f930d07eda
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@3338 c046a42c-6fe2-441c-8c8c-71466251a162
603 lines
16 KiB
C
603 lines
16 KiB
C
/*
|
|
* QEMU ESP/NCR53C9x emulation
|
|
*
|
|
* Copyright (c) 2005-2006 Fabrice Bellard
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include "vl.h"
|
|
|
|
/* debug ESP card */
|
|
//#define DEBUG_ESP
|
|
|
|
/*
|
|
* On Sparc32, this is the ESP (NCR53C90) part of chip STP2000 (Master I/O), also
|
|
* produced as NCR89C100. See
|
|
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
|
|
* and
|
|
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR53C9X.txt
|
|
*/
|
|
|
|
#ifdef DEBUG_ESP
|
|
#define DPRINTF(fmt, args...) \
|
|
do { printf("ESP: " fmt , ##args); } while (0)
|
|
#else
|
|
#define DPRINTF(fmt, args...)
|
|
#endif
|
|
|
|
#define ESP_MASK 0x3f
|
|
#define ESP_REGS 16
|
|
#define ESP_SIZE (ESP_REGS * 4)
|
|
#define TI_BUFSZ 32
|
|
/* The HBA is ID 7, so for simplicitly limit to 7 devices. */
|
|
#define ESP_MAX_DEVS 7
|
|
|
|
typedef struct ESPState ESPState;
|
|
|
|
struct ESPState {
|
|
qemu_irq irq;
|
|
BlockDriverState **bd;
|
|
uint8_t rregs[ESP_REGS];
|
|
uint8_t wregs[ESP_REGS];
|
|
int32_t ti_size;
|
|
uint32_t ti_rptr, ti_wptr;
|
|
uint8_t ti_buf[TI_BUFSZ];
|
|
int sense;
|
|
int dma;
|
|
SCSIDevice *scsi_dev[MAX_DISKS];
|
|
SCSIDevice *current_dev;
|
|
uint8_t cmdbuf[TI_BUFSZ];
|
|
int cmdlen;
|
|
int do_cmd;
|
|
|
|
/* The amount of data left in the current DMA transfer. */
|
|
uint32_t dma_left;
|
|
/* The size of the current DMA transfer. Zero if no transfer is in
|
|
progress. */
|
|
uint32_t dma_counter;
|
|
uint8_t *async_buf;
|
|
uint32_t async_len;
|
|
void *dma_opaque;
|
|
};
|
|
|
|
#define STAT_DO 0x00
|
|
#define STAT_DI 0x01
|
|
#define STAT_CD 0x02
|
|
#define STAT_ST 0x03
|
|
#define STAT_MI 0x06
|
|
#define STAT_MO 0x07
|
|
|
|
#define STAT_TC 0x10
|
|
#define STAT_PE 0x20
|
|
#define STAT_GE 0x40
|
|
#define STAT_IN 0x80
|
|
|
|
#define INTR_FC 0x08
|
|
#define INTR_BS 0x10
|
|
#define INTR_DC 0x20
|
|
#define INTR_RST 0x80
|
|
|
|
#define SEQ_0 0x0
|
|
#define SEQ_CD 0x4
|
|
|
|
static int get_cmd(ESPState *s, uint8_t *buf)
|
|
{
|
|
uint32_t dmalen;
|
|
int target;
|
|
|
|
dmalen = s->rregs[0] | (s->rregs[1] << 8);
|
|
target = s->wregs[4] & 7;
|
|
DPRINTF("get_cmd: len %d target %d\n", dmalen, target);
|
|
if (s->dma) {
|
|
espdma_memory_read(s->dma_opaque, buf, dmalen);
|
|
} else {
|
|
buf[0] = 0;
|
|
memcpy(&buf[1], s->ti_buf, dmalen);
|
|
dmalen++;
|
|
}
|
|
|
|
s->ti_size = 0;
|
|
s->ti_rptr = 0;
|
|
s->ti_wptr = 0;
|
|
|
|
if (s->current_dev) {
|
|
/* Started a new command before the old one finished. Cancel it. */
|
|
scsi_cancel_io(s->current_dev, 0);
|
|
s->async_len = 0;
|
|
}
|
|
|
|
if (target >= MAX_DISKS || !s->scsi_dev[target]) {
|
|
// No such drive
|
|
s->rregs[4] = STAT_IN;
|
|
s->rregs[5] = INTR_DC;
|
|
s->rregs[6] = SEQ_0;
|
|
qemu_irq_raise(s->irq);
|
|
return 0;
|
|
}
|
|
s->current_dev = s->scsi_dev[target];
|
|
return dmalen;
|
|
}
|
|
|
|
static void do_cmd(ESPState *s, uint8_t *buf)
|
|
{
|
|
int32_t datalen;
|
|
int lun;
|
|
|
|
DPRINTF("do_cmd: busid 0x%x\n", buf[0]);
|
|
lun = buf[0] & 7;
|
|
datalen = scsi_send_command(s->current_dev, 0, &buf[1], lun);
|
|
s->ti_size = datalen;
|
|
if (datalen != 0) {
|
|
s->rregs[4] = STAT_IN | STAT_TC;
|
|
s->dma_left = 0;
|
|
s->dma_counter = 0;
|
|
if (datalen > 0) {
|
|
s->rregs[4] |= STAT_DI;
|
|
scsi_read_data(s->current_dev, 0);
|
|
} else {
|
|
s->rregs[4] |= STAT_DO;
|
|
scsi_write_data(s->current_dev, 0);
|
|
}
|
|
}
|
|
s->rregs[5] = INTR_BS | INTR_FC;
|
|
s->rregs[6] = SEQ_CD;
|
|
qemu_irq_raise(s->irq);
|
|
}
|
|
|
|
static void handle_satn(ESPState *s)
|
|
{
|
|
uint8_t buf[32];
|
|
int len;
|
|
|
|
len = get_cmd(s, buf);
|
|
if (len)
|
|
do_cmd(s, buf);
|
|
}
|
|
|
|
static void handle_satn_stop(ESPState *s)
|
|
{
|
|
s->cmdlen = get_cmd(s, s->cmdbuf);
|
|
if (s->cmdlen) {
|
|
DPRINTF("Set ATN & Stop: cmdlen %d\n", s->cmdlen);
|
|
s->do_cmd = 1;
|
|
s->rregs[4] = STAT_IN | STAT_TC | STAT_CD;
|
|
s->rregs[5] = INTR_BS | INTR_FC;
|
|
s->rregs[6] = SEQ_CD;
|
|
qemu_irq_raise(s->irq);
|
|
}
|
|
}
|
|
|
|
static void write_response(ESPState *s)
|
|
{
|
|
DPRINTF("Transfer status (sense=%d)\n", s->sense);
|
|
s->ti_buf[0] = s->sense;
|
|
s->ti_buf[1] = 0;
|
|
if (s->dma) {
|
|
espdma_memory_write(s->dma_opaque, s->ti_buf, 2);
|
|
s->rregs[4] = STAT_IN | STAT_TC | STAT_ST;
|
|
s->rregs[5] = INTR_BS | INTR_FC;
|
|
s->rregs[6] = SEQ_CD;
|
|
} else {
|
|
s->ti_size = 2;
|
|
s->ti_rptr = 0;
|
|
s->ti_wptr = 0;
|
|
s->rregs[7] = 2;
|
|
}
|
|
qemu_irq_raise(s->irq);
|
|
}
|
|
|
|
static void esp_dma_done(ESPState *s)
|
|
{
|
|
s->rregs[4] |= STAT_IN | STAT_TC;
|
|
s->rregs[5] = INTR_BS;
|
|
s->rregs[6] = 0;
|
|
s->rregs[7] = 0;
|
|
s->rregs[0] = 0;
|
|
s->rregs[1] = 0;
|
|
qemu_irq_raise(s->irq);
|
|
}
|
|
|
|
static void esp_do_dma(ESPState *s)
|
|
{
|
|
uint32_t len;
|
|
int to_device;
|
|
|
|
to_device = (s->ti_size < 0);
|
|
len = s->dma_left;
|
|
if (s->do_cmd) {
|
|
DPRINTF("command len %d + %d\n", s->cmdlen, len);
|
|
espdma_memory_read(s->dma_opaque, &s->cmdbuf[s->cmdlen], len);
|
|
s->ti_size = 0;
|
|
s->cmdlen = 0;
|
|
s->do_cmd = 0;
|
|
do_cmd(s, s->cmdbuf);
|
|
return;
|
|
}
|
|
if (s->async_len == 0) {
|
|
/* Defer until data is available. */
|
|
return;
|
|
}
|
|
if (len > s->async_len) {
|
|
len = s->async_len;
|
|
}
|
|
if (to_device) {
|
|
espdma_memory_read(s->dma_opaque, s->async_buf, len);
|
|
} else {
|
|
espdma_memory_write(s->dma_opaque, s->async_buf, len);
|
|
}
|
|
s->dma_left -= len;
|
|
s->async_buf += len;
|
|
s->async_len -= len;
|
|
if (to_device)
|
|
s->ti_size += len;
|
|
else
|
|
s->ti_size -= len;
|
|
if (s->async_len == 0) {
|
|
if (to_device) {
|
|
// ti_size is negative
|
|
scsi_write_data(s->current_dev, 0);
|
|
} else {
|
|
scsi_read_data(s->current_dev, 0);
|
|
/* If there is still data to be read from the device then
|
|
complete the DMA operation immeriately. Otherwise defer
|
|
until the scsi layer has completed. */
|
|
if (s->dma_left == 0 && s->ti_size > 0) {
|
|
esp_dma_done(s);
|
|
}
|
|
}
|
|
} else {
|
|
/* Partially filled a scsi buffer. Complete immediately. */
|
|
esp_dma_done(s);
|
|
}
|
|
}
|
|
|
|
static void esp_command_complete(void *opaque, int reason, uint32_t tag,
|
|
uint32_t arg)
|
|
{
|
|
ESPState *s = (ESPState *)opaque;
|
|
|
|
if (reason == SCSI_REASON_DONE) {
|
|
DPRINTF("SCSI Command complete\n");
|
|
if (s->ti_size != 0)
|
|
DPRINTF("SCSI command completed unexpectedly\n");
|
|
s->ti_size = 0;
|
|
s->dma_left = 0;
|
|
s->async_len = 0;
|
|
if (arg)
|
|
DPRINTF("Command failed\n");
|
|
s->sense = arg;
|
|
s->rregs[4] = STAT_ST;
|
|
esp_dma_done(s);
|
|
s->current_dev = NULL;
|
|
} else {
|
|
DPRINTF("transfer %d/%d\n", s->dma_left, s->ti_size);
|
|
s->async_len = arg;
|
|
s->async_buf = scsi_get_buf(s->current_dev, 0);
|
|
if (s->dma_left) {
|
|
esp_do_dma(s);
|
|
} else if (s->dma_counter != 0 && s->ti_size <= 0) {
|
|
/* If this was the last part of a DMA transfer then the
|
|
completion interrupt is deferred to here. */
|
|
esp_dma_done(s);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void handle_ti(ESPState *s)
|
|
{
|
|
uint32_t dmalen, minlen;
|
|
|
|
dmalen = s->rregs[0] | (s->rregs[1] << 8);
|
|
if (dmalen==0) {
|
|
dmalen=0x10000;
|
|
}
|
|
s->dma_counter = dmalen;
|
|
|
|
if (s->do_cmd)
|
|
minlen = (dmalen < 32) ? dmalen : 32;
|
|
else if (s->ti_size < 0)
|
|
minlen = (dmalen < -s->ti_size) ? dmalen : -s->ti_size;
|
|
else
|
|
minlen = (dmalen < s->ti_size) ? dmalen : s->ti_size;
|
|
DPRINTF("Transfer Information len %d\n", minlen);
|
|
if (s->dma) {
|
|
s->dma_left = minlen;
|
|
s->rregs[4] &= ~STAT_TC;
|
|
esp_do_dma(s);
|
|
} else if (s->do_cmd) {
|
|
DPRINTF("command len %d\n", s->cmdlen);
|
|
s->ti_size = 0;
|
|
s->cmdlen = 0;
|
|
s->do_cmd = 0;
|
|
do_cmd(s, s->cmdbuf);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void esp_reset(void *opaque)
|
|
{
|
|
ESPState *s = opaque;
|
|
|
|
memset(s->rregs, 0, ESP_REGS);
|
|
memset(s->wregs, 0, ESP_REGS);
|
|
s->rregs[0x0e] = 0x4; // Indicate fas100a
|
|
s->ti_size = 0;
|
|
s->ti_rptr = 0;
|
|
s->ti_wptr = 0;
|
|
s->dma = 0;
|
|
s->do_cmd = 0;
|
|
}
|
|
|
|
static void parent_esp_reset(void *opaque, int irq, int level)
|
|
{
|
|
if (level)
|
|
esp_reset(opaque);
|
|
}
|
|
|
|
static uint32_t esp_mem_readb(void *opaque, target_phys_addr_t addr)
|
|
{
|
|
ESPState *s = opaque;
|
|
uint32_t saddr;
|
|
|
|
saddr = (addr & ESP_MASK) >> 2;
|
|
DPRINTF("read reg[%d]: 0x%2.2x\n", saddr, s->rregs[saddr]);
|
|
switch (saddr) {
|
|
case 2:
|
|
// FIFO
|
|
if (s->ti_size > 0) {
|
|
s->ti_size--;
|
|
if ((s->rregs[4] & 6) == 0) {
|
|
/* Data in/out. */
|
|
fprintf(stderr, "esp: PIO data read not implemented\n");
|
|
s->rregs[2] = 0;
|
|
} else {
|
|
s->rregs[2] = s->ti_buf[s->ti_rptr++];
|
|
}
|
|
qemu_irq_raise(s->irq);
|
|
}
|
|
if (s->ti_size == 0) {
|
|
s->ti_rptr = 0;
|
|
s->ti_wptr = 0;
|
|
}
|
|
break;
|
|
case 5:
|
|
// interrupt
|
|
// Clear interrupt/error status bits
|
|
s->rregs[4] &= ~(STAT_IN | STAT_GE | STAT_PE);
|
|
qemu_irq_lower(s->irq);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return s->rregs[saddr];
|
|
}
|
|
|
|
static void esp_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
ESPState *s = opaque;
|
|
uint32_t saddr;
|
|
|
|
saddr = (addr & ESP_MASK) >> 2;
|
|
DPRINTF("write reg[%d]: 0x%2.2x -> 0x%2.2x\n", saddr, s->wregs[saddr], val);
|
|
switch (saddr) {
|
|
case 0:
|
|
case 1:
|
|
s->rregs[4] &= ~STAT_TC;
|
|
break;
|
|
case 2:
|
|
// FIFO
|
|
if (s->do_cmd) {
|
|
s->cmdbuf[s->cmdlen++] = val & 0xff;
|
|
} else if ((s->rregs[4] & 6) == 0) {
|
|
uint8_t buf;
|
|
buf = val & 0xff;
|
|
s->ti_size--;
|
|
fprintf(stderr, "esp: PIO data write not implemented\n");
|
|
} else {
|
|
s->ti_size++;
|
|
s->ti_buf[s->ti_wptr++] = val & 0xff;
|
|
}
|
|
break;
|
|
case 3:
|
|
s->rregs[saddr] = val;
|
|
// Command
|
|
if (val & 0x80) {
|
|
s->dma = 1;
|
|
/* Reload DMA counter. */
|
|
s->rregs[0] = s->wregs[0];
|
|
s->rregs[1] = s->wregs[1];
|
|
} else {
|
|
s->dma = 0;
|
|
}
|
|
switch(val & 0x7f) {
|
|
case 0:
|
|
DPRINTF("NOP (%2.2x)\n", val);
|
|
break;
|
|
case 1:
|
|
DPRINTF("Flush FIFO (%2.2x)\n", val);
|
|
//s->ti_size = 0;
|
|
s->rregs[5] = INTR_FC;
|
|
s->rregs[6] = 0;
|
|
break;
|
|
case 2:
|
|
DPRINTF("Chip reset (%2.2x)\n", val);
|
|
esp_reset(s);
|
|
break;
|
|
case 3:
|
|
DPRINTF("Bus reset (%2.2x)\n", val);
|
|
s->rregs[5] = INTR_RST;
|
|
if (!(s->wregs[8] & 0x40)) {
|
|
qemu_irq_raise(s->irq);
|
|
}
|
|
break;
|
|
case 0x10:
|
|
handle_ti(s);
|
|
break;
|
|
case 0x11:
|
|
DPRINTF("Initiator Command Complete Sequence (%2.2x)\n", val);
|
|
write_response(s);
|
|
break;
|
|
case 0x12:
|
|
DPRINTF("Message Accepted (%2.2x)\n", val);
|
|
write_response(s);
|
|
s->rregs[5] = INTR_DC;
|
|
s->rregs[6] = 0;
|
|
break;
|
|
case 0x1a:
|
|
DPRINTF("Set ATN (%2.2x)\n", val);
|
|
break;
|
|
case 0x42:
|
|
DPRINTF("Set ATN (%2.2x)\n", val);
|
|
handle_satn(s);
|
|
break;
|
|
case 0x43:
|
|
DPRINTF("Set ATN & stop (%2.2x)\n", val);
|
|
handle_satn_stop(s);
|
|
break;
|
|
case 0x44:
|
|
DPRINTF("Enable selection (%2.2x)\n", val);
|
|
break;
|
|
default:
|
|
DPRINTF("Unhandled ESP command (%2.2x)\n", val);
|
|
break;
|
|
}
|
|
break;
|
|
case 4 ... 7:
|
|
break;
|
|
case 8:
|
|
s->rregs[saddr] = val;
|
|
break;
|
|
case 9 ... 10:
|
|
break;
|
|
case 11:
|
|
s->rregs[saddr] = val & 0x15;
|
|
break;
|
|
case 12 ... 15:
|
|
s->rregs[saddr] = val;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
s->wregs[saddr] = val;
|
|
}
|
|
|
|
static CPUReadMemoryFunc *esp_mem_read[3] = {
|
|
esp_mem_readb,
|
|
esp_mem_readb,
|
|
esp_mem_readb,
|
|
};
|
|
|
|
static CPUWriteMemoryFunc *esp_mem_write[3] = {
|
|
esp_mem_writeb,
|
|
esp_mem_writeb,
|
|
esp_mem_writeb,
|
|
};
|
|
|
|
static void esp_save(QEMUFile *f, void *opaque)
|
|
{
|
|
ESPState *s = opaque;
|
|
|
|
qemu_put_buffer(f, s->rregs, ESP_REGS);
|
|
qemu_put_buffer(f, s->wregs, ESP_REGS);
|
|
qemu_put_be32s(f, &s->ti_size);
|
|
qemu_put_be32s(f, &s->ti_rptr);
|
|
qemu_put_be32s(f, &s->ti_wptr);
|
|
qemu_put_buffer(f, s->ti_buf, TI_BUFSZ);
|
|
qemu_put_be32s(f, &s->sense);
|
|
qemu_put_be32s(f, &s->dma);
|
|
qemu_put_buffer(f, s->cmdbuf, TI_BUFSZ);
|
|
qemu_put_be32s(f, &s->cmdlen);
|
|
qemu_put_be32s(f, &s->do_cmd);
|
|
qemu_put_be32s(f, &s->dma_left);
|
|
// There should be no transfers in progress, so dma_counter is not saved
|
|
}
|
|
|
|
static int esp_load(QEMUFile *f, void *opaque, int version_id)
|
|
{
|
|
ESPState *s = opaque;
|
|
|
|
if (version_id != 3)
|
|
return -EINVAL; // Cannot emulate 2
|
|
|
|
qemu_get_buffer(f, s->rregs, ESP_REGS);
|
|
qemu_get_buffer(f, s->wregs, ESP_REGS);
|
|
qemu_get_be32s(f, &s->ti_size);
|
|
qemu_get_be32s(f, &s->ti_rptr);
|
|
qemu_get_be32s(f, &s->ti_wptr);
|
|
qemu_get_buffer(f, s->ti_buf, TI_BUFSZ);
|
|
qemu_get_be32s(f, &s->sense);
|
|
qemu_get_be32s(f, &s->dma);
|
|
qemu_get_buffer(f, s->cmdbuf, TI_BUFSZ);
|
|
qemu_get_be32s(f, &s->cmdlen);
|
|
qemu_get_be32s(f, &s->do_cmd);
|
|
qemu_get_be32s(f, &s->dma_left);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void esp_scsi_attach(void *opaque, BlockDriverState *bd, int id)
|
|
{
|
|
ESPState *s = (ESPState *)opaque;
|
|
|
|
if (id < 0) {
|
|
for (id = 0; id < ESP_MAX_DEVS; id++) {
|
|
if (s->scsi_dev[id] == NULL)
|
|
break;
|
|
}
|
|
}
|
|
if (id >= ESP_MAX_DEVS) {
|
|
DPRINTF("Bad Device ID %d\n", id);
|
|
return;
|
|
}
|
|
if (s->scsi_dev[id]) {
|
|
DPRINTF("Destroying device %d\n", id);
|
|
scsi_disk_destroy(s->scsi_dev[id]);
|
|
}
|
|
DPRINTF("Attaching block device %d\n", id);
|
|
/* Command queueing is not implemented. */
|
|
s->scsi_dev[id] = scsi_disk_init(bd, 0, esp_command_complete, s);
|
|
}
|
|
|
|
void *esp_init(BlockDriverState **bd, target_phys_addr_t espaddr,
|
|
void *dma_opaque, qemu_irq irq, qemu_irq *reset)
|
|
{
|
|
ESPState *s;
|
|
int esp_io_memory;
|
|
|
|
s = qemu_mallocz(sizeof(ESPState));
|
|
if (!s)
|
|
return NULL;
|
|
|
|
s->bd = bd;
|
|
s->irq = irq;
|
|
s->dma_opaque = dma_opaque;
|
|
|
|
esp_io_memory = cpu_register_io_memory(0, esp_mem_read, esp_mem_write, s);
|
|
cpu_register_physical_memory(espaddr, ESP_SIZE, esp_io_memory);
|
|
|
|
esp_reset(s);
|
|
|
|
register_savevm("esp", espaddr, 3, esp_save, esp_load, s);
|
|
qemu_register_reset(esp_reset, s);
|
|
|
|
*reset = *qemu_allocate_irqs(parent_esp_reset, s, 1);
|
|
|
|
return s;
|
|
}
|