796 lines
23 KiB
C
796 lines
23 KiB
C
/*
|
|
* Semihosting support for systems modeled on the Arm "Angel"
|
|
* semihosting syscalls design. This includes Arm and RISC-V processors
|
|
*
|
|
* Copyright (c) 2005, 2007 CodeSourcery.
|
|
* Copyright (c) 2019 Linaro
|
|
* Written by Paul Brook.
|
|
*
|
|
* Copyright © 2020 by Keith Packard <keithp@keithp.com>
|
|
* Adapted for systems other than ARM, including RISC-V, by Keith Packard
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* ARM Semihosting is documented in:
|
|
* Semihosting for AArch32 and AArch64 Release 2.0
|
|
* https://github.com/ARM-software/abi-aa/blob/main/semihosting/semihosting.rst
|
|
*
|
|
* RISC-V Semihosting is documented in:
|
|
* RISC-V Semihosting
|
|
* https://github.com/riscv/riscv-semihosting-spec/blob/main/riscv-semihosting-spec.adoc
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/timer.h"
|
|
#include "exec/gdbstub.h"
|
|
#include "semihosting/semihost.h"
|
|
#include "semihosting/console.h"
|
|
#include "semihosting/common-semi.h"
|
|
#include "semihosting/guestfd.h"
|
|
#include "semihosting/syscalls.h"
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
#include "qemu.h"
|
|
|
|
#define COMMON_SEMI_HEAP_SIZE (128 * 1024 * 1024)
|
|
#else
|
|
#include "qemu/cutils.h"
|
|
#include "hw/loader.h"
|
|
#include "hw/boards.h"
|
|
#endif
|
|
|
|
#define TARGET_SYS_OPEN 0x01
|
|
#define TARGET_SYS_CLOSE 0x02
|
|
#define TARGET_SYS_WRITEC 0x03
|
|
#define TARGET_SYS_WRITE0 0x04
|
|
#define TARGET_SYS_WRITE 0x05
|
|
#define TARGET_SYS_READ 0x06
|
|
#define TARGET_SYS_READC 0x07
|
|
#define TARGET_SYS_ISERROR 0x08
|
|
#define TARGET_SYS_ISTTY 0x09
|
|
#define TARGET_SYS_SEEK 0x0a
|
|
#define TARGET_SYS_FLEN 0x0c
|
|
#define TARGET_SYS_TMPNAM 0x0d
|
|
#define TARGET_SYS_REMOVE 0x0e
|
|
#define TARGET_SYS_RENAME 0x0f
|
|
#define TARGET_SYS_CLOCK 0x10
|
|
#define TARGET_SYS_TIME 0x11
|
|
#define TARGET_SYS_SYSTEM 0x12
|
|
#define TARGET_SYS_ERRNO 0x13
|
|
#define TARGET_SYS_GET_CMDLINE 0x15
|
|
#define TARGET_SYS_HEAPINFO 0x16
|
|
#define TARGET_SYS_EXIT 0x18
|
|
#define TARGET_SYS_SYNCCACHE 0x19
|
|
#define TARGET_SYS_EXIT_EXTENDED 0x20
|
|
#define TARGET_SYS_ELAPSED 0x30
|
|
#define TARGET_SYS_TICKFREQ 0x31
|
|
|
|
/* ADP_Stopped_ApplicationExit is used for exit(0),
|
|
* anything else is implemented as exit(1) */
|
|
#define ADP_Stopped_ApplicationExit (0x20026)
|
|
|
|
#ifndef O_BINARY
|
|
#define O_BINARY 0
|
|
#endif
|
|
|
|
static int gdb_open_modeflags[12] = {
|
|
GDB_O_RDONLY,
|
|
GDB_O_RDONLY,
|
|
GDB_O_RDWR,
|
|
GDB_O_RDWR,
|
|
GDB_O_WRONLY | GDB_O_CREAT | GDB_O_TRUNC,
|
|
GDB_O_WRONLY | GDB_O_CREAT | GDB_O_TRUNC,
|
|
GDB_O_RDWR | GDB_O_CREAT | GDB_O_TRUNC,
|
|
GDB_O_RDWR | GDB_O_CREAT | GDB_O_TRUNC,
|
|
GDB_O_WRONLY | GDB_O_CREAT | GDB_O_APPEND,
|
|
GDB_O_WRONLY | GDB_O_CREAT | GDB_O_APPEND,
|
|
GDB_O_RDWR | GDB_O_CREAT | GDB_O_APPEND,
|
|
GDB_O_RDWR | GDB_O_CREAT | GDB_O_APPEND,
|
|
};
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
|
|
/**
|
|
* common_semi_find_bases: find information about ram and heap base
|
|
*
|
|
* This function attempts to provide meaningful numbers for RAM and
|
|
* HEAP base addresses. The rambase is simply the lowest addressable
|
|
* RAM position. For the heapbase we ask the loader to scan the
|
|
* address space and the largest available gap by querying the "ROM"
|
|
* regions.
|
|
*
|
|
* Returns: a structure with the numbers we need.
|
|
*/
|
|
|
|
typedef struct LayoutInfo {
|
|
target_ulong rambase;
|
|
size_t ramsize;
|
|
hwaddr heapbase;
|
|
hwaddr heaplimit;
|
|
} LayoutInfo;
|
|
|
|
static bool find_ram_cb(Int128 start, Int128 len, const MemoryRegion *mr,
|
|
hwaddr offset_in_region, void *opaque)
|
|
{
|
|
LayoutInfo *info = (LayoutInfo *) opaque;
|
|
uint64_t size = int128_get64(len);
|
|
|
|
if (!mr->ram || mr->readonly) {
|
|
return false;
|
|
}
|
|
|
|
if (size > info->ramsize) {
|
|
info->rambase = int128_get64(start);
|
|
info->ramsize = size;
|
|
}
|
|
|
|
/* search exhaustively for largest RAM */
|
|
return false;
|
|
}
|
|
|
|
static LayoutInfo common_semi_find_bases(CPUState *cs)
|
|
{
|
|
FlatView *fv;
|
|
LayoutInfo info = { 0, 0, 0, 0 };
|
|
|
|
RCU_READ_LOCK_GUARD();
|
|
|
|
fv = address_space_to_flatview(cs->as);
|
|
flatview_for_each_range(fv, find_ram_cb, &info);
|
|
|
|
/*
|
|
* If we have found the RAM lets iterate through the ROM blobs to
|
|
* work out the best place for the remainder of RAM and split it
|
|
* equally between stack and heap.
|
|
*/
|
|
if (info.rambase || info.ramsize > 0) {
|
|
RomGap gap = rom_find_largest_gap_between(info.rambase, info.ramsize);
|
|
info.heapbase = gap.base;
|
|
info.heaplimit = gap.base + gap.size;
|
|
}
|
|
|
|
return info;
|
|
}
|
|
|
|
#endif
|
|
|
|
#include "common-semi-target.h"
|
|
|
|
/*
|
|
* Read the input value from the argument block; fail the semihosting
|
|
* call if the memory read fails. Eventually we could use a generic
|
|
* CPUState helper function here.
|
|
* Note that GET_ARG() handles memory access errors by jumping to
|
|
* do_fault, so must be used as the first thing done in handling a
|
|
* semihosting call, to avoid accidentally leaking allocated resources.
|
|
* SET_ARG(), since it unavoidably happens late, instead returns an
|
|
* error indication (0 on success, non-0 for error) which the caller
|
|
* should check.
|
|
*/
|
|
|
|
#define GET_ARG(n) do { \
|
|
if (is_64bit_semihosting(env)) { \
|
|
if (get_user_u64(arg ## n, args + (n) * 8)) { \
|
|
goto do_fault; \
|
|
} \
|
|
} else { \
|
|
if (get_user_u32(arg ## n, args + (n) * 4)) { \
|
|
goto do_fault; \
|
|
} \
|
|
} \
|
|
} while (0)
|
|
|
|
#define SET_ARG(n, val) \
|
|
(is_64bit_semihosting(env) ? \
|
|
put_user_u64(val, args + (n) * 8) : \
|
|
put_user_u32(val, args + (n) * 4))
|
|
|
|
|
|
/*
|
|
* The semihosting API has no concept of its errno being thread-safe,
|
|
* as the API design predates SMP CPUs and was intended as a simple
|
|
* real-hardware set of debug functionality. For QEMU, we make the
|
|
* errno be per-thread in linux-user mode; in softmmu it is a simple
|
|
* global, and we assume that the guest takes care of avoiding any races.
|
|
*/
|
|
#ifndef CONFIG_USER_ONLY
|
|
static target_ulong syscall_err;
|
|
|
|
#include "semihosting/softmmu-uaccess.h"
|
|
#endif
|
|
|
|
static inline uint32_t get_swi_errno(CPUState *cs)
|
|
{
|
|
#ifdef CONFIG_USER_ONLY
|
|
TaskState *ts = cs->opaque;
|
|
|
|
return ts->swi_errno;
|
|
#else
|
|
return syscall_err;
|
|
#endif
|
|
}
|
|
|
|
static void common_semi_cb(CPUState *cs, uint64_t ret, int err)
|
|
{
|
|
if (err) {
|
|
#ifdef CONFIG_USER_ONLY
|
|
TaskState *ts = cs->opaque;
|
|
ts->swi_errno = err;
|
|
#else
|
|
syscall_err = err;
|
|
#endif
|
|
}
|
|
common_semi_set_ret(cs, ret);
|
|
}
|
|
|
|
/*
|
|
* Use 0xdeadbeef as the return value when there isn't a defined
|
|
* return value for the call.
|
|
*/
|
|
static void common_semi_dead_cb(CPUState *cs, uint64_t ret, int err)
|
|
{
|
|
common_semi_set_ret(cs, 0xdeadbeef);
|
|
}
|
|
|
|
/*
|
|
* SYS_READ and SYS_WRITE always return the number of bytes not read/written.
|
|
* There is no error condition, other than returning the original length.
|
|
*/
|
|
static void common_semi_rw_cb(CPUState *cs, uint64_t ret, int err)
|
|
{
|
|
/* Recover the original length from the third argument. */
|
|
CPUArchState *env G_GNUC_UNUSED = cs->env_ptr;
|
|
target_ulong args = common_semi_arg(cs, 1);
|
|
target_ulong arg2;
|
|
GET_ARG(2);
|
|
|
|
if (err) {
|
|
do_fault:
|
|
ret = 0; /* error: no bytes transmitted */
|
|
}
|
|
common_semi_set_ret(cs, arg2 - ret);
|
|
}
|
|
|
|
/*
|
|
* Convert from Posix ret+errno to Arm SYS_ISTTY return values.
|
|
* With gdbstub, err is only ever set for protocol errors to EIO.
|
|
*/
|
|
static void common_semi_istty_cb(CPUState *cs, uint64_t ret, int err)
|
|
{
|
|
if (err) {
|
|
ret = (err == ENOTTY ? 0 : -1);
|
|
}
|
|
common_semi_cb(cs, ret, err);
|
|
}
|
|
|
|
/*
|
|
* SYS_SEEK returns 0 on success, not the resulting offset.
|
|
*/
|
|
static void common_semi_seek_cb(CPUState *cs, uint64_t ret, int err)
|
|
{
|
|
if (!err) {
|
|
ret = 0;
|
|
}
|
|
common_semi_cb(cs, ret, err);
|
|
}
|
|
|
|
/*
|
|
* Return an address in target memory of 64 bytes where the remote
|
|
* gdb should write its stat struct. (The format of this structure
|
|
* is defined by GDB's remote protocol and is not target-specific.)
|
|
* We put this on the guest's stack just below SP.
|
|
*/
|
|
static target_ulong common_semi_flen_buf(CPUState *cs)
|
|
{
|
|
target_ulong sp = common_semi_stack_bottom(cs);
|
|
return sp - 64;
|
|
}
|
|
|
|
static void
|
|
common_semi_flen_fstat_cb(CPUState *cs, uint64_t ret, int err)
|
|
{
|
|
if (!err) {
|
|
/* The size is always stored in big-endian order, extract the value. */
|
|
uint64_t size;
|
|
if (cpu_memory_rw_debug(cs, common_semi_flen_buf(cs) +
|
|
offsetof(struct gdb_stat, gdb_st_size),
|
|
&size, 8, 0)) {
|
|
ret = -1, err = EFAULT;
|
|
} else {
|
|
size = be64_to_cpu(size);
|
|
if (ret != size) {
|
|
ret = -1, err = EOVERFLOW;
|
|
}
|
|
}
|
|
}
|
|
common_semi_cb(cs, ret, err);
|
|
}
|
|
|
|
static void
|
|
common_semi_readc_cb(CPUState *cs, uint64_t ret, int err)
|
|
{
|
|
if (!err) {
|
|
CPUArchState *env G_GNUC_UNUSED = cs->env_ptr;
|
|
uint8_t ch;
|
|
|
|
if (get_user_u8(ch, common_semi_stack_bottom(cs) - 1)) {
|
|
ret = -1, err = EFAULT;
|
|
} else {
|
|
ret = ch;
|
|
}
|
|
}
|
|
common_semi_cb(cs, ret, err);
|
|
}
|
|
|
|
#define SHFB_MAGIC_0 0x53
|
|
#define SHFB_MAGIC_1 0x48
|
|
#define SHFB_MAGIC_2 0x46
|
|
#define SHFB_MAGIC_3 0x42
|
|
|
|
/* Feature bits reportable in feature byte 0 */
|
|
#define SH_EXT_EXIT_EXTENDED (1 << 0)
|
|
#define SH_EXT_STDOUT_STDERR (1 << 1)
|
|
|
|
static const uint8_t featurefile_data[] = {
|
|
SHFB_MAGIC_0,
|
|
SHFB_MAGIC_1,
|
|
SHFB_MAGIC_2,
|
|
SHFB_MAGIC_3,
|
|
SH_EXT_EXIT_EXTENDED | SH_EXT_STDOUT_STDERR, /* Feature byte 0 */
|
|
};
|
|
|
|
/*
|
|
* Do a semihosting call.
|
|
*
|
|
* The specification always says that the "return register" either
|
|
* returns a specific value or is corrupted, so we don't need to
|
|
* report to our caller whether we are returning a value or trying to
|
|
* leave the register unchanged.
|
|
*/
|
|
void do_common_semihosting(CPUState *cs)
|
|
{
|
|
CPUArchState *env = cs->env_ptr;
|
|
target_ulong args;
|
|
target_ulong arg0, arg1, arg2, arg3;
|
|
target_ulong ul_ret;
|
|
char * s;
|
|
int nr;
|
|
uint32_t ret;
|
|
int64_t elapsed;
|
|
|
|
nr = common_semi_arg(cs, 0) & 0xffffffffU;
|
|
args = common_semi_arg(cs, 1);
|
|
|
|
switch (nr) {
|
|
case TARGET_SYS_OPEN:
|
|
{
|
|
int ret, err = 0;
|
|
int hostfd;
|
|
|
|
GET_ARG(0);
|
|
GET_ARG(1);
|
|
GET_ARG(2);
|
|
s = lock_user_string(arg0);
|
|
if (!s) {
|
|
goto do_fault;
|
|
}
|
|
if (arg1 >= 12) {
|
|
unlock_user(s, arg0, 0);
|
|
common_semi_cb(cs, -1, EINVAL);
|
|
break;
|
|
}
|
|
|
|
if (strcmp(s, ":tt") == 0) {
|
|
/*
|
|
* We implement SH_EXT_STDOUT_STDERR, so:
|
|
* open for read == stdin
|
|
* open for write == stdout
|
|
* open for append == stderr
|
|
*/
|
|
if (arg1 < 4) {
|
|
hostfd = STDIN_FILENO;
|
|
} else if (arg1 < 8) {
|
|
hostfd = STDOUT_FILENO;
|
|
} else {
|
|
hostfd = STDERR_FILENO;
|
|
}
|
|
ret = alloc_guestfd();
|
|
associate_guestfd(ret, hostfd);
|
|
} else if (strcmp(s, ":semihosting-features") == 0) {
|
|
/* We must fail opens for modes other than 0 ('r') or 1 ('rb') */
|
|
if (arg1 != 0 && arg1 != 1) {
|
|
ret = -1;
|
|
err = EACCES;
|
|
} else {
|
|
ret = alloc_guestfd();
|
|
staticfile_guestfd(ret, featurefile_data,
|
|
sizeof(featurefile_data));
|
|
}
|
|
} else {
|
|
unlock_user(s, arg0, 0);
|
|
semihost_sys_open(cs, common_semi_cb, arg0, arg2 + 1,
|
|
gdb_open_modeflags[arg1], 0644);
|
|
break;
|
|
}
|
|
unlock_user(s, arg0, 0);
|
|
common_semi_cb(cs, ret, err);
|
|
break;
|
|
}
|
|
|
|
case TARGET_SYS_CLOSE:
|
|
GET_ARG(0);
|
|
semihost_sys_close(cs, common_semi_cb, arg0);
|
|
break;
|
|
|
|
case TARGET_SYS_WRITEC:
|
|
/*
|
|
* FIXME: the byte to be written is in a target_ulong slot,
|
|
* which means this is wrong for a big-endian guest.
|
|
*/
|
|
semihost_sys_write_gf(cs, common_semi_dead_cb,
|
|
&console_out_gf, args, 1);
|
|
break;
|
|
|
|
case TARGET_SYS_WRITE0:
|
|
{
|
|
ssize_t len = target_strlen(args);
|
|
if (len < 0) {
|
|
common_semi_dead_cb(cs, -1, EFAULT);
|
|
} else {
|
|
semihost_sys_write_gf(cs, common_semi_dead_cb,
|
|
&console_out_gf, args, len);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case TARGET_SYS_WRITE:
|
|
GET_ARG(0);
|
|
GET_ARG(1);
|
|
GET_ARG(2);
|
|
semihost_sys_write(cs, common_semi_rw_cb, arg0, arg1, arg2);
|
|
break;
|
|
|
|
case TARGET_SYS_READ:
|
|
GET_ARG(0);
|
|
GET_ARG(1);
|
|
GET_ARG(2);
|
|
semihost_sys_read(cs, common_semi_rw_cb, arg0, arg1, arg2);
|
|
break;
|
|
|
|
case TARGET_SYS_READC:
|
|
semihost_sys_read_gf(cs, common_semi_readc_cb, &console_in_gf,
|
|
common_semi_stack_bottom(cs) - 1, 1);
|
|
break;
|
|
|
|
case TARGET_SYS_ISERROR:
|
|
GET_ARG(0);
|
|
common_semi_set_ret(cs, (target_long)arg0 < 0);
|
|
break;
|
|
|
|
case TARGET_SYS_ISTTY:
|
|
GET_ARG(0);
|
|
semihost_sys_isatty(cs, common_semi_istty_cb, arg0);
|
|
break;
|
|
|
|
case TARGET_SYS_SEEK:
|
|
GET_ARG(0);
|
|
GET_ARG(1);
|
|
semihost_sys_lseek(cs, common_semi_seek_cb, arg0, arg1, GDB_SEEK_SET);
|
|
break;
|
|
|
|
case TARGET_SYS_FLEN:
|
|
GET_ARG(0);
|
|
semihost_sys_flen(cs, common_semi_flen_fstat_cb, common_semi_cb,
|
|
arg0, common_semi_flen_buf(cs));
|
|
break;
|
|
|
|
case TARGET_SYS_TMPNAM:
|
|
{
|
|
int len;
|
|
char *p;
|
|
|
|
GET_ARG(0);
|
|
GET_ARG(1);
|
|
GET_ARG(2);
|
|
len = asprintf(&s, "%s/qemu-%x%02x", g_get_tmp_dir(),
|
|
getpid(), (int)arg1 & 0xff);
|
|
if (len < 0) {
|
|
common_semi_set_ret(cs, -1);
|
|
break;
|
|
}
|
|
|
|
/* Allow for trailing NUL */
|
|
len++;
|
|
/* Make sure there's enough space in the buffer */
|
|
if (len > arg2) {
|
|
free(s);
|
|
common_semi_set_ret(cs, -1);
|
|
break;
|
|
}
|
|
p = lock_user(VERIFY_WRITE, arg0, len, 0);
|
|
if (!p) {
|
|
free(s);
|
|
goto do_fault;
|
|
}
|
|
memcpy(p, s, len);
|
|
unlock_user(p, arg0, len);
|
|
free(s);
|
|
common_semi_set_ret(cs, 0);
|
|
break;
|
|
}
|
|
|
|
case TARGET_SYS_REMOVE:
|
|
GET_ARG(0);
|
|
GET_ARG(1);
|
|
semihost_sys_remove(cs, common_semi_cb, arg0, arg1 + 1);
|
|
break;
|
|
|
|
case TARGET_SYS_RENAME:
|
|
GET_ARG(0);
|
|
GET_ARG(1);
|
|
GET_ARG(2);
|
|
GET_ARG(3);
|
|
semihost_sys_rename(cs, common_semi_cb, arg0, arg1 + 1, arg2, arg3 + 1);
|
|
break;
|
|
|
|
case TARGET_SYS_CLOCK:
|
|
common_semi_set_ret(cs, clock() / (CLOCKS_PER_SEC / 100));
|
|
break;
|
|
|
|
case TARGET_SYS_TIME:
|
|
ul_ret = time(NULL);
|
|
common_semi_cb(cs, ul_ret, ul_ret == -1 ? errno : 0);
|
|
break;
|
|
|
|
case TARGET_SYS_SYSTEM:
|
|
GET_ARG(0);
|
|
GET_ARG(1);
|
|
semihost_sys_system(cs, common_semi_cb, arg0, arg1 + 1);
|
|
break;
|
|
|
|
case TARGET_SYS_ERRNO:
|
|
common_semi_set_ret(cs, get_swi_errno(cs));
|
|
break;
|
|
|
|
case TARGET_SYS_GET_CMDLINE:
|
|
{
|
|
/* Build a command-line from the original argv.
|
|
*
|
|
* The inputs are:
|
|
* * arg0, pointer to a buffer of at least the size
|
|
* specified in arg1.
|
|
* * arg1, size of the buffer pointed to by arg0 in
|
|
* bytes.
|
|
*
|
|
* The outputs are:
|
|
* * arg0, pointer to null-terminated string of the
|
|
* command line.
|
|
* * arg1, length of the string pointed to by arg0.
|
|
*/
|
|
|
|
char *output_buffer;
|
|
size_t input_size;
|
|
size_t output_size;
|
|
int status = 0;
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
const char *cmdline;
|
|
#else
|
|
TaskState *ts = cs->opaque;
|
|
#endif
|
|
GET_ARG(0);
|
|
GET_ARG(1);
|
|
input_size = arg1;
|
|
/* Compute the size of the output string. */
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
cmdline = semihosting_get_cmdline();
|
|
if (cmdline == NULL) {
|
|
cmdline = ""; /* Default to an empty line. */
|
|
}
|
|
output_size = strlen(cmdline) + 1; /* Count terminating 0. */
|
|
#else
|
|
unsigned int i;
|
|
|
|
output_size = ts->info->env_strings - ts->info->arg_strings;
|
|
if (!output_size) {
|
|
/*
|
|
* We special-case the "empty command line" case (argc==0).
|
|
* Just provide the terminating 0.
|
|
*/
|
|
output_size = 1;
|
|
}
|
|
#endif
|
|
|
|
if (output_size > input_size) {
|
|
/* Not enough space to store command-line arguments. */
|
|
common_semi_cb(cs, -1, E2BIG);
|
|
break;
|
|
}
|
|
|
|
/* Adjust the command-line length. */
|
|
if (SET_ARG(1, output_size - 1)) {
|
|
/* Couldn't write back to argument block */
|
|
goto do_fault;
|
|
}
|
|
|
|
/* Lock the buffer on the ARM side. */
|
|
output_buffer = lock_user(VERIFY_WRITE, arg0, output_size, 0);
|
|
if (!output_buffer) {
|
|
goto do_fault;
|
|
}
|
|
|
|
/* Copy the command-line arguments. */
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
pstrcpy(output_buffer, output_size, cmdline);
|
|
#else
|
|
if (output_size == 1) {
|
|
/* Empty command-line. */
|
|
output_buffer[0] = '\0';
|
|
goto out;
|
|
}
|
|
|
|
if (copy_from_user(output_buffer, ts->info->arg_strings,
|
|
output_size)) {
|
|
unlock_user(output_buffer, arg0, 0);
|
|
goto do_fault;
|
|
}
|
|
|
|
/* Separate arguments by white spaces. */
|
|
for (i = 0; i < output_size - 1; i++) {
|
|
if (output_buffer[i] == 0) {
|
|
output_buffer[i] = ' ';
|
|
}
|
|
}
|
|
out:
|
|
#endif
|
|
/* Unlock the buffer on the ARM side. */
|
|
unlock_user(output_buffer, arg0, output_size);
|
|
common_semi_cb(cs, status, 0);
|
|
}
|
|
break;
|
|
|
|
case TARGET_SYS_HEAPINFO:
|
|
{
|
|
target_ulong retvals[4];
|
|
int i;
|
|
#ifdef CONFIG_USER_ONLY
|
|
TaskState *ts = cs->opaque;
|
|
target_ulong limit;
|
|
#else
|
|
LayoutInfo info = common_semi_find_bases(cs);
|
|
#endif
|
|
|
|
GET_ARG(0);
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
/*
|
|
* Some C libraries assume the heap immediately follows .bss, so
|
|
* allocate it using sbrk.
|
|
*/
|
|
if (!ts->heap_limit) {
|
|
abi_ulong ret;
|
|
|
|
ts->heap_base = do_brk(0);
|
|
limit = ts->heap_base + COMMON_SEMI_HEAP_SIZE;
|
|
/* Try a big heap, and reduce the size if that fails. */
|
|
for (;;) {
|
|
ret = do_brk(limit);
|
|
if (ret >= limit) {
|
|
break;
|
|
}
|
|
limit = (ts->heap_base >> 1) + (limit >> 1);
|
|
}
|
|
ts->heap_limit = limit;
|
|
}
|
|
|
|
retvals[0] = ts->heap_base;
|
|
retvals[1] = ts->heap_limit;
|
|
retvals[2] = ts->stack_base;
|
|
retvals[3] = 0; /* Stack limit. */
|
|
#else
|
|
retvals[0] = info.heapbase; /* Heap Base */
|
|
retvals[1] = info.heaplimit; /* Heap Limit */
|
|
retvals[2] = info.heaplimit; /* Stack base */
|
|
retvals[3] = info.heapbase; /* Stack limit. */
|
|
#endif
|
|
|
|
for (i = 0; i < ARRAY_SIZE(retvals); i++) {
|
|
bool fail;
|
|
|
|
if (is_64bit_semihosting(env)) {
|
|
fail = put_user_u64(retvals[i], arg0 + i * 8);
|
|
} else {
|
|
fail = put_user_u32(retvals[i], arg0 + i * 4);
|
|
}
|
|
|
|
if (fail) {
|
|
/* Couldn't write back to argument block */
|
|
goto do_fault;
|
|
}
|
|
}
|
|
common_semi_set_ret(cs, 0);
|
|
}
|
|
break;
|
|
|
|
case TARGET_SYS_EXIT:
|
|
case TARGET_SYS_EXIT_EXTENDED:
|
|
if (common_semi_sys_exit_extended(cs, nr)) {
|
|
/*
|
|
* The A64 version of SYS_EXIT takes a parameter block,
|
|
* so the application-exit type can return a subcode which
|
|
* is the exit status code from the application.
|
|
* SYS_EXIT_EXTENDED is an a new-in-v2.0 optional function
|
|
* which allows A32/T32 guests to also provide a status code.
|
|
*/
|
|
GET_ARG(0);
|
|
GET_ARG(1);
|
|
|
|
if (arg0 == ADP_Stopped_ApplicationExit) {
|
|
ret = arg1;
|
|
} else {
|
|
ret = 1;
|
|
}
|
|
} else {
|
|
/*
|
|
* The A32/T32 version of SYS_EXIT specifies only
|
|
* Stopped_ApplicationExit as normal exit, but does not
|
|
* allow the guest to specify the exit status code.
|
|
* Everything else is considered an error.
|
|
*/
|
|
ret = (args == ADP_Stopped_ApplicationExit) ? 0 : 1;
|
|
}
|
|
gdb_exit(ret);
|
|
exit(ret);
|
|
|
|
case TARGET_SYS_ELAPSED:
|
|
elapsed = get_clock() - clock_start;
|
|
if (sizeof(target_ulong) == 8) {
|
|
if (SET_ARG(0, elapsed)) {
|
|
goto do_fault;
|
|
}
|
|
} else {
|
|
if (SET_ARG(0, (uint32_t) elapsed) ||
|
|
SET_ARG(1, (uint32_t) (elapsed >> 32))) {
|
|
goto do_fault;
|
|
}
|
|
}
|
|
common_semi_set_ret(cs, 0);
|
|
break;
|
|
|
|
case TARGET_SYS_TICKFREQ:
|
|
/* qemu always uses nsec */
|
|
common_semi_set_ret(cs, 1000000000);
|
|
break;
|
|
|
|
case TARGET_SYS_SYNCCACHE:
|
|
/*
|
|
* Clean the D-cache and invalidate the I-cache for the specified
|
|
* virtual address range. This is a nop for us since we don't
|
|
* implement caches. This is only present on A64.
|
|
*/
|
|
if (common_semi_has_synccache(env)) {
|
|
common_semi_set_ret(cs, 0);
|
|
break;
|
|
}
|
|
/* fall through */
|
|
default:
|
|
fprintf(stderr, "qemu: Unsupported SemiHosting SWI 0x%02x\n", nr);
|
|
cpu_dump_state(cs, stderr, 0);
|
|
abort();
|
|
|
|
do_fault:
|
|
common_semi_cb(cs, -1, EFAULT);
|
|
break;
|
|
}
|
|
}
|