8dc24ff467
Remove the locally defined load_atomic16 and store_atomic16, along with HAVE_al16 and HAVE_al16_fast in favor of the routines defined in atomic128.h. Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
1174 lines
29 KiB
C++
1174 lines
29 KiB
C++
/*
|
|
* Routines common to user and system emulation of load/store.
|
|
*
|
|
* Copyright (c) 2022 Linaro, Ltd.
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*/
|
|
|
|
#ifdef CONFIG_ATOMIC64
|
|
# define HAVE_al8 true
|
|
#else
|
|
# define HAVE_al8 false
|
|
#endif
|
|
#define HAVE_al8_fast (ATOMIC_REG_SIZE >= 8)
|
|
|
|
/**
|
|
* required_atomicity:
|
|
*
|
|
* Return the lg2 bytes of atomicity required by @memop for @p.
|
|
* If the operation must be split into two operations to be
|
|
* examined separately for atomicity, return -lg2.
|
|
*/
|
|
static int required_atomicity(CPUArchState *env, uintptr_t p, MemOp memop)
|
|
{
|
|
MemOp atom = memop & MO_ATOM_MASK;
|
|
MemOp size = memop & MO_SIZE;
|
|
MemOp half = size ? size - 1 : 0;
|
|
unsigned tmp;
|
|
int atmax;
|
|
|
|
switch (atom) {
|
|
case MO_ATOM_NONE:
|
|
atmax = MO_8;
|
|
break;
|
|
|
|
case MO_ATOM_IFALIGN_PAIR:
|
|
size = half;
|
|
/* fall through */
|
|
|
|
case MO_ATOM_IFALIGN:
|
|
tmp = (1 << size) - 1;
|
|
atmax = p & tmp ? MO_8 : size;
|
|
break;
|
|
|
|
case MO_ATOM_WITHIN16:
|
|
tmp = p & 15;
|
|
atmax = (tmp + (1 << size) <= 16 ? size : MO_8);
|
|
break;
|
|
|
|
case MO_ATOM_WITHIN16_PAIR:
|
|
tmp = p & 15;
|
|
if (tmp + (1 << size) <= 16) {
|
|
atmax = size;
|
|
} else if (tmp + (1 << half) == 16) {
|
|
/*
|
|
* The pair exactly straddles the boundary.
|
|
* Both halves are naturally aligned and atomic.
|
|
*/
|
|
atmax = half;
|
|
} else {
|
|
/*
|
|
* One of the pair crosses the boundary, and is non-atomic.
|
|
* The other of the pair does not cross, and is atomic.
|
|
*/
|
|
atmax = -half;
|
|
}
|
|
break;
|
|
|
|
case MO_ATOM_SUBALIGN:
|
|
/*
|
|
* Examine the alignment of p to determine if there are subobjects
|
|
* that must be aligned. Note that we only really need ctz4() --
|
|
* any more sigificant bits are discarded by the immediately
|
|
* following comparison.
|
|
*/
|
|
tmp = ctz32(p);
|
|
atmax = MIN(size, tmp);
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
/*
|
|
* Here we have the architectural atomicity of the operation.
|
|
* However, when executing in a serial context, we need no extra
|
|
* host atomicity in order to avoid racing. This reduction
|
|
* avoids looping with cpu_loop_exit_atomic.
|
|
*/
|
|
if (cpu_in_serial_context(env_cpu(env))) {
|
|
return MO_8;
|
|
}
|
|
return atmax;
|
|
}
|
|
|
|
/**
|
|
* load_atomic2:
|
|
* @pv: host address
|
|
*
|
|
* Atomically load 2 aligned bytes from @pv.
|
|
*/
|
|
static inline uint16_t load_atomic2(void *pv)
|
|
{
|
|
uint16_t *p = __builtin_assume_aligned(pv, 2);
|
|
return qatomic_read(p);
|
|
}
|
|
|
|
/**
|
|
* load_atomic4:
|
|
* @pv: host address
|
|
*
|
|
* Atomically load 4 aligned bytes from @pv.
|
|
*/
|
|
static inline uint32_t load_atomic4(void *pv)
|
|
{
|
|
uint32_t *p = __builtin_assume_aligned(pv, 4);
|
|
return qatomic_read(p);
|
|
}
|
|
|
|
/**
|
|
* load_atomic8:
|
|
* @pv: host address
|
|
*
|
|
* Atomically load 8 aligned bytes from @pv.
|
|
*/
|
|
static inline uint64_t load_atomic8(void *pv)
|
|
{
|
|
uint64_t *p = __builtin_assume_aligned(pv, 8);
|
|
|
|
qemu_build_assert(HAVE_al8);
|
|
return qatomic_read__nocheck(p);
|
|
}
|
|
|
|
/**
|
|
* load_atomic8_or_exit:
|
|
* @env: cpu context
|
|
* @ra: host unwind address
|
|
* @pv: host address
|
|
*
|
|
* Atomically load 8 aligned bytes from @pv.
|
|
* If this is not possible, longjmp out to restart serially.
|
|
*/
|
|
static uint64_t load_atomic8_or_exit(CPUArchState *env, uintptr_t ra, void *pv)
|
|
{
|
|
if (HAVE_al8) {
|
|
return load_atomic8(pv);
|
|
}
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
/*
|
|
* If the page is not writable, then assume the value is immutable
|
|
* and requires no locking. This ignores the case of MAP_SHARED with
|
|
* another process, because the fallback start_exclusive solution
|
|
* provides no protection across processes.
|
|
*/
|
|
if (!page_check_range(h2g(pv), 8, PAGE_WRITE)) {
|
|
uint64_t *p = __builtin_assume_aligned(pv, 8);
|
|
return *p;
|
|
}
|
|
#endif
|
|
|
|
/* Ultimate fallback: re-execute in serial context. */
|
|
cpu_loop_exit_atomic(env_cpu(env), ra);
|
|
}
|
|
|
|
/**
|
|
* load_atomic16_or_exit:
|
|
* @env: cpu context
|
|
* @ra: host unwind address
|
|
* @pv: host address
|
|
*
|
|
* Atomically load 16 aligned bytes from @pv.
|
|
* If this is not possible, longjmp out to restart serially.
|
|
*/
|
|
static Int128 load_atomic16_or_exit(CPUArchState *env, uintptr_t ra, void *pv)
|
|
{
|
|
Int128 *p = __builtin_assume_aligned(pv, 16);
|
|
|
|
if (HAVE_ATOMIC128_RO) {
|
|
return atomic16_read_ro(p);
|
|
}
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
/*
|
|
* We can only use cmpxchg to emulate a load if the page is writable.
|
|
* If the page is not writable, then assume the value is immutable
|
|
* and requires no locking. This ignores the case of MAP_SHARED with
|
|
* another process, because the fallback start_exclusive solution
|
|
* provides no protection across processes.
|
|
*/
|
|
if (!page_check_range(h2g(p), 16, PAGE_WRITE)) {
|
|
return *p;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* In system mode all guest pages are writable, and for user-only
|
|
* we have just checked writability. Try cmpxchg.
|
|
*/
|
|
if (HAVE_ATOMIC128_RW) {
|
|
return atomic16_read_rw(p);
|
|
}
|
|
|
|
/* Ultimate fallback: re-execute in serial context. */
|
|
cpu_loop_exit_atomic(env_cpu(env), ra);
|
|
}
|
|
|
|
/**
|
|
* load_atom_extract_al4x2:
|
|
* @pv: host address
|
|
*
|
|
* Load 4 bytes from @p, from two sequential atomic 4-byte loads.
|
|
*/
|
|
static uint32_t load_atom_extract_al4x2(void *pv)
|
|
{
|
|
uintptr_t pi = (uintptr_t)pv;
|
|
int sh = (pi & 3) * 8;
|
|
uint32_t a, b;
|
|
|
|
pv = (void *)(pi & ~3);
|
|
a = load_atomic4(pv);
|
|
b = load_atomic4(pv + 4);
|
|
|
|
if (HOST_BIG_ENDIAN) {
|
|
return (a << sh) | (b >> (-sh & 31));
|
|
} else {
|
|
return (a >> sh) | (b << (-sh & 31));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* load_atom_extract_al8x2:
|
|
* @pv: host address
|
|
*
|
|
* Load 8 bytes from @p, from two sequential atomic 8-byte loads.
|
|
*/
|
|
static uint64_t load_atom_extract_al8x2(void *pv)
|
|
{
|
|
uintptr_t pi = (uintptr_t)pv;
|
|
int sh = (pi & 7) * 8;
|
|
uint64_t a, b;
|
|
|
|
pv = (void *)(pi & ~7);
|
|
a = load_atomic8(pv);
|
|
b = load_atomic8(pv + 8);
|
|
|
|
if (HOST_BIG_ENDIAN) {
|
|
return (a << sh) | (b >> (-sh & 63));
|
|
} else {
|
|
return (a >> sh) | (b << (-sh & 63));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* load_atom_extract_al8_or_exit:
|
|
* @env: cpu context
|
|
* @ra: host unwind address
|
|
* @pv: host address
|
|
* @s: object size in bytes, @s <= 4.
|
|
*
|
|
* Atomically load @s bytes from @p, when p % s != 0, and [p, p+s-1] does
|
|
* not cross an 8-byte boundary. This means that we can perform an atomic
|
|
* 8-byte load and extract.
|
|
* The value is returned in the low bits of a uint32_t.
|
|
*/
|
|
static uint32_t load_atom_extract_al8_or_exit(CPUArchState *env, uintptr_t ra,
|
|
void *pv, int s)
|
|
{
|
|
uintptr_t pi = (uintptr_t)pv;
|
|
int o = pi & 7;
|
|
int shr = (HOST_BIG_ENDIAN ? 8 - s - o : o) * 8;
|
|
|
|
pv = (void *)(pi & ~7);
|
|
return load_atomic8_or_exit(env, ra, pv) >> shr;
|
|
}
|
|
|
|
/**
|
|
* load_atom_extract_al16_or_exit:
|
|
* @env: cpu context
|
|
* @ra: host unwind address
|
|
* @p: host address
|
|
* @s: object size in bytes, @s <= 8.
|
|
*
|
|
* Atomically load @s bytes from @p, when p % 16 < 8
|
|
* and p % 16 + s > 8. I.e. does not cross a 16-byte
|
|
* boundary, but *does* cross an 8-byte boundary.
|
|
* This is the slow version, so we must have eliminated
|
|
* any faster load_atom_extract_al8_or_exit case.
|
|
*
|
|
* If this is not possible, longjmp out to restart serially.
|
|
*/
|
|
static uint64_t load_atom_extract_al16_or_exit(CPUArchState *env, uintptr_t ra,
|
|
void *pv, int s)
|
|
{
|
|
uintptr_t pi = (uintptr_t)pv;
|
|
int o = pi & 7;
|
|
int shr = (HOST_BIG_ENDIAN ? 16 - s - o : o) * 8;
|
|
Int128 r;
|
|
|
|
/*
|
|
* Note constraints above: p & 8 must be clear.
|
|
* Provoke SIGBUS if possible otherwise.
|
|
*/
|
|
pv = (void *)(pi & ~7);
|
|
r = load_atomic16_or_exit(env, ra, pv);
|
|
|
|
r = int128_urshift(r, shr);
|
|
return int128_getlo(r);
|
|
}
|
|
|
|
/**
|
|
* load_atom_extract_al16_or_al8:
|
|
* @p: host address
|
|
* @s: object size in bytes, @s <= 8.
|
|
*
|
|
* Load @s bytes from @p, when p % s != 0. If [p, p+s-1] does not
|
|
* cross an 16-byte boundary then the access must be 16-byte atomic,
|
|
* otherwise the access must be 8-byte atomic.
|
|
*/
|
|
static inline uint64_t ATTRIBUTE_ATOMIC128_OPT
|
|
load_atom_extract_al16_or_al8(void *pv, int s)
|
|
{
|
|
uintptr_t pi = (uintptr_t)pv;
|
|
int o = pi & 7;
|
|
int shr = (HOST_BIG_ENDIAN ? 16 - s - o : o) * 8;
|
|
Int128 r;
|
|
|
|
pv = (void *)(pi & ~7);
|
|
if (pi & 8) {
|
|
uint64_t *p8 = __builtin_assume_aligned(pv, 16, 8);
|
|
uint64_t a = qatomic_read__nocheck(p8);
|
|
uint64_t b = qatomic_read__nocheck(p8 + 1);
|
|
|
|
if (HOST_BIG_ENDIAN) {
|
|
r = int128_make128(b, a);
|
|
} else {
|
|
r = int128_make128(a, b);
|
|
}
|
|
} else {
|
|
r = atomic16_read_ro(pv);
|
|
}
|
|
return int128_getlo(int128_urshift(r, shr));
|
|
}
|
|
|
|
/**
|
|
* load_atom_4_by_2:
|
|
* @pv: host address
|
|
*
|
|
* Load 4 bytes from @pv, with two 2-byte atomic loads.
|
|
*/
|
|
static inline uint32_t load_atom_4_by_2(void *pv)
|
|
{
|
|
uint32_t a = load_atomic2(pv);
|
|
uint32_t b = load_atomic2(pv + 2);
|
|
|
|
if (HOST_BIG_ENDIAN) {
|
|
return (a << 16) | b;
|
|
} else {
|
|
return (b << 16) | a;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* load_atom_8_by_2:
|
|
* @pv: host address
|
|
*
|
|
* Load 8 bytes from @pv, with four 2-byte atomic loads.
|
|
*/
|
|
static inline uint64_t load_atom_8_by_2(void *pv)
|
|
{
|
|
uint32_t a = load_atom_4_by_2(pv);
|
|
uint32_t b = load_atom_4_by_2(pv + 4);
|
|
|
|
if (HOST_BIG_ENDIAN) {
|
|
return ((uint64_t)a << 32) | b;
|
|
} else {
|
|
return ((uint64_t)b << 32) | a;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* load_atom_8_by_4:
|
|
* @pv: host address
|
|
*
|
|
* Load 8 bytes from @pv, with two 4-byte atomic loads.
|
|
*/
|
|
static inline uint64_t load_atom_8_by_4(void *pv)
|
|
{
|
|
uint32_t a = load_atomic4(pv);
|
|
uint32_t b = load_atomic4(pv + 4);
|
|
|
|
if (HOST_BIG_ENDIAN) {
|
|
return ((uint64_t)a << 32) | b;
|
|
} else {
|
|
return ((uint64_t)b << 32) | a;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* load_atom_8_by_8_or_4:
|
|
* @pv: host address
|
|
*
|
|
* Load 8 bytes from aligned @pv, with at least 4-byte atomicity.
|
|
*/
|
|
static inline uint64_t load_atom_8_by_8_or_4(void *pv)
|
|
{
|
|
if (HAVE_al8_fast) {
|
|
return load_atomic8(pv);
|
|
} else {
|
|
return load_atom_8_by_4(pv);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* load_atom_2:
|
|
* @p: host address
|
|
* @memop: the full memory op
|
|
*
|
|
* Load 2 bytes from @p, honoring the atomicity of @memop.
|
|
*/
|
|
static uint16_t load_atom_2(CPUArchState *env, uintptr_t ra,
|
|
void *pv, MemOp memop)
|
|
{
|
|
uintptr_t pi = (uintptr_t)pv;
|
|
int atmax;
|
|
|
|
if (likely((pi & 1) == 0)) {
|
|
return load_atomic2(pv);
|
|
}
|
|
if (HAVE_ATOMIC128_RO) {
|
|
return load_atom_extract_al16_or_al8(pv, 2);
|
|
}
|
|
|
|
atmax = required_atomicity(env, pi, memop);
|
|
switch (atmax) {
|
|
case MO_8:
|
|
return lduw_he_p(pv);
|
|
case MO_16:
|
|
/* The only case remaining is MO_ATOM_WITHIN16. */
|
|
if (!HAVE_al8_fast && (pi & 3) == 1) {
|
|
/* Big or little endian, we want the middle two bytes. */
|
|
return load_atomic4(pv - 1) >> 8;
|
|
}
|
|
if ((pi & 15) != 7) {
|
|
return load_atom_extract_al8_or_exit(env, ra, pv, 2);
|
|
}
|
|
return load_atom_extract_al16_or_exit(env, ra, pv, 2);
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* load_atom_4:
|
|
* @p: host address
|
|
* @memop: the full memory op
|
|
*
|
|
* Load 4 bytes from @p, honoring the atomicity of @memop.
|
|
*/
|
|
static uint32_t load_atom_4(CPUArchState *env, uintptr_t ra,
|
|
void *pv, MemOp memop)
|
|
{
|
|
uintptr_t pi = (uintptr_t)pv;
|
|
int atmax;
|
|
|
|
if (likely((pi & 3) == 0)) {
|
|
return load_atomic4(pv);
|
|
}
|
|
if (HAVE_ATOMIC128_RO) {
|
|
return load_atom_extract_al16_or_al8(pv, 4);
|
|
}
|
|
|
|
atmax = required_atomicity(env, pi, memop);
|
|
switch (atmax) {
|
|
case MO_8:
|
|
case MO_16:
|
|
case -MO_16:
|
|
/*
|
|
* For MO_ATOM_IFALIGN, this is more atomicity than required,
|
|
* but it's trivially supported on all hosts, better than 4
|
|
* individual byte loads (when the host requires alignment),
|
|
* and overlaps with the MO_ATOM_SUBALIGN case of p % 2 == 0.
|
|
*/
|
|
return load_atom_extract_al4x2(pv);
|
|
case MO_32:
|
|
if (!(pi & 4)) {
|
|
return load_atom_extract_al8_or_exit(env, ra, pv, 4);
|
|
}
|
|
return load_atom_extract_al16_or_exit(env, ra, pv, 4);
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* load_atom_8:
|
|
* @p: host address
|
|
* @memop: the full memory op
|
|
*
|
|
* Load 8 bytes from @p, honoring the atomicity of @memop.
|
|
*/
|
|
static uint64_t load_atom_8(CPUArchState *env, uintptr_t ra,
|
|
void *pv, MemOp memop)
|
|
{
|
|
uintptr_t pi = (uintptr_t)pv;
|
|
int atmax;
|
|
|
|
/*
|
|
* If the host does not support 8-byte atomics, wait until we have
|
|
* examined the atomicity parameters below.
|
|
*/
|
|
if (HAVE_al8 && likely((pi & 7) == 0)) {
|
|
return load_atomic8(pv);
|
|
}
|
|
if (HAVE_ATOMIC128_RO) {
|
|
return load_atom_extract_al16_or_al8(pv, 8);
|
|
}
|
|
|
|
atmax = required_atomicity(env, pi, memop);
|
|
if (atmax == MO_64) {
|
|
if (!HAVE_al8 && (pi & 7) == 0) {
|
|
load_atomic8_or_exit(env, ra, pv);
|
|
}
|
|
return load_atom_extract_al16_or_exit(env, ra, pv, 8);
|
|
}
|
|
if (HAVE_al8_fast) {
|
|
return load_atom_extract_al8x2(pv);
|
|
}
|
|
switch (atmax) {
|
|
case MO_8:
|
|
return ldq_he_p(pv);
|
|
case MO_16:
|
|
return load_atom_8_by_2(pv);
|
|
case MO_32:
|
|
return load_atom_8_by_4(pv);
|
|
case -MO_32:
|
|
if (HAVE_al8) {
|
|
return load_atom_extract_al8x2(pv);
|
|
}
|
|
cpu_loop_exit_atomic(env_cpu(env), ra);
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* load_atom_16:
|
|
* @p: host address
|
|
* @memop: the full memory op
|
|
*
|
|
* Load 16 bytes from @p, honoring the atomicity of @memop.
|
|
*/
|
|
static Int128 load_atom_16(CPUArchState *env, uintptr_t ra,
|
|
void *pv, MemOp memop)
|
|
{
|
|
uintptr_t pi = (uintptr_t)pv;
|
|
int atmax;
|
|
Int128 r;
|
|
uint64_t a, b;
|
|
|
|
/*
|
|
* If the host does not support 16-byte atomics, wait until we have
|
|
* examined the atomicity parameters below.
|
|
*/
|
|
if (HAVE_ATOMIC128_RO && likely((pi & 15) == 0)) {
|
|
return atomic16_read_ro(pv);
|
|
}
|
|
|
|
atmax = required_atomicity(env, pi, memop);
|
|
switch (atmax) {
|
|
case MO_8:
|
|
memcpy(&r, pv, 16);
|
|
return r;
|
|
case MO_16:
|
|
a = load_atom_8_by_2(pv);
|
|
b = load_atom_8_by_2(pv + 8);
|
|
break;
|
|
case MO_32:
|
|
a = load_atom_8_by_4(pv);
|
|
b = load_atom_8_by_4(pv + 8);
|
|
break;
|
|
case MO_64:
|
|
if (!HAVE_al8) {
|
|
cpu_loop_exit_atomic(env_cpu(env), ra);
|
|
}
|
|
a = load_atomic8(pv);
|
|
b = load_atomic8(pv + 8);
|
|
break;
|
|
case -MO_64:
|
|
if (!HAVE_al8) {
|
|
cpu_loop_exit_atomic(env_cpu(env), ra);
|
|
}
|
|
a = load_atom_extract_al8x2(pv);
|
|
b = load_atom_extract_al8x2(pv + 8);
|
|
break;
|
|
case MO_128:
|
|
return load_atomic16_or_exit(env, ra, pv);
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
return int128_make128(HOST_BIG_ENDIAN ? b : a, HOST_BIG_ENDIAN ? a : b);
|
|
}
|
|
|
|
/**
|
|
* store_atomic2:
|
|
* @pv: host address
|
|
* @val: value to store
|
|
*
|
|
* Atomically store 2 aligned bytes to @pv.
|
|
*/
|
|
static inline void store_atomic2(void *pv, uint16_t val)
|
|
{
|
|
uint16_t *p = __builtin_assume_aligned(pv, 2);
|
|
qatomic_set(p, val);
|
|
}
|
|
|
|
/**
|
|
* store_atomic4:
|
|
* @pv: host address
|
|
* @val: value to store
|
|
*
|
|
* Atomically store 4 aligned bytes to @pv.
|
|
*/
|
|
static inline void store_atomic4(void *pv, uint32_t val)
|
|
{
|
|
uint32_t *p = __builtin_assume_aligned(pv, 4);
|
|
qatomic_set(p, val);
|
|
}
|
|
|
|
/**
|
|
* store_atomic8:
|
|
* @pv: host address
|
|
* @val: value to store
|
|
*
|
|
* Atomically store 8 aligned bytes to @pv.
|
|
*/
|
|
static inline void store_atomic8(void *pv, uint64_t val)
|
|
{
|
|
uint64_t *p = __builtin_assume_aligned(pv, 8);
|
|
|
|
qemu_build_assert(HAVE_al8);
|
|
qatomic_set__nocheck(p, val);
|
|
}
|
|
|
|
/**
|
|
* store_atom_4x2
|
|
*/
|
|
static inline void store_atom_4_by_2(void *pv, uint32_t val)
|
|
{
|
|
store_atomic2(pv, val >> (HOST_BIG_ENDIAN ? 16 : 0));
|
|
store_atomic2(pv + 2, val >> (HOST_BIG_ENDIAN ? 0 : 16));
|
|
}
|
|
|
|
/**
|
|
* store_atom_8_by_2
|
|
*/
|
|
static inline void store_atom_8_by_2(void *pv, uint64_t val)
|
|
{
|
|
store_atom_4_by_2(pv, val >> (HOST_BIG_ENDIAN ? 32 : 0));
|
|
store_atom_4_by_2(pv + 4, val >> (HOST_BIG_ENDIAN ? 0 : 32));
|
|
}
|
|
|
|
/**
|
|
* store_atom_8_by_4
|
|
*/
|
|
static inline void store_atom_8_by_4(void *pv, uint64_t val)
|
|
{
|
|
store_atomic4(pv, val >> (HOST_BIG_ENDIAN ? 32 : 0));
|
|
store_atomic4(pv + 4, val >> (HOST_BIG_ENDIAN ? 0 : 32));
|
|
}
|
|
|
|
/**
|
|
* store_atom_insert_al4:
|
|
* @p: host address
|
|
* @val: shifted value to store
|
|
* @msk: mask for value to store
|
|
*
|
|
* Atomically store @val to @p, masked by @msk.
|
|
*/
|
|
static void store_atom_insert_al4(uint32_t *p, uint32_t val, uint32_t msk)
|
|
{
|
|
uint32_t old, new;
|
|
|
|
p = __builtin_assume_aligned(p, 4);
|
|
old = qatomic_read(p);
|
|
do {
|
|
new = (old & ~msk) | val;
|
|
} while (!__atomic_compare_exchange_n(p, &old, new, true,
|
|
__ATOMIC_RELAXED, __ATOMIC_RELAXED));
|
|
}
|
|
|
|
/**
|
|
* store_atom_insert_al8:
|
|
* @p: host address
|
|
* @val: shifted value to store
|
|
* @msk: mask for value to store
|
|
*
|
|
* Atomically store @val to @p masked by @msk.
|
|
*/
|
|
static void store_atom_insert_al8(uint64_t *p, uint64_t val, uint64_t msk)
|
|
{
|
|
uint64_t old, new;
|
|
|
|
qemu_build_assert(HAVE_al8);
|
|
p = __builtin_assume_aligned(p, 8);
|
|
old = qatomic_read__nocheck(p);
|
|
do {
|
|
new = (old & ~msk) | val;
|
|
} while (!__atomic_compare_exchange_n(p, &old, new, true,
|
|
__ATOMIC_RELAXED, __ATOMIC_RELAXED));
|
|
}
|
|
|
|
/**
|
|
* store_atom_insert_al16:
|
|
* @p: host address
|
|
* @val: shifted value to store
|
|
* @msk: mask for value to store
|
|
*
|
|
* Atomically store @val to @p masked by @msk.
|
|
*/
|
|
static void ATTRIBUTE_ATOMIC128_OPT
|
|
store_atom_insert_al16(Int128 *ps, Int128Alias val, Int128Alias msk)
|
|
{
|
|
#if defined(CONFIG_ATOMIC128)
|
|
__uint128_t *pu, old, new;
|
|
|
|
/* With CONFIG_ATOMIC128, we can avoid the memory barriers. */
|
|
pu = __builtin_assume_aligned(ps, 16);
|
|
old = *pu;
|
|
do {
|
|
new = (old & ~msk.u) | val.u;
|
|
} while (!__atomic_compare_exchange_n(pu, &old, new, true,
|
|
__ATOMIC_RELAXED, __ATOMIC_RELAXED));
|
|
#elif defined(CONFIG_CMPXCHG128)
|
|
__uint128_t *pu, old, new;
|
|
|
|
/*
|
|
* Without CONFIG_ATOMIC128, __atomic_compare_exchange_n will always
|
|
* defer to libatomic, so we must use __sync_*_compare_and_swap_16
|
|
* and accept the sequential consistency that comes with it.
|
|
*/
|
|
pu = __builtin_assume_aligned(ps, 16);
|
|
do {
|
|
old = *pu;
|
|
new = (old & ~msk.u) | val.u;
|
|
} while (!__sync_bool_compare_and_swap_16(pu, old, new));
|
|
#else
|
|
qemu_build_not_reached();
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* store_bytes_leN:
|
|
* @pv: host address
|
|
* @size: number of bytes to store
|
|
* @val_le: data to store
|
|
*
|
|
* Store @size bytes at @p. The bytes to store are extracted in little-endian order
|
|
* from @val_le; return the bytes of @val_le beyond @size that have not been stored.
|
|
*/
|
|
static uint64_t store_bytes_leN(void *pv, int size, uint64_t val_le)
|
|
{
|
|
uint8_t *p = pv;
|
|
for (int i = 0; i < size; i++, val_le >>= 8) {
|
|
p[i] = val_le;
|
|
}
|
|
return val_le;
|
|
}
|
|
|
|
/**
|
|
* store_parts_leN
|
|
* @pv: host address
|
|
* @size: number of bytes to store
|
|
* @val_le: data to store
|
|
*
|
|
* As store_bytes_leN, but atomically on each aligned part.
|
|
*/
|
|
G_GNUC_UNUSED
|
|
static uint64_t store_parts_leN(void *pv, int size, uint64_t val_le)
|
|
{
|
|
do {
|
|
int n;
|
|
|
|
/* Find minimum of alignment and size */
|
|
switch (((uintptr_t)pv | size) & 7) {
|
|
case 4:
|
|
store_atomic4(pv, le32_to_cpu(val_le));
|
|
val_le >>= 32;
|
|
n = 4;
|
|
break;
|
|
case 2:
|
|
case 6:
|
|
store_atomic2(pv, le16_to_cpu(val_le));
|
|
val_le >>= 16;
|
|
n = 2;
|
|
break;
|
|
default:
|
|
*(uint8_t *)pv = val_le;
|
|
val_le >>= 8;
|
|
n = 1;
|
|
break;
|
|
case 0:
|
|
g_assert_not_reached();
|
|
}
|
|
pv += n;
|
|
size -= n;
|
|
} while (size != 0);
|
|
|
|
return val_le;
|
|
}
|
|
|
|
/**
|
|
* store_whole_le4
|
|
* @pv: host address
|
|
* @size: number of bytes to store
|
|
* @val_le: data to store
|
|
*
|
|
* As store_bytes_leN, but atomically as a whole.
|
|
* Four aligned bytes are guaranteed to cover the store.
|
|
*/
|
|
static uint64_t store_whole_le4(void *pv, int size, uint64_t val_le)
|
|
{
|
|
int sz = size * 8;
|
|
int o = (uintptr_t)pv & 3;
|
|
int sh = o * 8;
|
|
uint32_t m = MAKE_64BIT_MASK(0, sz);
|
|
uint32_t v;
|
|
|
|
if (HOST_BIG_ENDIAN) {
|
|
v = bswap32(val_le) >> sh;
|
|
m = bswap32(m) >> sh;
|
|
} else {
|
|
v = val_le << sh;
|
|
m <<= sh;
|
|
}
|
|
store_atom_insert_al4(pv - o, v, m);
|
|
return val_le >> sz;
|
|
}
|
|
|
|
/**
|
|
* store_whole_le8
|
|
* @pv: host address
|
|
* @size: number of bytes to store
|
|
* @val_le: data to store
|
|
*
|
|
* As store_bytes_leN, but atomically as a whole.
|
|
* Eight aligned bytes are guaranteed to cover the store.
|
|
*/
|
|
static uint64_t store_whole_le8(void *pv, int size, uint64_t val_le)
|
|
{
|
|
int sz = size * 8;
|
|
int o = (uintptr_t)pv & 7;
|
|
int sh = o * 8;
|
|
uint64_t m = MAKE_64BIT_MASK(0, sz);
|
|
uint64_t v;
|
|
|
|
qemu_build_assert(HAVE_al8);
|
|
if (HOST_BIG_ENDIAN) {
|
|
v = bswap64(val_le) >> sh;
|
|
m = bswap64(m) >> sh;
|
|
} else {
|
|
v = val_le << sh;
|
|
m <<= sh;
|
|
}
|
|
store_atom_insert_al8(pv - o, v, m);
|
|
return val_le >> sz;
|
|
}
|
|
|
|
/**
|
|
* store_whole_le16
|
|
* @pv: host address
|
|
* @size: number of bytes to store
|
|
* @val_le: data to store
|
|
*
|
|
* As store_bytes_leN, but atomically as a whole.
|
|
* 16 aligned bytes are guaranteed to cover the store.
|
|
*/
|
|
static uint64_t store_whole_le16(void *pv, int size, Int128 val_le)
|
|
{
|
|
int sz = size * 8;
|
|
int o = (uintptr_t)pv & 15;
|
|
int sh = o * 8;
|
|
Int128 m, v;
|
|
|
|
qemu_build_assert(HAVE_ATOMIC128_RW);
|
|
|
|
/* Like MAKE_64BIT_MASK(0, sz), but larger. */
|
|
if (sz <= 64) {
|
|
m = int128_make64(MAKE_64BIT_MASK(0, sz));
|
|
} else {
|
|
m = int128_make128(-1, MAKE_64BIT_MASK(0, sz - 64));
|
|
}
|
|
|
|
if (HOST_BIG_ENDIAN) {
|
|
v = int128_urshift(bswap128(val_le), sh);
|
|
m = int128_urshift(bswap128(m), sh);
|
|
} else {
|
|
v = int128_lshift(val_le, sh);
|
|
m = int128_lshift(m, sh);
|
|
}
|
|
store_atom_insert_al16(pv - o, v, m);
|
|
|
|
/* Unused if sz <= 64. */
|
|
return int128_gethi(val_le) >> (sz - 64);
|
|
}
|
|
|
|
/**
|
|
* store_atom_2:
|
|
* @p: host address
|
|
* @val: the value to store
|
|
* @memop: the full memory op
|
|
*
|
|
* Store 2 bytes to @p, honoring the atomicity of @memop.
|
|
*/
|
|
static void store_atom_2(CPUArchState *env, uintptr_t ra,
|
|
void *pv, MemOp memop, uint16_t val)
|
|
{
|
|
uintptr_t pi = (uintptr_t)pv;
|
|
int atmax;
|
|
|
|
if (likely((pi & 1) == 0)) {
|
|
store_atomic2(pv, val);
|
|
return;
|
|
}
|
|
|
|
atmax = required_atomicity(env, pi, memop);
|
|
if (atmax == MO_8) {
|
|
stw_he_p(pv, val);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The only case remaining is MO_ATOM_WITHIN16.
|
|
* Big or little endian, we want the middle two bytes in each test.
|
|
*/
|
|
if ((pi & 3) == 1) {
|
|
store_atom_insert_al4(pv - 1, (uint32_t)val << 8, MAKE_64BIT_MASK(8, 16));
|
|
return;
|
|
} else if ((pi & 7) == 3) {
|
|
if (HAVE_al8) {
|
|
store_atom_insert_al8(pv - 3, (uint64_t)val << 24, MAKE_64BIT_MASK(24, 16));
|
|
return;
|
|
}
|
|
} else if ((pi & 15) == 7) {
|
|
if (HAVE_ATOMIC128_RW) {
|
|
Int128 v = int128_lshift(int128_make64(val), 56);
|
|
Int128 m = int128_lshift(int128_make64(0xffff), 56);
|
|
store_atom_insert_al16(pv - 7, v, m);
|
|
return;
|
|
}
|
|
} else {
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
cpu_loop_exit_atomic(env_cpu(env), ra);
|
|
}
|
|
|
|
/**
|
|
* store_atom_4:
|
|
* @p: host address
|
|
* @val: the value to store
|
|
* @memop: the full memory op
|
|
*
|
|
* Store 4 bytes to @p, honoring the atomicity of @memop.
|
|
*/
|
|
static void store_atom_4(CPUArchState *env, uintptr_t ra,
|
|
void *pv, MemOp memop, uint32_t val)
|
|
{
|
|
uintptr_t pi = (uintptr_t)pv;
|
|
int atmax;
|
|
|
|
if (likely((pi & 3) == 0)) {
|
|
store_atomic4(pv, val);
|
|
return;
|
|
}
|
|
|
|
atmax = required_atomicity(env, pi, memop);
|
|
switch (atmax) {
|
|
case MO_8:
|
|
stl_he_p(pv, val);
|
|
return;
|
|
case MO_16:
|
|
store_atom_4_by_2(pv, val);
|
|
return;
|
|
case -MO_16:
|
|
{
|
|
uint32_t val_le = cpu_to_le32(val);
|
|
int s2 = pi & 3;
|
|
int s1 = 4 - s2;
|
|
|
|
switch (s2) {
|
|
case 1:
|
|
val_le = store_whole_le4(pv, s1, val_le);
|
|
*(uint8_t *)(pv + 3) = val_le;
|
|
break;
|
|
case 3:
|
|
*(uint8_t *)pv = val_le;
|
|
store_whole_le4(pv + 1, s2, val_le >> 8);
|
|
break;
|
|
case 0: /* aligned */
|
|
case 2: /* atmax MO_16 */
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
return;
|
|
case MO_32:
|
|
if ((pi & 7) < 4) {
|
|
if (HAVE_al8) {
|
|
store_whole_le8(pv, 4, cpu_to_le32(val));
|
|
return;
|
|
}
|
|
} else {
|
|
if (HAVE_ATOMIC128_RW) {
|
|
store_whole_le16(pv, 4, int128_make64(cpu_to_le32(val)));
|
|
return;
|
|
}
|
|
}
|
|
cpu_loop_exit_atomic(env_cpu(env), ra);
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* store_atom_8:
|
|
* @p: host address
|
|
* @val: the value to store
|
|
* @memop: the full memory op
|
|
*
|
|
* Store 8 bytes to @p, honoring the atomicity of @memop.
|
|
*/
|
|
static void store_atom_8(CPUArchState *env, uintptr_t ra,
|
|
void *pv, MemOp memop, uint64_t val)
|
|
{
|
|
uintptr_t pi = (uintptr_t)pv;
|
|
int atmax;
|
|
|
|
if (HAVE_al8 && likely((pi & 7) == 0)) {
|
|
store_atomic8(pv, val);
|
|
return;
|
|
}
|
|
|
|
atmax = required_atomicity(env, pi, memop);
|
|
switch (atmax) {
|
|
case MO_8:
|
|
stq_he_p(pv, val);
|
|
return;
|
|
case MO_16:
|
|
store_atom_8_by_2(pv, val);
|
|
return;
|
|
case MO_32:
|
|
store_atom_8_by_4(pv, val);
|
|
return;
|
|
case -MO_32:
|
|
if (HAVE_al8) {
|
|
uint64_t val_le = cpu_to_le64(val);
|
|
int s2 = pi & 7;
|
|
int s1 = 8 - s2;
|
|
|
|
switch (s2) {
|
|
case 1 ... 3:
|
|
val_le = store_whole_le8(pv, s1, val_le);
|
|
store_bytes_leN(pv + s1, s2, val_le);
|
|
break;
|
|
case 5 ... 7:
|
|
val_le = store_bytes_leN(pv, s1, val_le);
|
|
store_whole_le8(pv + s1, s2, val_le);
|
|
break;
|
|
case 0: /* aligned */
|
|
case 4: /* atmax MO_32 */
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
return;
|
|
}
|
|
break;
|
|
case MO_64:
|
|
if (HAVE_ATOMIC128_RW) {
|
|
store_whole_le16(pv, 8, int128_make64(cpu_to_le64(val)));
|
|
return;
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
cpu_loop_exit_atomic(env_cpu(env), ra);
|
|
}
|
|
|
|
/**
|
|
* store_atom_16:
|
|
* @p: host address
|
|
* @val: the value to store
|
|
* @memop: the full memory op
|
|
*
|
|
* Store 16 bytes to @p, honoring the atomicity of @memop.
|
|
*/
|
|
static void store_atom_16(CPUArchState *env, uintptr_t ra,
|
|
void *pv, MemOp memop, Int128 val)
|
|
{
|
|
uintptr_t pi = (uintptr_t)pv;
|
|
uint64_t a, b;
|
|
int atmax;
|
|
|
|
if (HAVE_ATOMIC128_RW && likely((pi & 15) == 0)) {
|
|
atomic16_set(pv, val);
|
|
return;
|
|
}
|
|
|
|
atmax = required_atomicity(env, pi, memop);
|
|
|
|
a = HOST_BIG_ENDIAN ? int128_gethi(val) : int128_getlo(val);
|
|
b = HOST_BIG_ENDIAN ? int128_getlo(val) : int128_gethi(val);
|
|
switch (atmax) {
|
|
case MO_8:
|
|
memcpy(pv, &val, 16);
|
|
return;
|
|
case MO_16:
|
|
store_atom_8_by_2(pv, a);
|
|
store_atom_8_by_2(pv + 8, b);
|
|
return;
|
|
case MO_32:
|
|
store_atom_8_by_4(pv, a);
|
|
store_atom_8_by_4(pv + 8, b);
|
|
return;
|
|
case MO_64:
|
|
if (HAVE_al8) {
|
|
store_atomic8(pv, a);
|
|
store_atomic8(pv + 8, b);
|
|
return;
|
|
}
|
|
break;
|
|
case -MO_64:
|
|
if (HAVE_ATOMIC128_RW) {
|
|
uint64_t val_le;
|
|
int s2 = pi & 15;
|
|
int s1 = 16 - s2;
|
|
|
|
if (HOST_BIG_ENDIAN) {
|
|
val = bswap128(val);
|
|
}
|
|
switch (s2) {
|
|
case 1 ... 7:
|
|
val_le = store_whole_le16(pv, s1, val);
|
|
store_bytes_leN(pv + s1, s2, val_le);
|
|
break;
|
|
case 9 ... 15:
|
|
store_bytes_leN(pv, s1, int128_getlo(val));
|
|
val = int128_urshift(val, s1 * 8);
|
|
store_whole_le16(pv + s1, s2, val);
|
|
break;
|
|
case 0: /* aligned */
|
|
case 8: /* atmax MO_64 */
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
return;
|
|
}
|
|
break;
|
|
case MO_128:
|
|
if (HAVE_ATOMIC128_RW) {
|
|
atomic16_set(pv, val);
|
|
return;
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
cpu_loop_exit_atomic(env_cpu(env), ra);
|
|
}
|