qemu-e2k/tests/tcg/hexagon/hvx_misc.c
Taylor Simpson afb9539ebe Hexagon HVX (tests/tcg/hexagon) hvx_misc test
Tests for
    packet semantics
    vector loads (aligned and unaligned)
    vector stores (aligned and unaligned)
    vector masked stores
    vector new value store
    maximum HVX temps in a packet
    vector operations

Acked-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Taylor Simpson <tsimpson@quicinc.com>
2021-11-03 16:01:37 -05:00

470 lines
14 KiB
C

/*
* Copyright(c) 2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
int err;
static void __check(int line, int i, int j, uint64_t result, uint64_t expect)
{
if (result != expect) {
printf("ERROR at line %d: [%d][%d] 0x%016llx != 0x%016llx\n",
line, i, j, result, expect);
err++;
}
}
#define check(RES, EXP) __check(__LINE__, RES, EXP)
#define MAX_VEC_SIZE_BYTES 128
typedef union {
uint64_t ud[MAX_VEC_SIZE_BYTES / 8];
int64_t d[MAX_VEC_SIZE_BYTES / 8];
uint32_t uw[MAX_VEC_SIZE_BYTES / 4];
int32_t w[MAX_VEC_SIZE_BYTES / 4];
uint16_t uh[MAX_VEC_SIZE_BYTES / 2];
int16_t h[MAX_VEC_SIZE_BYTES / 2];
uint8_t ub[MAX_VEC_SIZE_BYTES / 1];
int8_t b[MAX_VEC_SIZE_BYTES / 1];
} MMVector;
#define BUFSIZE 16
#define OUTSIZE 16
#define MASKMOD 3
MMVector buffer0[BUFSIZE] __attribute__((aligned(MAX_VEC_SIZE_BYTES)));
MMVector buffer1[BUFSIZE] __attribute__((aligned(MAX_VEC_SIZE_BYTES)));
MMVector mask[BUFSIZE] __attribute__((aligned(MAX_VEC_SIZE_BYTES)));
MMVector output[OUTSIZE] __attribute__((aligned(MAX_VEC_SIZE_BYTES)));
MMVector expect[OUTSIZE] __attribute__((aligned(MAX_VEC_SIZE_BYTES)));
#define CHECK_OUTPUT_FUNC(FIELD, FIELDSZ) \
static void check_output_##FIELD(int line, size_t num_vectors) \
{ \
for (int i = 0; i < num_vectors; i++) { \
for (int j = 0; j < MAX_VEC_SIZE_BYTES / FIELDSZ; j++) { \
__check(line, i, j, output[i].FIELD[j], expect[i].FIELD[j]); \
} \
} \
}
CHECK_OUTPUT_FUNC(d, 8)
CHECK_OUTPUT_FUNC(w, 4)
CHECK_OUTPUT_FUNC(h, 2)
CHECK_OUTPUT_FUNC(b, 1)
static void init_buffers(void)
{
int counter0 = 0;
int counter1 = 17;
for (int i = 0; i < BUFSIZE; i++) {
for (int j = 0; j < MAX_VEC_SIZE_BYTES; j++) {
buffer0[i].b[j] = counter0++;
buffer1[i].b[j] = counter1++;
}
for (int j = 0; j < MAX_VEC_SIZE_BYTES / 4; j++) {
mask[i].w[j] = (i + j % MASKMOD == 0) ? 0 : 1;
}
}
}
static void test_load_tmp(void)
{
void *p0 = buffer0;
void *p1 = buffer1;
void *pout = output;
for (int i = 0; i < BUFSIZE; i++) {
/*
* Load into v12 as .tmp, then use it in the next packet
* Should get the new value within the same packet and
* the old value in the next packet
*/
asm("v3 = vmem(%0 + #0)\n\t"
"r1 = #1\n\t"
"v12 = vsplat(r1)\n\t"
"{\n\t"
" v12.tmp = vmem(%1 + #0)\n\t"
" v4.w = vadd(v12.w, v3.w)\n\t"
"}\n\t"
"v4.w = vadd(v4.w, v12.w)\n\t"
"vmem(%2 + #0) = v4\n\t"
: : "r"(p0), "r"(p1), "r"(pout)
: "r1", "v12", "v3", "v4", "v6", "memory");
p0 += sizeof(MMVector);
p1 += sizeof(MMVector);
pout += sizeof(MMVector);
for (int j = 0; j < MAX_VEC_SIZE_BYTES / 4; j++) {
expect[i].w[j] = buffer0[i].w[j] + buffer1[i].w[j] + 1;
}
}
check_output_w(__LINE__, BUFSIZE);
}
static void test_load_cur(void)
{
void *p0 = buffer0;
void *pout = output;
for (int i = 0; i < BUFSIZE; i++) {
asm("{\n\t"
" v2.cur = vmem(%0 + #0)\n\t"
" vmem(%1 + #0) = v2\n\t"
"}\n\t"
: : "r"(p0), "r"(pout) : "v2", "memory");
p0 += sizeof(MMVector);
pout += sizeof(MMVector);
for (int j = 0; j < MAX_VEC_SIZE_BYTES / 4; j++) {
expect[i].uw[j] = buffer0[i].uw[j];
}
}
check_output_w(__LINE__, BUFSIZE);
}
static void test_load_aligned(void)
{
/* Aligned loads ignore the low bits of the address */
void *p0 = buffer0;
void *pout = output;
const size_t offset = 13;
p0 += offset; /* Create an unaligned address */
asm("v2 = vmem(%0 + #0)\n\t"
"vmem(%1 + #0) = v2\n\t"
: : "r"(p0), "r"(pout) : "v2", "memory");
expect[0] = buffer0[0];
check_output_w(__LINE__, 1);
}
static void test_load_unaligned(void)
{
void *p0 = buffer0;
void *pout = output;
const size_t offset = 12;
p0 += offset; /* Create an unaligned address */
asm("v2 = vmemu(%0 + #0)\n\t"
"vmem(%1 + #0) = v2\n\t"
: : "r"(p0), "r"(pout) : "v2", "memory");
memcpy(expect, &buffer0[0].ub[offset], sizeof(MMVector));
check_output_w(__LINE__, 1);
}
static void test_store_aligned(void)
{
/* Aligned stores ignore the low bits of the address */
void *p0 = buffer0;
void *pout = output;
const size_t offset = 13;
pout += offset; /* Create an unaligned address */
asm("v2 = vmem(%0 + #0)\n\t"
"vmem(%1 + #0) = v2\n\t"
: : "r"(p0), "r"(pout) : "v2", "memory");
expect[0] = buffer0[0];
check_output_w(__LINE__, 1);
}
static void test_store_unaligned(void)
{
void *p0 = buffer0;
void *pout = output;
const size_t offset = 12;
pout += offset; /* Create an unaligned address */
asm("v2 = vmem(%0 + #0)\n\t"
"vmemu(%1 + #0) = v2\n\t"
: : "r"(p0), "r"(pout) : "v2", "memory");
memcpy(expect, buffer0, 2 * sizeof(MMVector));
memcpy(&expect[0].ub[offset], buffer0, sizeof(MMVector));
check_output_w(__LINE__, 2);
}
static void test_masked_store(bool invert)
{
void *p0 = buffer0;
void *pmask = mask;
void *pout = output;
memset(expect, 0xff, sizeof(expect));
memset(output, 0xff, sizeof(expect));
for (int i = 0; i < BUFSIZE; i++) {
if (invert) {
asm("r4 = #0\n\t"
"v4 = vsplat(r4)\n\t"
"v5 = vmem(%0 + #0)\n\t"
"q0 = vcmp.eq(v4.w, v5.w)\n\t"
"v5 = vmem(%1)\n\t"
"if (!q0) vmem(%2) = v5\n\t" /* Inverted test */
: : "r"(pmask), "r"(p0), "r"(pout)
: "r4", "v4", "v5", "q0", "memory");
} else {
asm("r4 = #0\n\t"
"v4 = vsplat(r4)\n\t"
"v5 = vmem(%0 + #0)\n\t"
"q0 = vcmp.eq(v4.w, v5.w)\n\t"
"v5 = vmem(%1)\n\t"
"if (q0) vmem(%2) = v5\n\t" /* Non-inverted test */
: : "r"(pmask), "r"(p0), "r"(pout)
: "r4", "v4", "v5", "q0", "memory");
}
p0 += sizeof(MMVector);
pmask += sizeof(MMVector);
pout += sizeof(MMVector);
for (int j = 0; j < MAX_VEC_SIZE_BYTES / 4; j++) {
if (invert) {
if (i + j % MASKMOD != 0) {
expect[i].w[j] = buffer0[i].w[j];
}
} else {
if (i + j % MASKMOD == 0) {
expect[i].w[j] = buffer0[i].w[j];
}
}
}
}
check_output_w(__LINE__, BUFSIZE);
}
static void test_new_value_store(void)
{
void *p0 = buffer0;
void *pout = output;
asm("{\n\t"
" v2 = vmem(%0 + #0)\n\t"
" vmem(%1 + #0) = v2.new\n\t"
"}\n\t"
: : "r"(p0), "r"(pout) : "v2", "memory");
expect[0] = buffer0[0];
check_output_w(__LINE__, 1);
}
static void test_max_temps()
{
void *p0 = buffer0;
void *pout = output;
asm("v0 = vmem(%0 + #0)\n\t"
"v1 = vmem(%0 + #1)\n\t"
"v2 = vmem(%0 + #2)\n\t"
"v3 = vmem(%0 + #3)\n\t"
"v4 = vmem(%0 + #4)\n\t"
"{\n\t"
" v1:0.w = vadd(v3:2.w, v1:0.w)\n\t"
" v2.b = vshuffe(v3.b, v2.b)\n\t"
" v3.w = vadd(v1.w, v4.w)\n\t"
" v4.tmp = vmem(%0 + #5)\n\t"
"}\n\t"
"vmem(%1 + #0) = v0\n\t"
"vmem(%1 + #1) = v1\n\t"
"vmem(%1 + #2) = v2\n\t"
"vmem(%1 + #3) = v3\n\t"
"vmem(%1 + #4) = v4\n\t"
: : "r"(p0), "r"(pout) : "memory");
/* The first two vectors come from the vadd-pair instruction */
for (int i = 0; i < MAX_VEC_SIZE_BYTES / 4; i++) {
expect[0].w[i] = buffer0[0].w[i] + buffer0[2].w[i];
expect[1].w[i] = buffer0[1].w[i] + buffer0[3].w[i];
}
/* The third vector comes from the vshuffe instruction */
for (int i = 0; i < MAX_VEC_SIZE_BYTES / 2; i++) {
expect[2].uh[i] = (buffer0[2].uh[i] & 0xff) |
(buffer0[3].uh[i] & 0xff) << 8;
}
/* The fourth vector comes from the vadd-single instruction */
for (int i = 0; i < MAX_VEC_SIZE_BYTES / 4; i++) {
expect[3].w[i] = buffer0[1].w[i] + buffer0[5].w[i];
}
/*
* The fifth vector comes from the load to v4
* make sure the .tmp is dropped
*/
expect[4] = buffer0[4];
check_output_b(__LINE__, 5);
}
#define VEC_OP1(ASM, EL, IN, OUT) \
asm("v2 = vmem(%0 + #0)\n\t" \
"v2" #EL " = " #ASM "(v2" #EL ")\n\t" \
"vmem(%1 + #0) = v2\n\t" \
: : "r"(IN), "r"(OUT) : "v2", "memory")
#define VEC_OP2(ASM, EL, IN0, IN1, OUT) \
asm("v2 = vmem(%0 + #0)\n\t" \
"v3 = vmem(%1 + #0)\n\t" \
"v2" #EL " = " #ASM "(v2" #EL ", v3" #EL ")\n\t" \
"vmem(%2 + #0) = v2\n\t" \
: : "r"(IN0), "r"(IN1), "r"(OUT) : "v2", "v3", "memory")
#define TEST_VEC_OP1(NAME, ASM, EL, FIELD, FIELDSZ, OP) \
static void test_##NAME(void) \
{ \
void *pin = buffer0; \
void *pout = output; \
for (int i = 0; i < BUFSIZE; i++) { \
VEC_OP1(ASM, EL, pin, pout); \
pin += sizeof(MMVector); \
pout += sizeof(MMVector); \
} \
for (int i = 0; i < BUFSIZE; i++) { \
for (int j = 0; j < MAX_VEC_SIZE_BYTES / FIELDSZ; j++) { \
expect[i].FIELD[j] = OP buffer0[i].FIELD[j]; \
} \
} \
check_output_##FIELD(__LINE__, BUFSIZE); \
}
#define TEST_VEC_OP2(NAME, ASM, EL, FIELD, FIELDSZ, OP) \
static void test_##NAME(void) \
{ \
void *p0 = buffer0; \
void *p1 = buffer1; \
void *pout = output; \
for (int i = 0; i < BUFSIZE; i++) { \
VEC_OP2(ASM, EL, p0, p1, pout); \
p0 += sizeof(MMVector); \
p1 += sizeof(MMVector); \
pout += sizeof(MMVector); \
} \
for (int i = 0; i < BUFSIZE; i++) { \
for (int j = 0; j < MAX_VEC_SIZE_BYTES / FIELDSZ; j++) { \
expect[i].FIELD[j] = buffer0[i].FIELD[j] OP buffer1[i].FIELD[j]; \
} \
} \
check_output_##FIELD(__LINE__, BUFSIZE); \
}
#define THRESHOLD 31
#define PRED_OP2(ASM, IN0, IN1, OUT, INV) \
asm("r4 = #%3\n\t" \
"v1.b = vsplat(r4)\n\t" \
"v2 = vmem(%0 + #0)\n\t" \
"q0 = vcmp.gt(v2.b, v1.b)\n\t" \
"v3 = vmem(%1 + #0)\n\t" \
"q1 = vcmp.gt(v3.b, v1.b)\n\t" \
"q2 = " #ASM "(q0, " INV "q1)\n\t" \
"r4 = #0xff\n\t" \
"v1.b = vsplat(r4)\n\t" \
"if (q2) vmem(%2 + #0) = v1\n\t" \
: : "r"(IN0), "r"(IN1), "r"(OUT), "i"(THRESHOLD) \
: "r4", "v1", "v2", "v3", "q0", "q1", "q2", "memory")
#define TEST_PRED_OP2(NAME, ASM, OP, INV) \
static void test_##NAME(bool invert) \
{ \
void *p0 = buffer0; \
void *p1 = buffer1; \
void *pout = output; \
memset(output, 0, sizeof(expect)); \
for (int i = 0; i < BUFSIZE; i++) { \
PRED_OP2(ASM, p0, p1, pout, INV); \
p0 += sizeof(MMVector); \
p1 += sizeof(MMVector); \
pout += sizeof(MMVector); \
} \
for (int i = 0; i < BUFSIZE; i++) { \
for (int j = 0; j < MAX_VEC_SIZE_BYTES; j++) { \
bool p0 = (buffer0[i].b[j] > THRESHOLD); \
bool p1 = (buffer1[i].b[j] > THRESHOLD); \
if (invert) { \
expect[i].b[j] = (p0 OP !p1) ? 0xff : 0x00; \
} else { \
expect[i].b[j] = (p0 OP p1) ? 0xff : 0x00; \
} \
} \
} \
check_output_b(__LINE__, BUFSIZE); \
}
TEST_VEC_OP2(vadd_w, vadd, .w, w, 4, +)
TEST_VEC_OP2(vadd_h, vadd, .h, h, 2, +)
TEST_VEC_OP2(vadd_b, vadd, .b, b, 1, +)
TEST_VEC_OP2(vsub_w, vsub, .w, w, 4, -)
TEST_VEC_OP2(vsub_h, vsub, .h, h, 2, -)
TEST_VEC_OP2(vsub_b, vsub, .b, b, 1, -)
TEST_VEC_OP2(vxor, vxor, , d, 8, ^)
TEST_VEC_OP2(vand, vand, , d, 8, &)
TEST_VEC_OP2(vor, vor, , d, 8, |)
TEST_VEC_OP1(vnot, vnot, , d, 8, ~)
TEST_PRED_OP2(pred_or, or, |, "")
TEST_PRED_OP2(pred_or_n, or, |, "!")
TEST_PRED_OP2(pred_and, and, &, "")
TEST_PRED_OP2(pred_and_n, and, &, "!")
TEST_PRED_OP2(pred_xor, xor, ^, "")
int main()
{
init_buffers();
test_load_tmp();
test_load_cur();
test_load_aligned();
test_load_unaligned();
test_store_aligned();
test_store_unaligned();
test_masked_store(false);
test_masked_store(true);
test_new_value_store();
test_max_temps();
test_vadd_w();
test_vadd_h();
test_vadd_b();
test_vsub_w();
test_vsub_h();
test_vsub_b();
test_vxor();
test_vand();
test_vor();
test_vnot();
test_pred_or(false);
test_pred_or_n(true);
test_pred_and(false);
test_pred_and_n(true);
test_pred_xor(false);
puts(err ? "FAIL" : "PASS");
return err ? 1 : 0;
}