_route)) {
return 0;
}
switch (dev->assigned_irq_type) {
case ASSIGNED_IRQ_INTX_HOST_INTX:
case ASSIGNED_IRQ_INTX_HOST_MSI:
intx_host_msi = dev->assigned_irq_type == ASSIGNED_IRQ_INTX_HOST_MSI;
r = kvm_device_intx_deassign(kvm_state, dev->dev_id, intx_host_msi);
break;
case ASSIGNED_IRQ_MSI:
r = kvm_device_msi_deassign(kvm_state, dev->dev_id);
break;
case ASSIGNED_IRQ_MSIX:
r = kvm_device_msix_deassign(kvm_state, dev->dev_id);
break;
default:
r = 0;
break;
}
if (r) {
perror("assign_intx: deassignment of previous interrupt failed");
}
dev->assigned_irq_type = ASSIGNED_IRQ_NONE;
if (intx_route.mode == PCI_INTX_DISABLED) {
dev->intx_route = intx_route;
return 0;
}
retry:
if (dev->features & ASSIGNED_DEVICE_PREFER_MSI_MASK &&
dev->cap.available & ASSIGNED_DEVICE_CAP_MSI) {
intx_host_msi = true;
new_type = ASSIGNED_IRQ_INTX_HOST_MSI;
} else {
intx_host_msi = false;
new_type = ASSIGNED_IRQ_INTX_HOST_INTX;
}
r = kvm_device_intx_assign(kvm_state, dev->dev_id, intx_host_msi,
intx_route.irq);
if (r < 0) {
if (r == -EIO && !(dev->features & ASSIGNED_DEVICE_PREFER_MSI_MASK) &&
dev->cap.available & ASSIGNED_DEVICE_CAP_MSI) {
/* Retry with host-side MSI. There might be an IRQ conflict and
* either the kernel or the device doesn't support sharing. */
error_report("Host-side INTx sharing not supported, "
"using MSI instead");
error_printf("Some devices do not work properly in this mode.\n");
dev->features |= ASSIGNED_DEVICE_PREFER_MSI_MASK;
goto retry;
}
error_setg_errno(errp, -r,
"Failed to assign irq for \"%s\"\n"
"Perhaps you are assigning a device "
"that shares an IRQ with another device?",
dev->dev.qdev.id);
return r;
}
dev->intx_route = intx_route;
dev->assigned_irq_type = new_type;
return r;
}
static void deassign_device(AssignedDevice *dev)
{
int r;
r = kvm_device_pci_deassign(kvm_state, dev->dev_id);
assert(r == 0);
}
/* The pci config space got updated. Check if irq numbers have changed
* for our devices
*/
static void assigned_dev_update_irq_routing(PCIDevice *dev)
{
AssignedDevice *assigned_dev = DO_UPCAST(AssignedDevice, dev, dev);
Error *err = NULL;
int r;
r = assign_intx(assigned_dev, &err);
if (r < 0) {
error_report_err(err);
err = NULL;
qdev_unplug(&dev->qdev, &err);
assert(!err);
}
}
static void assigned_dev_update_msi(PCIDevice *pci_dev)
{
AssignedDevice *assigned_dev = DO_UPCAST(AssignedDevice, dev, pci_dev);
uint8_t ctrl_byte = pci_get_byte(pci_dev->config + pci_dev->msi_cap +
PCI_MSI_FLAGS);
int r;
/* Some guests gratuitously disable MSI even if they're not using it,
* try to catch this by only deassigning irqs if the guest is using
* MSI or intends to start. */
if (assigned_dev->assigned_irq_type == ASSIGNED_IRQ_MSI ||
(ctrl_byte & PCI_MSI_FLAGS_ENABLE)) {
r = kvm_device_msi_deassign(kvm_state, assigned_dev->dev_id);
/* -ENXIO means no assigned irq */
if (r && r != -ENXIO) {
perror("assigned_dev_update_msi: deassign irq");
}
free_msi_virqs(assigned_dev);
assigned_dev->assigned_irq_type = ASSIGNED_IRQ_NONE;
pci_device_set_intx_routing_notifier(pci_dev, NULL);
}
if (ctrl_byte & PCI_MSI_FLAGS_ENABLE) {
MSIMessage msg = msi_get_message(pci_dev, 0);
int virq;
virq = kvm_irqchip_add_msi_route(kvm_state, msg);
if (virq < 0) {
perror("assigned_dev_update_msi: kvm_irqchip_add_msi_route");
return;
}
assigned_dev->msi_virq = g_malloc(sizeof(*assigned_dev->msi_virq));
assigned_dev->msi_virq_nr = 1;
assigned_dev->msi_virq[0] = virq;
if (kvm_device_msi_assign(kvm_state, assigned_dev->dev_id, virq) < 0) {
perror("assigned_dev_update_msi: kvm_device_msi_assign");
}
assigned_dev->intx_route.mode = PCI_INTX_DISABLED;
assigned_dev->intx_route.irq = -1;
assigned_dev->assigned_irq_type = ASSIGNED_IRQ_MSI;
} else {
Error *local_err = NULL;
assign_intx(assigned_dev, &local_err);
if (local_err) {
error_report_err(local_err);
}
}
}
static void assigned_dev_update_msi_msg(PCIDevice *pci_dev)
{
AssignedDevice *assigned_dev = DO_UPCAST(AssignedDevice, dev, pci_dev);
uint8_t ctrl_byte = pci_get_byte(pci_dev->config + pci_dev->msi_cap +
PCI_MSI_FLAGS);
if (assigned_dev->assigned_irq_type != ASSIGNED_IRQ_MSI ||
!(ctrl_byte & PCI_MSI_FLAGS_ENABLE)) {
return;
}
kvm_irqchip_update_msi_route(kvm_state, assigned_dev->msi_virq[0],
msi_get_message(pci_dev, 0));
}
static bool assigned_dev_msix_masked(MSIXTableEntry *entry)
{
return (entry->ctrl & cpu_to_le32(0x1)) != 0;
}
/*
* When MSI-X is first enabled the vector table typically has all the
* vectors masked, so we can't use that as the obvious test to figure out
* how many vectors to initially enable. Instead we look at the data field
* because this is what worked for pci-assign for a long time. This makes
* sure the physical MSI-X state tracks the guest's view, which is important
* for some VF/PF and PF/fw communication channels.
*/
static bool assigned_dev_msix_skipped(MSIXTableEntry *entry)
{
return !entry->data;
}
static int assigned_dev_update_msix_mmio(PCIDevice *pci_dev)
{
AssignedDevice *adev = DO_UPCAST(AssignedDevice, dev, pci_dev);
uint16_t entries_nr = 0;
int i, r = 0;
MSIXTableEntry *entry = adev->msix_table;
MSIMessage msg;
/* Get the usable entry number for allocating */
for (i = 0; i < adev->msix_max; i++, entry++) {
if (assigned_dev_msix_skipped(entry)) {
continue;
}
entries_nr++;
}
DEBUG("MSI-X entries: %d\n", entries_nr);
/* It's valid to enable MSI-X with all entries masked */
if (!entries_nr) {
return 0;
}
r = kvm_device_msix_init_vectors(kvm_state, adev->dev_id, entries_nr);
if (r != 0) {
error_report("fail to set MSI-X entry number for MSIX! %s",
strerror(-r));
return r;
}
free_msi_virqs(adev);
adev->msi_virq_nr = adev->msix_max;
adev->msi_virq = g_malloc(adev->msix_max * sizeof(*adev->msi_virq));
entry = adev->msix_table;
for (i = 0; i < adev->msix_max; i++, entry++) {
adev->msi_virq[i] = -1;
if (assigned_dev_msix_skipped(entry)) {
continue;
}
msg.address = entry->addr_lo | ((uint64_t)entry->addr_hi << 32);
msg.data = entry->data;
r = kvm_irqchip_add_msi_route(kvm_state, msg);
if (r < 0) {
return r;
}
adev->msi_virq[i] = r;
DEBUG("MSI-X vector %d, gsi %d, addr %08x_%08x, data %08x\n", i,
r, entry->addr_hi, entry->addr_lo, entry->data);
r = kvm_device_msix_set_vector(kvm_state, adev->dev_id, i,
adev->msi_virq[i]);
if (r) {
error_report("fail to set MSI-X entry! %s", strerror(-r));
break;
}
}
return r;
}
static void assigned_dev_update_msix(PCIDevice *pci_dev)
{
AssignedDevice *assigned_dev = DO_UPCAST(AssignedDevice, dev, pci_dev);
uint16_t ctrl_word = pci_get_word(pci_dev->config + pci_dev->msix_cap +
PCI_MSIX_FLAGS);
int r;
/* Some guests gratuitously disable MSIX even if they're not using it,
* try to catch this by only deassigning irqs if the guest is using
* MSIX or intends to start. */
if ((assigned_dev->assigned_irq_type == ASSIGNED_IRQ_MSIX) ||
(ctrl_word & PCI_MSIX_FLAGS_ENABLE)) {
r = kvm_device_msix_deassign(kvm_state, assigned_dev->dev_id);
/* -ENXIO means no assigned irq */
if (r && r != -ENXIO) {
perror("assigned_dev_update_msix: deassign irq");
}
free_msi_virqs(assigned_dev);
assigned_dev->assigned_irq_type = ASSIGNED_IRQ_NONE;
pci_device_set_intx_routing_notifier(pci_dev, NULL);
}
if (ctrl_word & PCI_MSIX_FLAGS_ENABLE) {
if (assigned_dev_update_msix_mmio(pci_dev) < 0) {
perror("assigned_dev_update_msix_mmio");
return;
}
if (assigned_dev->msi_virq_nr > 0) {
if (kvm_device_msix_assign(kvm_state, assigned_dev->dev_id) < 0) {
perror("assigned_dev_enable_msix: assign irq");
return;
}
}
assigned_dev->intx_route.mode = PCI_INTX_DISABLED;
assigned_dev->intx_route.irq = -1;
assigned_dev->assigned_irq_type = ASSIGNED_IRQ_MSIX;
} else {
Error *local_err = NULL;
assign_intx(assigned_dev, &local_err);
if (local_err) {
error_report_err(local_err);
}
}
}
static uint32_t assigned_dev_pci_read_config(PCIDevice *pci_dev,
uint32_t address, int len)
{
AssignedDevice *assigned_dev = DO_UPCAST(AssignedDevice, dev, pci_dev);
uint32_t virt_val = pci_default_read_config(pci_dev, address, len);
uint32_t real_val, emulate_mask, full_emulation_mask;
emulate_mask = 0;
memcpy(&emulate_mask, assigned_dev->emulate_config_read + address, len);
emulate_mask = le32_to_cpu(emulate_mask);
full_emulation_mask = 0xffffffff >> (32 - len * 8);
if (emulate_mask != full_emulation_mask) {
real_val = assigned_dev_pci_read(pci_dev, address, len);
return (virt_val & emulate_mask) | (real_val & ~emulate_mask);
} else {
return virt_val;
}
}
static void assigned_dev_pci_write_config(PCIDevice *pci_dev, uint32_t address,
uint32_t val, int len)
{
AssignedDevice *assigned_dev = DO_UPCAST(AssignedDevice, dev, pci_dev);
uint16_t old_cmd = pci_get_word(pci_dev->config + PCI_COMMAND);
uint32_t emulate_mask, full_emulation_mask;
int ret;
pci_default_write_config(pci_dev, address, val, len);
if (kvm_has_intx_set_mask() &&
range_covers_byte(address, len, PCI_COMMAND + 1)) {
bool intx_masked = (pci_get_word(pci_dev->config + PCI_COMMAND) &
PCI_COMMAND_INTX_DISABLE);
if (intx_masked != !!(old_cmd & PCI_COMMAND_INTX_DISABLE)) {
ret = kvm_device_intx_set_mask(kvm_state, assigned_dev->dev_id,
intx_masked);
if (ret) {
perror("assigned_dev_pci_write_config: set intx mask");
}
}
}
if (assigned_dev->cap.available & ASSIGNED_DEVICE_CAP_MSI) {
if (range_covers_byte(address, len,
pci_dev->msi_cap + PCI_MSI_FLAGS)) {
assigned_dev_update_msi(pci_dev);
} else if (ranges_overlap(address, len, /* 32bit MSI only */
pci_dev->msi_cap + PCI_MSI_ADDRESS_LO, 6)) {
assigned_dev_update_msi_msg(pci_dev);
}
}
if (assigned_dev->cap.available & ASSIGNED_DEVICE_CAP_MSIX) {
if (range_covers_byte(address, len,
pci_dev->msix_cap + PCI_MSIX_FLAGS + 1)) {
assigned_dev_update_msix(pci_dev);
}
}
emulate_mask = 0;
memcpy(&emulate_mask, assigned_dev->emulate_config_write + address, len);
emulate_mask = le32_to_cpu(emulate_mask);
full_emulation_mask = 0xffffffff >> (32 - len * 8);
if (emulate_mask != full_emulation_mask) {
if (emulate_mask) {
val &= ~emulate_mask;
val |= assigned_dev_pci_read(pci_dev, address, len) & emulate_mask;
}
assigned_dev_pci_write(pci_dev, address, val, len);
}
}
static void assigned_dev_setup_cap_read(AssignedDevice *dev, uint32_t offset,
uint32_t len)
{
assigned_dev_direct_config_read(dev, offset, len);
assigned_dev_emulate_config_read(dev, offset + PCI_CAP_LIST_NEXT, 1);
}
static int assigned_device_pci_cap_init(PCIDevice *pci_dev, Error **errp)
{
AssignedDevice *dev = DO_UPCAST(AssignedDevice, dev, pci_dev);
PCIRegion *pci_region = dev->real_device.regions;
int ret, pos;
Error *local_err = NULL;
/* Clear initial capabilities pointer and status copied from hw */
pci_set_byte(pci_dev->config + PCI_CAPABILITY_LIST, 0);
pci_set_word(pci_dev->config + PCI_STATUS,
pci_get_word(pci_dev->config + PCI_STATUS) &
~PCI_STATUS_CAP_LIST);
/* Expose MSI capability
* MSI capability is the 1st capability in capability config */
pos = pci_find_cap_offset(pci_dev, PCI_CAP_ID_MSI, 0);
if (pos != 0 && kvm_check_extension(kvm_state, KVM_CAP_ASSIGN_DEV_IRQ)) {
verify_irqchip_in_kernel(&local_err);
if (local_err) {
error_propagate(errp, local_err);
return -ENOTSUP;
}
dev->cap.available |= ASSIGNED_DEVICE_CAP_MSI;
/* Only 32-bit/no-mask currently supported */
ret = pci_add_capability2(pci_dev, PCI_CAP_ID_MSI, pos, 10,
&local_err);
if (ret < 0) {
error_propagate(errp, local_err);
return ret;
}
pci_dev->msi_cap = pos;
pci_set_word(pci_dev->config + pos + PCI_MSI_FLAGS,
pci_get_word(pci_dev->config + pos + PCI_MSI_FLAGS) &
PCI_MSI_FLAGS_QMASK);
pci_set_long(pci_dev->config + pos + PCI_MSI_ADDRESS_LO, 0);
pci_set_word(pci_dev->config + pos + PCI_MSI_DATA_32, 0);
/* Set writable fields */
pci_set_word(pci_dev->wmask + pos + PCI_MSI_FLAGS,
PCI_MSI_FLAGS_QSIZE | PCI_MSI_FLAGS_ENABLE);
pci_set_long(pci_dev->wmask + pos + PCI_MSI_ADDRESS_LO, 0xfffffffc);
pci_set_word(pci_dev->wmask + pos + PCI_MSI_DATA_32, 0xffff);
}
/* Expose MSI-X capability */
pos = pci_find_cap_offset(pci_dev, PCI_CAP_ID_MSIX, 0);
if (pos != 0 && kvm_device_msix_supported(kvm_state)) {
int bar_nr;
uint32_t msix_table_entry;
uint16_t msix_max;
verify_irqchip_in_kernel(&local_err);
if (local_err) {
error_propagate(errp, local_err);
return -ENOTSUP;
}
dev->cap.available |= ASSIGNED_DEVICE_CAP_MSIX;
ret = pci_add_capability2(pci_dev, PCI_CAP_ID_MSIX, pos, 12,
&local_err);
if (ret < 0) {
error_propagate(errp, local_err);
return ret;
}
pci_dev->msix_cap = pos;
msix_max = (pci_get_word(pci_dev->config + pos + PCI_MSIX_FLAGS) &
PCI_MSIX_FLAGS_QSIZE) + 1;
msix_max = MIN(msix_max, KVM_MAX_MSIX_PER_DEV);
pci_set_word(pci_dev->config + pos + PCI_MSIX_FLAGS, msix_max - 1);
/* Only enable and function mask bits are writable */
pci_set_word(pci_dev->wmask + pos + PCI_MSIX_FLAGS,
PCI_MSIX_FLAGS_ENABLE | PCI_MSIX_FLAGS_MASKALL);
msix_table_entry = pci_get_long(pci_dev->config + pos + PCI_MSIX_TABLE);
bar_nr = msix_table_entry & PCI_MSIX_FLAGS_BIRMASK;
msix_table_entry &= ~PCI_MSIX_FLAGS_BIRMASK;
dev->msix_table_addr = pci_region[bar_nr].base_addr + msix_table_entry;
dev->msix_max = msix_max;
}
/* Minimal PM support, nothing writable, device appears to NAK changes */
pos = pci_find_cap_offset(pci_dev, PCI_CAP_ID_PM, 0);
if (pos) {
uint16_t pmc;
ret = pci_add_capability2(pci_dev, PCI_CAP_ID_PM, pos, PCI_PM_SIZEOF,
&local_err);
if (ret < 0) {
error_propagate(errp, local_err);
return ret;
}
assigned_dev_setup_cap_read(dev, pos, PCI_PM_SIZEOF);
pmc = pci_get_word(pci_dev->config + pos + PCI_CAP_FLAGS);
pmc &= (PCI_PM_CAP_VER_MASK | PCI_PM_CAP_DSI);
pci_set_word(pci_dev->config + pos + PCI_CAP_FLAGS, pmc);
/* assign_device will bring the device up to D0, so we don't need
* to worry about doing that ourselves here. */
pci_set_word(pci_dev->config + pos + PCI_PM_CTRL,
PCI_PM_CTRL_NO_SOFT_RESET);
pci_set_byte(pci_dev->config + pos + PCI_PM_PPB_EXTENSIONS, 0);
pci_set_byte(pci_dev->config + pos + PCI_PM_DATA_REGISTER, 0);
}
pos = pci_find_cap_offset(pci_dev, PCI_CAP_ID_EXP, 0);
if (pos) {
uint8_t version, size = 0;
uint16_t type, devctl, lnksta;
uint32_t devcap, lnkcap;
version = pci_get_byte(pci_dev->config + pos + PCI_EXP_FLAGS);
version &= PCI_EXP_FLAGS_VERS;
if (version == 1) {
size = 0x14;
} else if (version == 2) {
/*
* Check for non-std size, accept reduced size to 0x34,
* which is what bcm5761 implemented, violating the
* PCIe v3.0 spec that regs should exist and be read as 0,
* not optionally provided and shorten the struct size.
*/
size = MIN(0x3c, PCI_CONFIG_SPACE_SIZE - pos);
if (size < 0x34) {
error_setg(errp, "Invalid size PCIe cap-id 0x%x",
PCI_CAP_ID_EXP);
return -EINVAL;
} else if (size != 0x3c) {
error_report("WARNING, %s: PCIe cap-id 0x%x has "
"non-standard size 0x%x; std size should be 0x3c",
__func__, PCI_CAP_ID_EXP, size);
}
} else if (version == 0) {
uint16_t vid, did;
vid = pci_get_word(pci_dev->config + PCI_VENDOR_ID);
did = pci_get_word(pci_dev->config + PCI_DEVICE_ID);
if (vid == PCI_VENDOR_ID_INTEL && did == 0x10ed) {
/*
* quirk for Intel 82599 VF with invalid PCIe capability
* version, should really be version 2 (same as PF)
*/
size = 0x3c;
}
}
if (size == 0) {
error_setg(errp, "Unsupported PCI express capability version %d",
version);
return -EINVAL;
}
ret = pci_add_capability2(pci_dev, PCI_CAP_ID_EXP, pos, size,
&local_err);
if (ret < 0) {
error_propagate(errp, local_err);
return ret;
}
assigned_dev_setup_cap_read(dev, pos, size);
type = pci_get_word(pci_dev->config + pos + PCI_EXP_FLAGS);
type = (type & PCI_EXP_FLAGS_TYPE) >> 4;
if (type != PCI_EXP_TYPE_ENDPOINT &&
type != PCI_EXP_TYPE_LEG_END && type != PCI_EXP_TYPE_RC_END) {
error_setg(errp, "Device assignment only supports endpoint "
"assignment, device type %d", type);
return -EINVAL;
}
/* capabilities, pass existing read-only copy
* PCI_EXP_FLAGS_IRQ: updated by hardware, should be direct read */
/* device capabilities: hide FLR */
devcap = pci_get_long(pci_dev->config + pos + PCI_EXP_DEVCAP);
devcap &= ~PCI_EXP_DEVCAP_FLR;
pci_set_long(pci_dev->config + pos + PCI_EXP_DEVCAP, devcap);
/* device control: clear all error reporting enable bits, leaving
* only a few host values. Note, these are
* all writable, but not passed to hw.
*/
devctl = pci_get_word(pci_dev->config + pos + PCI_EXP_DEVCTL);
devctl = (devctl & (PCI_EXP_DEVCTL_READRQ | PCI_EXP_DEVCTL_PAYLOAD)) |
PCI_EXP_DEVCTL_RELAX_EN | PCI_EXP_DEVCTL_NOSNOOP_EN;
pci_set_word(pci_dev->config + pos + PCI_EXP_DEVCTL, devctl);
devctl = PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_AUX_PME;
pci_set_word(pci_dev->wmask + pos + PCI_EXP_DEVCTL, ~devctl);
/* Clear device status */
pci_set_word(pci_dev->config + pos + PCI_EXP_DEVSTA, 0);
/* Link capabilities, expose links and latencues, clear reporting */
lnkcap = pci_get_long(pci_dev->config + pos + PCI_EXP_LNKCAP);
lnkcap &= (PCI_EXP_LNKCAP_SLS | PCI_EXP_LNKCAP_MLW |
PCI_EXP_LNKCAP_ASPMS | PCI_EXP_LNKCAP_L0SEL |
PCI_EXP_LNKCAP_L1EL);
pci_set_long(pci_dev->config + pos + PCI_EXP_LNKCAP, lnkcap);
/* Link control, pass existing read-only copy. Should be writable? */
/* Link status, only expose current speed and width */
lnksta = pci_get_word(pci_dev->config + pos + PCI_EXP_LNKSTA);
lnksta &= (PCI_EXP_LNKSTA_CLS | PCI_EXP_LNKSTA_NLW);
pci_set_word(pci_dev->config + pos + PCI_EXP_LNKSTA, lnksta);
if (version >= 2) {
/* Slot capabilities, control, status - not needed for endpoints */
pci_set_long(pci_dev->config + pos + PCI_EXP_SLTCAP, 0);
pci_set_word(pci_dev->config + pos + PCI_EXP_SLTCTL, 0);
pci_set_word(pci_dev->config + pos + PCI_EXP_SLTSTA, 0);
/* Root control, capabilities, status - not needed for endpoints */
pci_set_word(pci_dev->config + pos + PCI_EXP_RTCTL, 0);
pci_set_word(pci_dev->config + pos + PCI_EXP_RTCAP, 0);
pci_set_long(pci_dev->config + pos + PCI_EXP_RTSTA, 0);
/* Device capabilities/control 2, pass existing read-only copy */
/* Link control 2, pass existing read-only copy */
}
}
pos = pci_find_cap_offset(pci_dev, PCI_CAP_ID_PCIX, 0);
if (pos) {
uint16_t cmd;
uint32_t status;
/* Only expose the minimum, 8 byte capability */
ret = pci_add_capability2(pci_dev, PCI_CAP_ID_PCIX, pos, 8,
&local_err);
if (ret < 0) {
error_propagate(errp, local_err);
return ret;
}
assigned_dev_setup_cap_read(dev, pos, 8);
/* Command register, clear upper bits, including extended modes */
cmd = pci_get_word(pci_dev->config + pos + PCI_X_CMD);
cmd &= (PCI_X_CMD_DPERR_E | PCI_X_CMD_ERO | PCI_X_CMD_MAX_READ |
PCI_X_CMD_MAX_SPLIT);
pci_set_word(pci_dev->config + pos + PCI_X_CMD, cmd);
/* Status register, update with emulated PCI bus location, clear
* error bits, leave the rest. */
status = pci_get_long(pci_dev->config + pos + PCI_X_STATUS);
status &= ~(PCI_X_STATUS_BUS | PCI_X_STATUS_DEVFN);
status |= (pci_bus_num(pci_dev->bus) << 8) | pci_dev->devfn;
status &= ~(PCI_X_STATUS_SPL_DISC | PCI_X_STATUS_UNX_SPL |
PCI_X_STATUS_SPL_ERR);
pci_set_long(pci_dev->config + pos + PCI_X_STATUS, status);
}
pos = pci_find_cap_offset(pci_dev, PCI_CAP_ID_VPD, 0);
if (pos) {
/* Direct R/W passthrough */
ret = pci_add_capability2(pci_dev, PCI_CAP_ID_VPD, pos, 8,
&local_err);
if (ret < 0) {
error_propagate(errp, local_err);
return ret;
}
assigned_dev_setup_cap_read(dev, pos, 8);
/* direct write for cap content */
assigned_dev_direct_config_write(dev, pos + 2, 6);
}
/* Devices can have multiple vendor capabilities, get them all */
for (pos = 0; (pos = pci_find_cap_offset(pci_dev, PCI_CAP_ID_VNDR, pos));
pos += PCI_CAP_LIST_NEXT) {
uint8_t len = pci_get_byte(pci_dev->config + pos + PCI_CAP_FLAGS);
/* Direct R/W passthrough */
ret = pci_add_capability2(pci_dev, PCI_CAP_ID_VNDR, pos, len,
&local_err);
if (ret < 0) {
error_propagate(errp, local_err);
return ret;
}
assigned_dev_setup_cap_read(dev, pos, len);
/* direct write for cap content */
assigned_dev_direct_config_write(dev, pos + 2, len - 2);
}
/* If real and virtual capability list status bits differ, virtualize the
* access. */
if ((pci_get_word(pci_dev->config + PCI_STATUS) & PCI_STATUS_CAP_LIST) !=
(assigned_dev_pci_read_byte(pci_dev, PCI_STATUS) &
PCI_STATUS_CAP_LIST)) {
dev->emulate_config_read[PCI_STATUS] |= PCI_STATUS_CAP_LIST;
}
return 0;
}
static uint64_t
assigned_dev_msix_mmio_read(void *opaque, hwaddr addr,
unsigned size)
{
AssignedDevice *adev = opaque;
uint64_t val;
memcpy(&val, (void *)((uint8_t *)adev->msix_table + addr), size);
return val;
}
static void assigned_dev_msix_mmio_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
AssignedDevice *adev = opaque;
PCIDevice *pdev = &adev->dev;
uint16_t ctrl;
MSIXTableEntry orig;
int i = addr >> 4;
if (i >= adev->msix_max) {
return; /* Drop write */
}
ctrl = pci_get_word(pdev->config + pdev->msix_cap + PCI_MSIX_FLAGS);
DEBUG("write to MSI-X table offset 0x%lx, val 0x%lx\n", addr, val);
if (ctrl & PCI_MSIX_FLAGS_ENABLE) {
orig = adev->msix_table[i];
}
memcpy((uint8_t *)adev->msix_table + addr, &val, size);
if (ctrl & PCI_MSIX_FLAGS_ENABLE) {
MSIXTableEntry *entry = &adev->msix_table[i];
if (!assigned_dev_msix_masked(&orig) &&
assigned_dev_msix_masked(entry)) {
/*
* Vector masked, disable it
*
* XXX It's not clear if we can or should actually attempt
* to mask or disable the interrupt. KVM doesn't have
* support for pending bits and kvm_assign_set_msix_entry
* doesn't modify the device hardware mask. Interrupts
* while masked are simply not injected to the guest, so
* are lost. Can we get away with always injecting an
* interrupt on unmask?
*/
} else if (assigned_dev_msix_masked(&orig) &&
!assigned_dev_msix_masked(entry)) {
/* Vector unmasked */
if (i >= adev->msi_virq_nr || adev->msi_virq[i] < 0) {
/* Previously unassigned vector, start from scratch */
assigned_dev_update_msix(pdev);
return;
} else {
/* Update an existing, previously masked vector */
MSIMessage msg;
int ret;
msg.address = entry->addr_lo |
((uint64_t)entry->addr_hi << 32);
msg.data = entry->data;
ret = kvm_irqchip_update_msi_route(kvm_state,
adev->msi_virq[i], msg);
if (ret) {
error_report("Error updating irq routing entry (%d)", ret);
}
}
}
}
}
static const MemoryRegionOps assigned_dev_msix_mmio_ops = {
.read = assigned_dev_msix_mmio_read,
.write = assigned_dev_msix_mmio_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 8,
},
.impl = {
.min_access_size = 4,
.max_access_size = 8,
},
};
static void assigned_dev_msix_reset(AssignedDevice *dev)
{
MSIXTableEntry *entry;
int i;
if (!dev->msix_table) {
return;
}
memset(dev->msix_table, 0, MSIX_PAGE_SIZE);
for (i = 0, entry = dev->msix_table; i < dev->msix_max; i++, entry++) {
entry->ctrl = cpu_to_le32(0x1); /* Masked */
}
}
static void assigned_dev_register_msix_mmio(AssignedDevice *dev, Error **errp)
{
dev->msix_table = mmap(NULL, MSIX_PAGE_SIZE, PROT_READ|PROT_WRITE,
MAP_ANONYMOUS|MAP_PRIVATE, 0, 0);
if (dev->msix_table == MAP_FAILED) {
error_setg_errno(errp, errno, "failed to allocate msix_table");
dev->msix_table = NULL;
return;
}
assigned_dev_msix_reset(dev);
memory_region_init_io(&dev->mmio, OBJECT(dev), &assigned_dev_msix_mmio_ops,
dev, "assigned-dev-msix", MSIX_PAGE_SIZE);
}
static void assigned_dev_unregister_msix_mmio(AssignedDevice *dev)
{
if (!dev->msix_table) {
return;
}
if (munmap(dev->msix_table, MSIX_PAGE_SIZE) == -1) {
error_report("error unmapping msix_table! %s", strerror(errno));
}
dev->msix_table = NULL;
}
static const VMStateDescription vmstate_assigned_device = {
.name = "pci-assign",
.unmigratable = 1,
};
static void reset_assigned_device(DeviceState *dev)
{
PCIDevice *pci_dev = DO_UPCAST(PCIDevice, qdev, dev);
AssignedDevice *adev = DO_UPCAST(AssignedDevice, dev, pci_dev);
char reset_file[64];
const char reset[] = "1";
int fd, ret;
/*
* If a guest is reset without being shutdown, MSI/MSI-X can still
* be running. We want to return the device to a known state on
* reset, so disable those here. We especially do not want MSI-X
* enabled since it lives in MMIO space, which is about to get
* disabled.
*/
if (adev->assigned_irq_type == ASSIGNED_IRQ_MSIX) {
uint16_t ctrl = pci_get_word(pci_dev->config +
pci_dev->msix_cap + PCI_MSIX_FLAGS);
pci_set_word(pci_dev->config + pci_dev->msix_cap + PCI_MSIX_FLAGS,
ctrl & ~PCI_MSIX_FLAGS_ENABLE);
assigned_dev_update_msix(pci_dev);
} else if (adev->assigned_irq_type == ASSIGNED_IRQ_MSI) {
uint8_t ctrl = pci_get_byte(pci_dev->config +
pci_dev->msi_cap + PCI_MSI_FLAGS);
pci_set_byte(pci_dev->config + pci_dev->msi_cap + PCI_MSI_FLAGS,
ctrl & ~PCI_MSI_FLAGS_ENABLE);
assigned_dev_update_msi(pci_dev);
}
snprintf(reset_file, sizeof(reset_file),
"/sys/bus/pci/devices/%04x:%02x:%02x.%01x/reset",
adev->host.domain, adev->host.bus, adev->host.slot,
adev->host.function);
/*
* Issue a device reset via pci-sysfs. Note that we use write(2) here
* and ignore the return value because some kernels have a bug that
* returns 0 rather than bytes written on success, sending us into an
* infinite retry loop using other write mechanisms.
*/
fd = open(reset_file, O_WRONLY);
if (fd != -1) {
ret = write(fd, reset, strlen(reset));
(void)ret;
close(fd);
}
/*
* When a 0 is written to the bus master register, the device is logically
* disconnected from the PCI bus. This avoids further DMA transfers.
*/
assigned_dev_pci_write_config(pci_dev, PCI_COMMAND, 0, 1);
}
static void assigned_realize(struct PCIDevice *pci_dev, Error **errp)
{
AssignedDevice *dev = DO_UPCAST(AssignedDevice, dev, pci_dev);
uint8_t e_intx;
int r;
Error *local_err = NULL;
if (!kvm_enabled()) {
error_setg(&local_err, "pci-assign requires KVM support");
goto exit_with_error;
}
if (!dev->host.domain && !dev->host.bus && !dev->host.slot &&
!dev->host.function) {
error_setg(&local_err, "no host device specified");
goto exit_with_error;
}
/*
* Set up basic config space access control. Will be further refined during
* device initialization.
*/
assigned_dev_emulate_config_read(dev, 0, PCI_CONFIG_SPACE_SIZE);
assigned_dev_direct_config_read(dev, PCI_STATUS, 2);
assigned_dev_direct_config_read(dev, PCI_REVISION_ID, 1);
assigned_dev_direct_config_read(dev, PCI_CLASS_PROG, 3);
assigned_dev_direct_config_read(dev, PCI_CACHE_LINE_SIZE, 1);
assigned_dev_direct_config_read(dev, PCI_LATENCY_TIMER, 1);
assigned_dev_direct_config_read(dev, PCI_BIST, 1);
assigned_dev_direct_config_read(dev, PCI_CARDBUS_CIS, 4);
assigned_dev_direct_config_read(dev, PCI_SUBSYSTEM_VENDOR_ID, 2);
assigned_dev_direct_config_read(dev, PCI_SUBSYSTEM_ID, 2);
assigned_dev_direct_config_read(dev, PCI_CAPABILITY_LIST + 1, 7);
assigned_dev_direct_config_read(dev, PCI_MIN_GNT, 1);
assigned_dev_direct_config_read(dev, PCI_MAX_LAT, 1);
memcpy(dev->emulate_config_write, dev->emulate_config_read,
sizeof(dev->emulate_config_read));
get_real_device(dev, &local_err);
if (local_err) {
goto out;
}
if (assigned_device_pci_cap_init(pci_dev, &local_err) < 0) {
goto out;
}
/* intercept MSI-X entry page in the MMIO */
if (dev->cap.available & ASSIGNED_DEVICE_CAP_MSIX) {
assigned_dev_register_msix_mmio(dev, &local_err);
if (local_err) {
goto out;
}
}
/* handle real device's MMIO/PIO BARs */
assigned_dev_register_regions(dev->real_device.regions,
dev->real_device.region_number, dev,
&local_err);
if (local_err) {
goto out;
}
/* handle interrupt routing */
e_intx = dev->dev.config[PCI_INTERRUPT_PIN] - 1;
dev->intpin = e_intx;
dev->intx_route.mode = PCI_INTX_DISABLED;
dev->intx_route.irq = -1;
/* assign device to guest */
assign_device(dev, &local_err);
if (local_err) {
goto out;
}
/* assign legacy INTx to the device */
r = assign_intx(dev, &local_err);
if (r < 0) {
goto assigned_out;
}
assigned_dev_load_option_rom(dev);
return;
assigned_out:
deassign_device(dev);
out:
free_assigned_device(dev);
exit_with_error:
assert(local_err);
error_propagate(errp, local_err);
}
static void assigned_exitfn(struct PCIDevice *pci_dev)
{
AssignedDevice *dev = DO_UPCAST(AssignedDevice, dev, pci_dev);
deassign_device(dev);
free_assigned_device(dev);
}
static void assigned_dev_instance_init(Object *obj)
{
PCIDevice *pci_dev = PCI_DEVICE(obj);
AssignedDevice *d = DO_UPCAST(AssignedDevice, dev, PCI_DEVICE(obj));
device_add_bootindex_property(obj, &d->bootindex,
"bootindex", NULL,
&pci_dev->qdev, NULL);
}
static Property assigned_dev_properties[] = {
DEFINE_PROP_PCI_HOST_DEVADDR("host", AssignedDevice, host),
DEFINE_PROP_BIT("prefer_msi", AssignedDevice, features,
ASSIGNED_DEVICE_PREFER_MSI_BIT, false),
DEFINE_PROP_BIT("share_intx", AssignedDevice, features,
ASSIGNED_DEVICE_SHARE_INTX_BIT, true),
DEFINE_PROP_STRING("configfd", AssignedDevice, configfd_name),
DEFINE_PROP_END_OF_LIST(),
};
static void assign_class_init(ObjectClass *klass, void *data)
{
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
k->realize = assigned_realize;
k->exit = assigned_exitfn;
k->config_read = assigned_dev_pci_read_config;
k->config_write = assigned_dev_pci_write_config;
dc->props = assigned_dev_properties;
dc->vmsd = &vmstate_assigned_device;
dc->reset = reset_assigned_device;
set_bit(DEVICE_CATEGORY_MISC, dc->categories);
dc->desc = "KVM-based PCI passthrough";
}
static const TypeInfo assign_info = {
.name = "kvm-pci-assign",
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(AssignedDevice),
.class_init = assign_class_init,
.instance_init = assigned_dev_instance_init,
};
static void assign_register_types(void)
{
type_register_static(&assign_info);
}
type_init(assign_register_types)
/*
* Scan the assigned devices for the devices that have an option ROM, and then
* load the corresponding ROM data to RAM. If an error occurs while loading an
* option ROM, we just ignore that option ROM and continue with the next one.
*/
static void assigned_dev_load_option_rom(AssignedDevice *dev)
{
char name[32], rom_file[64];
FILE *fp;
uint8_t val;
struct stat st;
void *ptr;
/* If loading ROM from file, pci handles it */
if (dev->dev.romfile || !dev->dev.rom_bar) {
return;
}
snprintf(rom_file, sizeof(rom_file),
"/sys/bus/pci/devices/%04x:%02x:%02x.%01x/rom",
dev->host.domain, dev->host.bus, dev->host.slot,
dev->host.function);
if (stat(rom_file, &st)) {
return;
}
if (access(rom_file, F_OK)) {
error_report("pci-assign: Insufficient privileges for %s", rom_file);
return;
}
/* Write "1" to the ROM file to enable it */
fp = fopen(rom_file, "r+");
if (fp == NULL) {
return;
}
val = 1;
if (fwrite(&val, 1, 1, fp) != 1) {
goto close_rom;
}
fseek(fp, 0, SEEK_SET);
snprintf(name, sizeof(name), "%s.rom",
object_get_typename(OBJECT(dev)));
memory_region_init_ram(&dev->dev.rom, OBJECT(dev), name, st.st_size,
&error_abort);
vmstate_register_ram(&dev->dev.rom, &dev->dev.qdev);
ptr = memory_region_get_ram_ptr(&dev->dev.rom);
memset(ptr, 0xff, st.st_size);
if (!fread(ptr, 1, st.st_size, fp)) {
error_report("pci-assign: Cannot read from host %s", rom_file);
error_printf("Device option ROM contents are probably invalid "
"(check dmesg).\nSkip option ROM probe with rombar=0, "
"or load from file with romfile=\n");
goto close_rom;
}
pci_register_bar(&dev->dev, PCI_ROM_SLOT, 0, &dev->dev.rom);
dev->dev.has_rom = true;
close_rom:
/* Write "0" to disable ROM */
fseek(fp, 0, SEEK_SET);
val = 0;
if (!fwrite(&val, 1, 1, fp)) {
DEBUG("%s\n", "Failed to disable pci-sysfs rom file");
}
fclose(fp);
}