qemu-e2k/hw/sd/sdhci.c
Markus Armbruster 4be746345f hw: Convert from BlockDriverState to BlockBackend, mostly
Device models should access their block backends only through the
block-backend.h API.  Convert them, and drop direct includes of
inappropriate headers.

Just four uses of BlockDriverState are left:

* The Xen paravirtual block device backend (xen_disk.c) opens images
  itself when set up via xenbus, bypassing blockdev.c.  I figure it
  should go through qmp_blockdev_add() instead.

* Device model "usb-storage" prompts for keys.  No other device model
  does, and this one probably shouldn't do it, either.

* ide_issue_trim_cb() uses bdrv_aio_discard() instead of
  blk_aio_discard() because it fishes its backend out of a BlockAIOCB,
  which has only the BlockDriverState.

* PC87312State has an unused BlockDriverState[] member.

The next two commits take care of the latter two.

Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2014-10-20 14:02:25 +02:00

1305 lines
43 KiB
C

/*
* SD Association Host Standard Specification v2.0 controller emulation
*
* Copyright (c) 2011 Samsung Electronics Co., Ltd.
* Mitsyanko Igor <i.mitsyanko@samsung.com>
* Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com>
*
* Based on MMC controller for Samsung S5PC1xx-based board emulation
* by Alexey Merkulov and Vladimir Monakhov.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "hw/hw.h"
#include "sysemu/block-backend.h"
#include "sysemu/blockdev.h"
#include "sysemu/dma.h"
#include "qemu/timer.h"
#include "qemu/bitops.h"
#include "sdhci.h"
/* host controller debug messages */
#ifndef SDHC_DEBUG
#define SDHC_DEBUG 0
#endif
#if SDHC_DEBUG == 0
#define DPRINT_L1(fmt, args...) do { } while (0)
#define DPRINT_L2(fmt, args...) do { } while (0)
#define ERRPRINT(fmt, args...) do { } while (0)
#elif SDHC_DEBUG == 1
#define DPRINT_L1(fmt, args...) \
do {fprintf(stderr, "QEMU SDHC: "fmt, ## args); } while (0)
#define DPRINT_L2(fmt, args...) do { } while (0)
#define ERRPRINT(fmt, args...) \
do {fprintf(stderr, "QEMU SDHC ERROR: "fmt, ## args); } while (0)
#else
#define DPRINT_L1(fmt, args...) \
do {fprintf(stderr, "QEMU SDHC: "fmt, ## args); } while (0)
#define DPRINT_L2(fmt, args...) \
do {fprintf(stderr, "QEMU SDHC: "fmt, ## args); } while (0)
#define ERRPRINT(fmt, args...) \
do {fprintf(stderr, "QEMU SDHC ERROR: "fmt, ## args); } while (0)
#endif
/* Default SD/MMC host controller features information, which will be
* presented in CAPABILITIES register of generic SD host controller at reset.
* If not stated otherwise:
* 0 - not supported, 1 - supported, other - prohibited.
*/
#define SDHC_CAPAB_64BITBUS 0ul /* 64-bit System Bus Support */
#define SDHC_CAPAB_18V 1ul /* Voltage support 1.8v */
#define SDHC_CAPAB_30V 0ul /* Voltage support 3.0v */
#define SDHC_CAPAB_33V 1ul /* Voltage support 3.3v */
#define SDHC_CAPAB_SUSPRESUME 0ul /* Suspend/resume support */
#define SDHC_CAPAB_SDMA 1ul /* SDMA support */
#define SDHC_CAPAB_HIGHSPEED 1ul /* High speed support */
#define SDHC_CAPAB_ADMA1 1ul /* ADMA1 support */
#define SDHC_CAPAB_ADMA2 1ul /* ADMA2 support */
/* Maximum host controller R/W buffers size
* Possible values: 512, 1024, 2048 bytes */
#define SDHC_CAPAB_MAXBLOCKLENGTH 512ul
/* Maximum clock frequency for SDclock in MHz
* value in range 10-63 MHz, 0 - not defined */
#define SDHC_CAPAB_BASECLKFREQ 0ul
#define SDHC_CAPAB_TOUNIT 1ul /* Timeout clock unit 0 - kHz, 1 - MHz */
/* Timeout clock frequency 1-63, 0 - not defined */
#define SDHC_CAPAB_TOCLKFREQ 0ul
/* Now check all parameters and calculate CAPABILITIES REGISTER value */
#if SDHC_CAPAB_64BITBUS > 1 || SDHC_CAPAB_18V > 1 || SDHC_CAPAB_30V > 1 || \
SDHC_CAPAB_33V > 1 || SDHC_CAPAB_SUSPRESUME > 1 || SDHC_CAPAB_SDMA > 1 || \
SDHC_CAPAB_HIGHSPEED > 1 || SDHC_CAPAB_ADMA2 > 1 || SDHC_CAPAB_ADMA1 > 1 ||\
SDHC_CAPAB_TOUNIT > 1
#error Capabilities features can have value 0 or 1 only!
#endif
#if SDHC_CAPAB_MAXBLOCKLENGTH == 512
#define MAX_BLOCK_LENGTH 0ul
#elif SDHC_CAPAB_MAXBLOCKLENGTH == 1024
#define MAX_BLOCK_LENGTH 1ul
#elif SDHC_CAPAB_MAXBLOCKLENGTH == 2048
#define MAX_BLOCK_LENGTH 2ul
#else
#error Max host controller block size can have value 512, 1024 or 2048 only!
#endif
#if (SDHC_CAPAB_BASECLKFREQ > 0 && SDHC_CAPAB_BASECLKFREQ < 10) || \
SDHC_CAPAB_BASECLKFREQ > 63
#error SDclock frequency can have value in range 0, 10-63 only!
#endif
#if SDHC_CAPAB_TOCLKFREQ > 63
#error Timeout clock frequency can have value in range 0-63 only!
#endif
#define SDHC_CAPAB_REG_DEFAULT \
((SDHC_CAPAB_64BITBUS << 28) | (SDHC_CAPAB_18V << 26) | \
(SDHC_CAPAB_30V << 25) | (SDHC_CAPAB_33V << 24) | \
(SDHC_CAPAB_SUSPRESUME << 23) | (SDHC_CAPAB_SDMA << 22) | \
(SDHC_CAPAB_HIGHSPEED << 21) | (SDHC_CAPAB_ADMA1 << 20) | \
(SDHC_CAPAB_ADMA2 << 19) | (MAX_BLOCK_LENGTH << 16) | \
(SDHC_CAPAB_BASECLKFREQ << 8) | (SDHC_CAPAB_TOUNIT << 7) | \
(SDHC_CAPAB_TOCLKFREQ))
#define MASKED_WRITE(reg, mask, val) (reg = (reg & (mask)) | (val))
static uint8_t sdhci_slotint(SDHCIState *s)
{
return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) ||
((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) ||
((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV));
}
static inline void sdhci_update_irq(SDHCIState *s)
{
qemu_set_irq(s->irq, sdhci_slotint(s));
}
static void sdhci_raise_insertion_irq(void *opaque)
{
SDHCIState *s = (SDHCIState *)opaque;
if (s->norintsts & SDHC_NIS_REMOVE) {
timer_mod(s->insert_timer,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
} else {
s->prnsts = 0x1ff0000;
if (s->norintstsen & SDHC_NISEN_INSERT) {
s->norintsts |= SDHC_NIS_INSERT;
}
sdhci_update_irq(s);
}
}
static void sdhci_insert_eject_cb(void *opaque, int irq, int level)
{
SDHCIState *s = (SDHCIState *)opaque;
DPRINT_L1("Card state changed: %s!\n", level ? "insert" : "eject");
if ((s->norintsts & SDHC_NIS_REMOVE) && level) {
/* Give target some time to notice card ejection */
timer_mod(s->insert_timer,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
} else {
if (level) {
s->prnsts = 0x1ff0000;
if (s->norintstsen & SDHC_NISEN_INSERT) {
s->norintsts |= SDHC_NIS_INSERT;
}
} else {
s->prnsts = 0x1fa0000;
s->pwrcon &= ~SDHC_POWER_ON;
s->clkcon &= ~SDHC_CLOCK_SDCLK_EN;
if (s->norintstsen & SDHC_NISEN_REMOVE) {
s->norintsts |= SDHC_NIS_REMOVE;
}
}
sdhci_update_irq(s);
}
}
static void sdhci_card_readonly_cb(void *opaque, int irq, int level)
{
SDHCIState *s = (SDHCIState *)opaque;
if (level) {
s->prnsts &= ~SDHC_WRITE_PROTECT;
} else {
/* Write enabled */
s->prnsts |= SDHC_WRITE_PROTECT;
}
}
static void sdhci_reset(SDHCIState *s)
{
timer_del(s->insert_timer);
timer_del(s->transfer_timer);
/* Set all registers to 0. Capabilities registers are not cleared
* and assumed to always preserve their value, given to them during
* initialization */
memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad);
sd_set_cb(s->card, s->ro_cb, s->eject_cb);
s->data_count = 0;
s->stopped_state = sdhc_not_stopped;
}
static void sdhci_do_data_transfer(void *opaque)
{
SDHCIState *s = (SDHCIState *)opaque;
SDHCI_GET_CLASS(s)->data_transfer(s);
}
static void sdhci_send_command(SDHCIState *s)
{
SDRequest request;
uint8_t response[16];
int rlen;
s->errintsts = 0;
s->acmd12errsts = 0;
request.cmd = s->cmdreg >> 8;
request.arg = s->argument;
DPRINT_L1("sending CMD%u ARG[0x%08x]\n", request.cmd, request.arg);
rlen = sd_do_command(s->card, &request, response);
if (s->cmdreg & SDHC_CMD_RESPONSE) {
if (rlen == 4) {
s->rspreg[0] = (response[0] << 24) | (response[1] << 16) |
(response[2] << 8) | response[3];
s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0;
DPRINT_L1("Response: RSPREG[31..0]=0x%08x\n", s->rspreg[0]);
} else if (rlen == 16) {
s->rspreg[0] = (response[11] << 24) | (response[12] << 16) |
(response[13] << 8) | response[14];
s->rspreg[1] = (response[7] << 24) | (response[8] << 16) |
(response[9] << 8) | response[10];
s->rspreg[2] = (response[3] << 24) | (response[4] << 16) |
(response[5] << 8) | response[6];
s->rspreg[3] = (response[0] << 16) | (response[1] << 8) |
response[2];
DPRINT_L1("Response received:\n RSPREG[127..96]=0x%08x, RSPREG[95.."
"64]=0x%08x,\n RSPREG[63..32]=0x%08x, RSPREG[31..0]=0x%08x\n",
s->rspreg[3], s->rspreg[2], s->rspreg[1], s->rspreg[0]);
} else {
ERRPRINT("Timeout waiting for command response\n");
if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) {
s->errintsts |= SDHC_EIS_CMDTIMEOUT;
s->norintsts |= SDHC_NIS_ERR;
}
}
if ((s->norintstsen & SDHC_NISEN_TRSCMP) &&
(s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) {
s->norintsts |= SDHC_NIS_TRSCMP;
}
} else if (rlen != 0 && (s->errintstsen & SDHC_EISEN_CMDIDX)) {
s->errintsts |= SDHC_EIS_CMDIDX;
s->norintsts |= SDHC_NIS_ERR;
}
if (s->norintstsen & SDHC_NISEN_CMDCMP) {
s->norintsts |= SDHC_NIS_CMDCMP;
}
sdhci_update_irq(s);
if (s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
s->data_count = 0;
sdhci_do_data_transfer(s);
}
}
static void sdhci_end_transfer(SDHCIState *s)
{
/* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */
if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) {
SDRequest request;
uint8_t response[16];
request.cmd = 0x0C;
request.arg = 0;
DPRINT_L1("Automatically issue CMD%d %08x\n", request.cmd, request.arg);
sd_do_command(s->card, &request, response);
/* Auto CMD12 response goes to the upper Response register */
s->rspreg[3] = (response[0] << 24) | (response[1] << 16) |
(response[2] << 8) | response[3];
}
s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE |
SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT |
SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE);
if (s->norintstsen & SDHC_NISEN_TRSCMP) {
s->norintsts |= SDHC_NIS_TRSCMP;
}
sdhci_update_irq(s);
}
/*
* Programmed i/o data transfer
*/
/* Fill host controller's read buffer with BLKSIZE bytes of data from card */
static void sdhci_read_block_from_card(SDHCIState *s)
{
int index = 0;
if ((s->trnmod & SDHC_TRNS_MULTI) &&
(s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) {
return;
}
for (index = 0; index < (s->blksize & 0x0fff); index++) {
s->fifo_buffer[index] = sd_read_data(s->card);
}
/* New data now available for READ through Buffer Port Register */
s->prnsts |= SDHC_DATA_AVAILABLE;
if (s->norintstsen & SDHC_NISEN_RBUFRDY) {
s->norintsts |= SDHC_NIS_RBUFRDY;
}
/* Clear DAT line active status if that was the last block */
if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) {
s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
}
/* If stop at block gap request was set and it's not the last block of
* data - generate Block Event interrupt */
if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) &&
s->blkcnt != 1) {
s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
if (s->norintstsen & SDHC_EISEN_BLKGAP) {
s->norintsts |= SDHC_EIS_BLKGAP;
}
}
sdhci_update_irq(s);
}
/* Read @size byte of data from host controller @s BUFFER DATA PORT register */
static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
{
uint32_t value = 0;
int i;
/* first check that a valid data exists in host controller input buffer */
if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) {
ERRPRINT("Trying to read from empty buffer\n");
return 0;
}
for (i = 0; i < size; i++) {
value |= s->fifo_buffer[s->data_count] << i * 8;
s->data_count++;
/* check if we've read all valid data (blksize bytes) from buffer */
if ((s->data_count) >= (s->blksize & 0x0fff)) {
DPRINT_L2("All %u bytes of data have been read from input buffer\n",
s->data_count);
s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */
s->data_count = 0; /* next buff read must start at position [0] */
if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
s->blkcnt--;
}
/* if that was the last block of data */
if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) ||
/* stop at gap request */
(s->stopped_state == sdhc_gap_read &&
!(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
SDHCI_GET_CLASS(s)->end_data_transfer(s);
} else { /* if there are more data, read next block from card */
SDHCI_GET_CLASS(s)->read_block_from_card(s);
}
break;
}
}
return value;
}
/* Write data from host controller FIFO to card */
static void sdhci_write_block_to_card(SDHCIState *s)
{
int index = 0;
if (s->prnsts & SDHC_SPACE_AVAILABLE) {
if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
s->norintsts |= SDHC_NIS_WBUFRDY;
}
sdhci_update_irq(s);
return;
}
if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
if (s->blkcnt == 0) {
return;
} else {
s->blkcnt--;
}
}
for (index = 0; index < (s->blksize & 0x0fff); index++) {
sd_write_data(s->card, s->fifo_buffer[index]);
}
/* Next data can be written through BUFFER DATORT register */
s->prnsts |= SDHC_SPACE_AVAILABLE;
/* Finish transfer if that was the last block of data */
if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
((s->trnmod & SDHC_TRNS_MULTI) &&
(s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
SDHCI_GET_CLASS(s)->end_data_transfer(s);
} else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
s->norintsts |= SDHC_NIS_WBUFRDY;
}
/* Generate Block Gap Event if requested and if not the last block */
if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) &&
s->blkcnt > 0) {
s->prnsts &= ~SDHC_DOING_WRITE;
if (s->norintstsen & SDHC_EISEN_BLKGAP) {
s->norintsts |= SDHC_EIS_BLKGAP;
}
SDHCI_GET_CLASS(s)->end_data_transfer(s);
}
sdhci_update_irq(s);
}
/* Write @size bytes of @value data to host controller @s Buffer Data Port
* register */
static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
{
unsigned i;
/* Check that there is free space left in a buffer */
if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) {
ERRPRINT("Can't write to data buffer: buffer full\n");
return;
}
for (i = 0; i < size; i++) {
s->fifo_buffer[s->data_count] = value & 0xFF;
s->data_count++;
value >>= 8;
if (s->data_count >= (s->blksize & 0x0fff)) {
DPRINT_L2("write buffer filled with %u bytes of data\n",
s->data_count);
s->data_count = 0;
s->prnsts &= ~SDHC_SPACE_AVAILABLE;
if (s->prnsts & SDHC_DOING_WRITE) {
SDHCI_GET_CLASS(s)->write_block_to_card(s);
}
}
}
}
/*
* Single DMA data transfer
*/
/* Multi block SDMA transfer */
static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
{
bool page_aligned = false;
unsigned int n, begin;
const uint16_t block_size = s->blksize & 0x0fff;
uint32_t boundary_chk = 1 << (((s->blksize & 0xf000) >> 12) + 12);
uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);
/* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
* possible stop at page boundary if initial address is not page aligned,
* allow them to work properly */
if ((s->sdmasysad % boundary_chk) == 0) {
page_aligned = true;
}
if (s->trnmod & SDHC_TRNS_READ) {
s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
SDHC_DAT_LINE_ACTIVE;
while (s->blkcnt) {
if (s->data_count == 0) {
for (n = 0; n < block_size; n++) {
s->fifo_buffer[n] = sd_read_data(s->card);
}
}
begin = s->data_count;
if (((boundary_count + begin) < block_size) && page_aligned) {
s->data_count = boundary_count + begin;
boundary_count = 0;
} else {
s->data_count = block_size;
boundary_count -= block_size - begin;
if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
s->blkcnt--;
}
}
dma_memory_write(&address_space_memory, s->sdmasysad,
&s->fifo_buffer[begin], s->data_count - begin);
s->sdmasysad += s->data_count - begin;
if (s->data_count == block_size) {
s->data_count = 0;
}
if (page_aligned && boundary_count == 0) {
break;
}
}
} else {
s->prnsts |= SDHC_DOING_WRITE | SDHC_DATA_INHIBIT |
SDHC_DAT_LINE_ACTIVE;
while (s->blkcnt) {
begin = s->data_count;
if (((boundary_count + begin) < block_size) && page_aligned) {
s->data_count = boundary_count + begin;
boundary_count = 0;
} else {
s->data_count = block_size;
boundary_count -= block_size - begin;
}
dma_memory_read(&address_space_memory, s->sdmasysad,
&s->fifo_buffer[begin], s->data_count);
s->sdmasysad += s->data_count - begin;
if (s->data_count == block_size) {
for (n = 0; n < block_size; n++) {
sd_write_data(s->card, s->fifo_buffer[n]);
}
s->data_count = 0;
if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
s->blkcnt--;
}
}
if (page_aligned && boundary_count == 0) {
break;
}
}
}
if (s->blkcnt == 0) {
SDHCI_GET_CLASS(s)->end_data_transfer(s);
} else {
if (s->norintstsen & SDHC_NISEN_DMA) {
s->norintsts |= SDHC_NIS_DMA;
}
sdhci_update_irq(s);
}
}
/* single block SDMA transfer */
static void sdhci_sdma_transfer_single_block(SDHCIState *s)
{
int n;
uint32_t datacnt = s->blksize & 0x0fff;
if (s->trnmod & SDHC_TRNS_READ) {
for (n = 0; n < datacnt; n++) {
s->fifo_buffer[n] = sd_read_data(s->card);
}
dma_memory_write(&address_space_memory, s->sdmasysad, s->fifo_buffer,
datacnt);
} else {
dma_memory_read(&address_space_memory, s->sdmasysad, s->fifo_buffer,
datacnt);
for (n = 0; n < datacnt; n++) {
sd_write_data(s->card, s->fifo_buffer[n]);
}
}
if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
s->blkcnt--;
}
SDHCI_GET_CLASS(s)->end_data_transfer(s);
}
typedef struct ADMADescr {
hwaddr addr;
uint16_t length;
uint8_t attr;
uint8_t incr;
} ADMADescr;
static void get_adma_description(SDHCIState *s, ADMADescr *dscr)
{
uint32_t adma1 = 0;
uint64_t adma2 = 0;
hwaddr entry_addr = (hwaddr)s->admasysaddr;
switch (SDHC_DMA_TYPE(s->hostctl)) {
case SDHC_CTRL_ADMA2_32:
dma_memory_read(&address_space_memory, entry_addr, (uint8_t *)&adma2,
sizeof(adma2));
adma2 = le64_to_cpu(adma2);
/* The spec does not specify endianness of descriptor table.
* We currently assume that it is LE.
*/
dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull;
dscr->length = (uint16_t)extract64(adma2, 16, 16);
dscr->attr = (uint8_t)extract64(adma2, 0, 7);
dscr->incr = 8;
break;
case SDHC_CTRL_ADMA1_32:
dma_memory_read(&address_space_memory, entry_addr, (uint8_t *)&adma1,
sizeof(adma1));
adma1 = le32_to_cpu(adma1);
dscr->addr = (hwaddr)(adma1 & 0xFFFFF000);
dscr->attr = (uint8_t)extract32(adma1, 0, 7);
dscr->incr = 4;
if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) {
dscr->length = (uint16_t)extract32(adma1, 12, 16);
} else {
dscr->length = 4096;
}
break;
case SDHC_CTRL_ADMA2_64:
dma_memory_read(&address_space_memory, entry_addr,
(uint8_t *)(&dscr->attr), 1);
dma_memory_read(&address_space_memory, entry_addr + 2,
(uint8_t *)(&dscr->length), 2);
dscr->length = le16_to_cpu(dscr->length);
dma_memory_read(&address_space_memory, entry_addr + 4,
(uint8_t *)(&dscr->addr), 8);
dscr->attr = le64_to_cpu(dscr->attr);
dscr->attr &= 0xfffffff8;
dscr->incr = 12;
break;
}
}
/* Advanced DMA data transfer */
static void sdhci_do_adma(SDHCIState *s)
{
unsigned int n, begin, length;
const uint16_t block_size = s->blksize & 0x0fff;
ADMADescr dscr;
int i;
for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) {
s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH;
get_adma_description(s, &dscr);
DPRINT_L2("ADMA loop: addr=" TARGET_FMT_plx ", len=%d, attr=%x\n",
dscr.addr, dscr.length, dscr.attr);
if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) {
/* Indicate that error occurred in ST_FDS state */
s->admaerr &= ~SDHC_ADMAERR_STATE_MASK;
s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS;
/* Generate ADMA error interrupt */
if (s->errintstsen & SDHC_EISEN_ADMAERR) {
s->errintsts |= SDHC_EIS_ADMAERR;
s->norintsts |= SDHC_NIS_ERR;
}
sdhci_update_irq(s);
return;
}
length = dscr.length ? dscr.length : 65536;
switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) {
case SDHC_ADMA_ATTR_ACT_TRAN: /* data transfer */
if (s->trnmod & SDHC_TRNS_READ) {
while (length) {
if (s->data_count == 0) {
for (n = 0; n < block_size; n++) {
s->fifo_buffer[n] = sd_read_data(s->card);
}
}
begin = s->data_count;
if ((length + begin) < block_size) {
s->data_count = length + begin;
length = 0;
} else {
s->data_count = block_size;
length -= block_size - begin;
}
dma_memory_write(&address_space_memory, dscr.addr,
&s->fifo_buffer[begin],
s->data_count - begin);
dscr.addr += s->data_count - begin;
if (s->data_count == block_size) {
s->data_count = 0;
if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
s->blkcnt--;
if (s->blkcnt == 0) {
break;
}
}
}
}
} else {
while (length) {
begin = s->data_count;
if ((length + begin) < block_size) {
s->data_count = length + begin;
length = 0;
} else {
s->data_count = block_size;
length -= block_size - begin;
}
dma_memory_read(&address_space_memory, dscr.addr,
&s->fifo_buffer[begin],
s->data_count - begin);
dscr.addr += s->data_count - begin;
if (s->data_count == block_size) {
for (n = 0; n < block_size; n++) {
sd_write_data(s->card, s->fifo_buffer[n]);
}
s->data_count = 0;
if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
s->blkcnt--;
if (s->blkcnt == 0) {
break;
}
}
}
}
}
s->admasysaddr += dscr.incr;
break;
case SDHC_ADMA_ATTR_ACT_LINK: /* link to next descriptor table */
s->admasysaddr = dscr.addr;
DPRINT_L1("ADMA link: admasysaddr=0x%lx\n", s->admasysaddr);
break;
default:
s->admasysaddr += dscr.incr;
break;
}
if (dscr.attr & SDHC_ADMA_ATTR_INT) {
DPRINT_L1("ADMA interrupt: admasysaddr=0x%lx\n", s->admasysaddr);
if (s->norintstsen & SDHC_NISEN_DMA) {
s->norintsts |= SDHC_NIS_DMA;
}
sdhci_update_irq(s);
}
/* ADMA transfer terminates if blkcnt == 0 or by END attribute */
if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
(s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
DPRINT_L2("ADMA transfer completed\n");
if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) &&
(s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
s->blkcnt != 0)) {
ERRPRINT("SD/MMC host ADMA length mismatch\n");
s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH |
SDHC_ADMAERR_STATE_ST_TFR;
if (s->errintstsen & SDHC_EISEN_ADMAERR) {
ERRPRINT("Set ADMA error flag\n");
s->errintsts |= SDHC_EIS_ADMAERR;
s->norintsts |= SDHC_NIS_ERR;
}
sdhci_update_irq(s);
}
SDHCI_GET_CLASS(s)->end_data_transfer(s);
return;
}
}
/* we have unfinished business - reschedule to continue ADMA */
timer_mod(s->transfer_timer,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY);
}
/* Perform data transfer according to controller configuration */
static void sdhci_data_transfer(SDHCIState *s)
{
SDHCIClass *k = SDHCI_GET_CLASS(s);
if (s->trnmod & SDHC_TRNS_DMA) {
switch (SDHC_DMA_TYPE(s->hostctl)) {
case SDHC_CTRL_SDMA:
if ((s->trnmod & SDHC_TRNS_MULTI) &&
(!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || s->blkcnt == 0)) {
break;
}
if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
k->do_sdma_single(s);
} else {
k->do_sdma_multi(s);
}
break;
case SDHC_CTRL_ADMA1_32:
if (!(s->capareg & SDHC_CAN_DO_ADMA1)) {
ERRPRINT("ADMA1 not supported\n");
break;
}
k->do_adma(s);
break;
case SDHC_CTRL_ADMA2_32:
if (!(s->capareg & SDHC_CAN_DO_ADMA2)) {
ERRPRINT("ADMA2 not supported\n");
break;
}
k->do_adma(s);
break;
case SDHC_CTRL_ADMA2_64:
if (!(s->capareg & SDHC_CAN_DO_ADMA2) ||
!(s->capareg & SDHC_64_BIT_BUS_SUPPORT)) {
ERRPRINT("64 bit ADMA not supported\n");
break;
}
k->do_adma(s);
break;
default:
ERRPRINT("Unsupported DMA type\n");
break;
}
} else {
if ((s->trnmod & SDHC_TRNS_READ) && sd_data_ready(s->card)) {
s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
SDHC_DAT_LINE_ACTIVE;
SDHCI_GET_CLASS(s)->read_block_from_card(s);
} else {
s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
SDHCI_GET_CLASS(s)->write_block_to_card(s);
}
}
}
static bool sdhci_can_issue_command(SDHCIState *s)
{
if (!SDHC_CLOCK_IS_ON(s->clkcon) || !(s->pwrcon & SDHC_POWER_ON) ||
(((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) &&
((s->cmdreg & SDHC_CMD_DATA_PRESENT) ||
((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY &&
!(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) {
return false;
}
return true;
}
/* The Buffer Data Port register must be accessed in sequential and
* continuous manner */
static inline bool
sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
{
if ((s->data_count & 0x3) != byte_num) {
ERRPRINT("Non-sequential access to Buffer Data Port register"
"is prohibited\n");
return false;
}
return true;
}
static uint32_t sdhci_read(SDHCIState *s, unsigned int offset, unsigned size)
{
uint32_t ret = 0;
switch (offset & ~0x3) {
case SDHC_SYSAD:
ret = s->sdmasysad;
break;
case SDHC_BLKSIZE:
ret = s->blksize | (s->blkcnt << 16);
break;
case SDHC_ARGUMENT:
ret = s->argument;
break;
case SDHC_TRNMOD:
ret = s->trnmod | (s->cmdreg << 16);
break;
case SDHC_RSPREG0 ... SDHC_RSPREG3:
ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
break;
case SDHC_BDATA:
if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
ret = SDHCI_GET_CLASS(s)->bdata_read(s, size);
DPRINT_L2("read %ub: addr[0x%04x] -> %u(0x%x)\n", size, offset,
ret, ret);
return ret;
}
break;
case SDHC_PRNSTS:
ret = s->prnsts;
break;
case SDHC_HOSTCTL:
ret = s->hostctl | (s->pwrcon << 8) | (s->blkgap << 16) |
(s->wakcon << 24);
break;
case SDHC_CLKCON:
ret = s->clkcon | (s->timeoutcon << 16);
break;
case SDHC_NORINTSTS:
ret = s->norintsts | (s->errintsts << 16);
break;
case SDHC_NORINTSTSEN:
ret = s->norintstsen | (s->errintstsen << 16);
break;
case SDHC_NORINTSIGEN:
ret = s->norintsigen | (s->errintsigen << 16);
break;
case SDHC_ACMD12ERRSTS:
ret = s->acmd12errsts;
break;
case SDHC_CAPAREG:
ret = s->capareg;
break;
case SDHC_MAXCURR:
ret = s->maxcurr;
break;
case SDHC_ADMAERR:
ret = s->admaerr;
break;
case SDHC_ADMASYSADDR:
ret = (uint32_t)s->admasysaddr;
break;
case SDHC_ADMASYSADDR + 4:
ret = (uint32_t)(s->admasysaddr >> 32);
break;
case SDHC_SLOT_INT_STATUS:
ret = (SD_HOST_SPECv2_VERS << 16) | sdhci_slotint(s);
break;
default:
ERRPRINT("bad %ub read: addr[0x%04x]\n", size, offset);
break;
}
ret >>= (offset & 0x3) * 8;
ret &= (1ULL << (size * 8)) - 1;
DPRINT_L2("read %ub: addr[0x%04x] -> %u(0x%x)\n", size, offset, ret, ret);
return ret;
}
static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
{
if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) {
return;
}
s->blkgap = value & SDHC_STOP_AT_GAP_REQ;
if ((value & SDHC_CONTINUE_REQ) && s->stopped_state &&
(s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
if (s->stopped_state == sdhc_gap_read) {
s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
SDHCI_GET_CLASS(s)->read_block_from_card(s);
} else {
s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
SDHCI_GET_CLASS(s)->write_block_to_card(s);
}
s->stopped_state = sdhc_not_stopped;
} else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
if (s->prnsts & SDHC_DOING_READ) {
s->stopped_state = sdhc_gap_read;
} else if (s->prnsts & SDHC_DOING_WRITE) {
s->stopped_state = sdhc_gap_write;
}
}
}
static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
{
switch (value) {
case SDHC_RESET_ALL:
DEVICE_GET_CLASS(s)->reset(DEVICE(s));
break;
case SDHC_RESET_CMD:
s->prnsts &= ~SDHC_CMD_INHIBIT;
s->norintsts &= ~SDHC_NIS_CMDCMP;
break;
case SDHC_RESET_DATA:
s->data_count = 0;
s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE |
SDHC_DOING_READ | SDHC_DOING_WRITE |
SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE);
s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ);
s->stopped_state = sdhc_not_stopped;
s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY |
SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP);
break;
}
}
static void
sdhci_write(SDHCIState *s, unsigned int offset, uint32_t value, unsigned size)
{
unsigned shift = 8 * (offset & 0x3);
uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
value <<= shift;
switch (offset & ~0x3) {
case SDHC_SYSAD:
s->sdmasysad = (s->sdmasysad & mask) | value;
MASKED_WRITE(s->sdmasysad, mask, value);
/* Writing to last byte of sdmasysad might trigger transfer */
if (!(mask & 0xFF000000) && TRANSFERRING_DATA(s->prnsts) && s->blkcnt &&
s->blksize && SDHC_DMA_TYPE(s->hostctl) == SDHC_CTRL_SDMA) {
SDHCI_GET_CLASS(s)->do_sdma_multi(s);
}
break;
case SDHC_BLKSIZE:
if (!TRANSFERRING_DATA(s->prnsts)) {
MASKED_WRITE(s->blksize, mask, value);
MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16);
}
break;
case SDHC_ARGUMENT:
MASKED_WRITE(s->argument, mask, value);
break;
case SDHC_TRNMOD:
/* DMA can be enabled only if it is supported as indicated by
* capabilities register */
if (!(s->capareg & SDHC_CAN_DO_DMA)) {
value &= ~SDHC_TRNS_DMA;
}
MASKED_WRITE(s->trnmod, mask, value);
MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);
/* Writing to the upper byte of CMDREG triggers SD command generation */
if ((mask & 0xFF000000) || !SDHCI_GET_CLASS(s)->can_issue_command(s)) {
break;
}
SDHCI_GET_CLASS(s)->send_command(s);
break;
case SDHC_BDATA:
if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
SDHCI_GET_CLASS(s)->bdata_write(s, value >> shift, size);
}
break;
case SDHC_HOSTCTL:
if (!(mask & 0xFF0000)) {
sdhci_blkgap_write(s, value >> 16);
}
MASKED_WRITE(s->hostctl, mask, value);
MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8);
MASKED_WRITE(s->wakcon, mask >> 24, value >> 24);
if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 ||
!(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) {
s->pwrcon &= ~SDHC_POWER_ON;
}
break;
case SDHC_CLKCON:
if (!(mask & 0xFF000000)) {
sdhci_reset_write(s, value >> 24);
}
MASKED_WRITE(s->clkcon, mask, value);
MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16);
if (s->clkcon & SDHC_CLOCK_INT_EN) {
s->clkcon |= SDHC_CLOCK_INT_STABLE;
} else {
s->clkcon &= ~SDHC_CLOCK_INT_STABLE;
}
break;
case SDHC_NORINTSTS:
if (s->norintstsen & SDHC_NISEN_CARDINT) {
value &= ~SDHC_NIS_CARDINT;
}
s->norintsts &= mask | ~value;
s->errintsts &= (mask >> 16) | ~(value >> 16);
if (s->errintsts) {
s->norintsts |= SDHC_NIS_ERR;
} else {
s->norintsts &= ~SDHC_NIS_ERR;
}
sdhci_update_irq(s);
break;
case SDHC_NORINTSTSEN:
MASKED_WRITE(s->norintstsen, mask, value);
MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16);
s->norintsts &= s->norintstsen;
s->errintsts &= s->errintstsen;
if (s->errintsts) {
s->norintsts |= SDHC_NIS_ERR;
} else {
s->norintsts &= ~SDHC_NIS_ERR;
}
sdhci_update_irq(s);
break;
case SDHC_NORINTSIGEN:
MASKED_WRITE(s->norintsigen, mask, value);
MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16);
sdhci_update_irq(s);
break;
case SDHC_ADMAERR:
MASKED_WRITE(s->admaerr, mask, value);
break;
case SDHC_ADMASYSADDR:
s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL |
(uint64_t)mask)) | (uint64_t)value;
break;
case SDHC_ADMASYSADDR + 4:
s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL |
((uint64_t)mask << 32))) | ((uint64_t)value << 32);
break;
case SDHC_FEAER:
s->acmd12errsts |= value;
s->errintsts |= (value >> 16) & s->errintstsen;
if (s->acmd12errsts) {
s->errintsts |= SDHC_EIS_CMD12ERR;
}
if (s->errintsts) {
s->norintsts |= SDHC_NIS_ERR;
}
sdhci_update_irq(s);
break;
default:
ERRPRINT("bad %ub write offset: addr[0x%04x] <- %u(0x%x)\n",
size, offset, value >> shift, value >> shift);
break;
}
DPRINT_L2("write %ub: addr[0x%04x] <- %u(0x%x)\n",
size, offset, value >> shift, value >> shift);
}
static uint64_t
sdhci_readfn(void *opaque, hwaddr offset, unsigned size)
{
SDHCIState *s = (SDHCIState *)opaque;
return SDHCI_GET_CLASS(s)->mem_read(s, offset, size);
}
static void
sdhci_writefn(void *opaque, hwaddr off, uint64_t val, unsigned sz)
{
SDHCIState *s = (SDHCIState *)opaque;
SDHCI_GET_CLASS(s)->mem_write(s, off, val, sz);
}
static const MemoryRegionOps sdhci_mmio_ops = {
.read = sdhci_readfn,
.write = sdhci_writefn,
.valid = {
.min_access_size = 1,
.max_access_size = 4,
.unaligned = false
},
.endianness = DEVICE_LITTLE_ENDIAN,
};
static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
{
switch (SDHC_CAPAB_BLOCKSIZE(s->capareg)) {
case 0:
return 512;
case 1:
return 1024;
case 2:
return 2048;
default:
hw_error("SDHC: unsupported value for maximum block size\n");
return 0;
}
}
static void sdhci_initfn(Object *obj)
{
SDHCIState *s = SDHCI(obj);
DriveInfo *di;
di = drive_get_next(IF_SD);
s->card = sd_init(di ? blk_by_legacy_dinfo(di) : NULL, false);
if (s->card == NULL) {
exit(1);
}
s->eject_cb = qemu_allocate_irq(sdhci_insert_eject_cb, s, 0);
s->ro_cb = qemu_allocate_irq(sdhci_card_readonly_cb, s, 0);
sd_set_cb(s->card, s->ro_cb, s->eject_cb);
s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s);
s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_do_data_transfer, s);
}
static void sdhci_uninitfn(Object *obj)
{
SDHCIState *s = SDHCI(obj);
timer_del(s->insert_timer);
timer_free(s->insert_timer);
timer_del(s->transfer_timer);
timer_free(s->transfer_timer);
qemu_free_irq(s->eject_cb);
qemu_free_irq(s->ro_cb);
if (s->fifo_buffer) {
g_free(s->fifo_buffer);
s->fifo_buffer = NULL;
}
}
const VMStateDescription sdhci_vmstate = {
.name = "sdhci",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(sdmasysad, SDHCIState),
VMSTATE_UINT16(blksize, SDHCIState),
VMSTATE_UINT16(blkcnt, SDHCIState),
VMSTATE_UINT32(argument, SDHCIState),
VMSTATE_UINT16(trnmod, SDHCIState),
VMSTATE_UINT16(cmdreg, SDHCIState),
VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4),
VMSTATE_UINT32(prnsts, SDHCIState),
VMSTATE_UINT8(hostctl, SDHCIState),
VMSTATE_UINT8(pwrcon, SDHCIState),
VMSTATE_UINT8(blkgap, SDHCIState),
VMSTATE_UINT8(wakcon, SDHCIState),
VMSTATE_UINT16(clkcon, SDHCIState),
VMSTATE_UINT8(timeoutcon, SDHCIState),
VMSTATE_UINT8(admaerr, SDHCIState),
VMSTATE_UINT16(norintsts, SDHCIState),
VMSTATE_UINT16(errintsts, SDHCIState),
VMSTATE_UINT16(norintstsen, SDHCIState),
VMSTATE_UINT16(errintstsen, SDHCIState),
VMSTATE_UINT16(norintsigen, SDHCIState),
VMSTATE_UINT16(errintsigen, SDHCIState),
VMSTATE_UINT16(acmd12errsts, SDHCIState),
VMSTATE_UINT16(data_count, SDHCIState),
VMSTATE_UINT64(admasysaddr, SDHCIState),
VMSTATE_UINT8(stopped_state, SDHCIState),
VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, 0, buf_maxsz),
VMSTATE_TIMER(insert_timer, SDHCIState),
VMSTATE_TIMER(transfer_timer, SDHCIState),
VMSTATE_END_OF_LIST()
}
};
/* Capabilities registers provide information on supported features of this
* specific host controller implementation */
static Property sdhci_properties[] = {
DEFINE_PROP_UINT32("capareg", SDHCIState, capareg,
SDHC_CAPAB_REG_DEFAULT),
DEFINE_PROP_UINT32("maxcurr", SDHCIState, maxcurr, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void sdhci_realize(DeviceState *dev, Error ** errp)
{
SDHCIState *s = SDHCI(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
s->buf_maxsz = sdhci_get_fifolen(s);
s->fifo_buffer = g_malloc0(s->buf_maxsz);
sysbus_init_irq(sbd, &s->irq);
memory_region_init_io(&s->iomem, OBJECT(s), &sdhci_mmio_ops, s, "sdhci",
SDHC_REGISTERS_MAP_SIZE);
sysbus_init_mmio(sbd, &s->iomem);
}
static void sdhci_generic_reset(DeviceState *ds)
{
SDHCIState *s = SDHCI(ds);
SDHCI_GET_CLASS(s)->reset(s);
}
static void sdhci_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SDHCIClass *k = SDHCI_CLASS(klass);
dc->vmsd = &sdhci_vmstate;
dc->props = sdhci_properties;
dc->reset = sdhci_generic_reset;
dc->realize = sdhci_realize;
k->reset = sdhci_reset;
k->mem_read = sdhci_read;
k->mem_write = sdhci_write;
k->send_command = sdhci_send_command;
k->can_issue_command = sdhci_can_issue_command;
k->data_transfer = sdhci_data_transfer;
k->end_data_transfer = sdhci_end_transfer;
k->do_sdma_single = sdhci_sdma_transfer_single_block;
k->do_sdma_multi = sdhci_sdma_transfer_multi_blocks;
k->do_adma = sdhci_do_adma;
k->read_block_from_card = sdhci_read_block_from_card;
k->write_block_to_card = sdhci_write_block_to_card;
k->bdata_read = sdhci_read_dataport;
k->bdata_write = sdhci_write_dataport;
}
static const TypeInfo sdhci_type_info = {
.name = TYPE_SDHCI,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(SDHCIState),
.instance_init = sdhci_initfn,
.instance_finalize = sdhci_uninitfn,
.class_init = sdhci_class_init,
.class_size = sizeof(SDHCIClass)
};
static void sdhci_register_types(void)
{
type_register_static(&sdhci_type_info);
}
type_init(sdhci_register_types)