880a757838
This patch enhances QEMU's built-in debugger for SMP guest debugging. Using the thread support of the gdb remote protocol, each VCPU is mapped on a pseudo thread and exposed to the gdb frontend. This way you can easy switch the focus of gdb between the VCPUs and observe their states. On breakpoint hit, the focus is automatically adjusted just as for normal multi-threaded application under gdb control. Furthermore, the patch propagates breakpoint and watchpoint insertions or removals to all CPUs, not just the current one as it was the case so far. Without this, SMP guest debugging was practically unfeasible. Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@5743 c046a42c-6fe2-441c-8c8c-71466251a162
2013 lines
52 KiB
C
2013 lines
52 KiB
C
/*
|
|
* gdb server stub
|
|
*
|
|
* Copyright (c) 2003-2005 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
#include "config.h"
|
|
#include "qemu-common.h"
|
|
#ifdef CONFIG_USER_ONLY
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <stdarg.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
|
|
#include "qemu.h"
|
|
#else
|
|
#include "qemu-char.h"
|
|
#include "sysemu.h"
|
|
#include "gdbstub.h"
|
|
#endif
|
|
|
|
#define MAX_PACKET_LENGTH 4096
|
|
|
|
#include "qemu_socket.h"
|
|
#ifdef _WIN32
|
|
/* XXX: these constants may be independent of the host ones even for Unix */
|
|
#ifndef SIGTRAP
|
|
#define SIGTRAP 5
|
|
#endif
|
|
#ifndef SIGINT
|
|
#define SIGINT 2
|
|
#endif
|
|
#else
|
|
#include <signal.h>
|
|
#endif
|
|
|
|
//#define DEBUG_GDB
|
|
|
|
typedef struct GDBRegisterState {
|
|
int base_reg;
|
|
int num_regs;
|
|
gdb_reg_cb get_reg;
|
|
gdb_reg_cb set_reg;
|
|
const char *xml;
|
|
struct GDBRegisterState *next;
|
|
} GDBRegisterState;
|
|
|
|
enum RSState {
|
|
RS_IDLE,
|
|
RS_GETLINE,
|
|
RS_CHKSUM1,
|
|
RS_CHKSUM2,
|
|
RS_SYSCALL,
|
|
};
|
|
typedef struct GDBState {
|
|
CPUState *c_cpu; /* current CPU for step/continue ops */
|
|
CPUState *g_cpu; /* current CPU for other ops */
|
|
CPUState *query_cpu; /* for q{f|s}ThreadInfo */
|
|
enum RSState state; /* parsing state */
|
|
char line_buf[MAX_PACKET_LENGTH];
|
|
int line_buf_index;
|
|
int line_csum;
|
|
uint8_t last_packet[MAX_PACKET_LENGTH + 4];
|
|
int last_packet_len;
|
|
int signal;
|
|
#ifdef CONFIG_USER_ONLY
|
|
int fd;
|
|
int running_state;
|
|
#else
|
|
CharDriverState *chr;
|
|
#endif
|
|
} GDBState;
|
|
|
|
/* By default use no IRQs and no timers while single stepping so as to
|
|
* make single stepping like an ICE HW step.
|
|
*/
|
|
static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
|
|
|
|
static GDBState *gdbserver_state;
|
|
|
|
/* This is an ugly hack to cope with both new and old gdb.
|
|
If gdb sends qXfer:features:read then assume we're talking to a newish
|
|
gdb that understands target descriptions. */
|
|
static int gdb_has_xml;
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
/* XXX: This is not thread safe. Do we care? */
|
|
static int gdbserver_fd = -1;
|
|
|
|
static int get_char(GDBState *s)
|
|
{
|
|
uint8_t ch;
|
|
int ret;
|
|
|
|
for(;;) {
|
|
ret = recv(s->fd, &ch, 1, 0);
|
|
if (ret < 0) {
|
|
if (errno == ECONNRESET)
|
|
s->fd = -1;
|
|
if (errno != EINTR && errno != EAGAIN)
|
|
return -1;
|
|
} else if (ret == 0) {
|
|
close(s->fd);
|
|
s->fd = -1;
|
|
return -1;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
return ch;
|
|
}
|
|
#endif
|
|
|
|
static gdb_syscall_complete_cb gdb_current_syscall_cb;
|
|
|
|
enum {
|
|
GDB_SYS_UNKNOWN,
|
|
GDB_SYS_ENABLED,
|
|
GDB_SYS_DISABLED,
|
|
} gdb_syscall_mode;
|
|
|
|
/* If gdb is connected when the first semihosting syscall occurs then use
|
|
remote gdb syscalls. Otherwise use native file IO. */
|
|
int use_gdb_syscalls(void)
|
|
{
|
|
if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
|
|
gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
|
|
: GDB_SYS_DISABLED);
|
|
}
|
|
return gdb_syscall_mode == GDB_SYS_ENABLED;
|
|
}
|
|
|
|
/* Resume execution. */
|
|
static inline void gdb_continue(GDBState *s)
|
|
{
|
|
#ifdef CONFIG_USER_ONLY
|
|
s->running_state = 1;
|
|
#else
|
|
vm_start();
|
|
#endif
|
|
}
|
|
|
|
static void put_buffer(GDBState *s, const uint8_t *buf, int len)
|
|
{
|
|
#ifdef CONFIG_USER_ONLY
|
|
int ret;
|
|
|
|
while (len > 0) {
|
|
ret = send(s->fd, buf, len, 0);
|
|
if (ret < 0) {
|
|
if (errno != EINTR && errno != EAGAIN)
|
|
return;
|
|
} else {
|
|
buf += ret;
|
|
len -= ret;
|
|
}
|
|
}
|
|
#else
|
|
qemu_chr_write(s->chr, buf, len);
|
|
#endif
|
|
}
|
|
|
|
static inline int fromhex(int v)
|
|
{
|
|
if (v >= '0' && v <= '9')
|
|
return v - '0';
|
|
else if (v >= 'A' && v <= 'F')
|
|
return v - 'A' + 10;
|
|
else if (v >= 'a' && v <= 'f')
|
|
return v - 'a' + 10;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static inline int tohex(int v)
|
|
{
|
|
if (v < 10)
|
|
return v + '0';
|
|
else
|
|
return v - 10 + 'a';
|
|
}
|
|
|
|
static void memtohex(char *buf, const uint8_t *mem, int len)
|
|
{
|
|
int i, c;
|
|
char *q;
|
|
q = buf;
|
|
for(i = 0; i < len; i++) {
|
|
c = mem[i];
|
|
*q++ = tohex(c >> 4);
|
|
*q++ = tohex(c & 0xf);
|
|
}
|
|
*q = '\0';
|
|
}
|
|
|
|
static void hextomem(uint8_t *mem, const char *buf, int len)
|
|
{
|
|
int i;
|
|
|
|
for(i = 0; i < len; i++) {
|
|
mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
|
|
buf += 2;
|
|
}
|
|
}
|
|
|
|
/* return -1 if error, 0 if OK */
|
|
static int put_packet_binary(GDBState *s, const char *buf, int len)
|
|
{
|
|
int csum, i;
|
|
uint8_t *p;
|
|
|
|
for(;;) {
|
|
p = s->last_packet;
|
|
*(p++) = '$';
|
|
memcpy(p, buf, len);
|
|
p += len;
|
|
csum = 0;
|
|
for(i = 0; i < len; i++) {
|
|
csum += buf[i];
|
|
}
|
|
*(p++) = '#';
|
|
*(p++) = tohex((csum >> 4) & 0xf);
|
|
*(p++) = tohex((csum) & 0xf);
|
|
|
|
s->last_packet_len = p - s->last_packet;
|
|
put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
i = get_char(s);
|
|
if (i < 0)
|
|
return -1;
|
|
if (i == '+')
|
|
break;
|
|
#else
|
|
break;
|
|
#endif
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* return -1 if error, 0 if OK */
|
|
static int put_packet(GDBState *s, const char *buf)
|
|
{
|
|
#ifdef DEBUG_GDB
|
|
printf("reply='%s'\n", buf);
|
|
#endif
|
|
|
|
return put_packet_binary(s, buf, strlen(buf));
|
|
}
|
|
|
|
/* The GDB remote protocol transfers values in target byte order. This means
|
|
we can use the raw memory access routines to access the value buffer.
|
|
Conveniently, these also handle the case where the buffer is mis-aligned.
|
|
*/
|
|
#define GET_REG8(val) do { \
|
|
stb_p(mem_buf, val); \
|
|
return 1; \
|
|
} while(0)
|
|
#define GET_REG16(val) do { \
|
|
stw_p(mem_buf, val); \
|
|
return 2; \
|
|
} while(0)
|
|
#define GET_REG32(val) do { \
|
|
stl_p(mem_buf, val); \
|
|
return 4; \
|
|
} while(0)
|
|
#define GET_REG64(val) do { \
|
|
stq_p(mem_buf, val); \
|
|
return 8; \
|
|
} while(0)
|
|
|
|
#if TARGET_LONG_BITS == 64
|
|
#define GET_REGL(val) GET_REG64(val)
|
|
#define ldtul_p(addr) ldq_p(addr)
|
|
#else
|
|
#define GET_REGL(val) GET_REG32(val)
|
|
#define ldtul_p(addr) ldl_p(addr)
|
|
#endif
|
|
|
|
#if defined(TARGET_I386)
|
|
|
|
#ifdef TARGET_X86_64
|
|
static const int gpr_map[16] = {
|
|
R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
|
|
8, 9, 10, 11, 12, 13, 14, 15
|
|
};
|
|
#else
|
|
static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
|
|
#endif
|
|
|
|
#define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
|
|
|
|
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
if (n < CPU_NB_REGS) {
|
|
GET_REGL(env->regs[gpr_map[n]]);
|
|
} else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) {
|
|
/* FIXME: byteswap float values. */
|
|
#ifdef USE_X86LDOUBLE
|
|
memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10);
|
|
#else
|
|
memset(mem_buf, 0, 10);
|
|
#endif
|
|
return 10;
|
|
} else if (n >= CPU_NB_REGS + 24) {
|
|
n -= CPU_NB_REGS + 24;
|
|
if (n < CPU_NB_REGS) {
|
|
stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
|
|
stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
|
|
return 16;
|
|
} else if (n == CPU_NB_REGS) {
|
|
GET_REG32(env->mxcsr);
|
|
}
|
|
} else {
|
|
n -= CPU_NB_REGS;
|
|
switch (n) {
|
|
case 0: GET_REGL(env->eip);
|
|
case 1: GET_REG32(env->eflags);
|
|
case 2: GET_REG32(env->segs[R_CS].selector);
|
|
case 3: GET_REG32(env->segs[R_SS].selector);
|
|
case 4: GET_REG32(env->segs[R_DS].selector);
|
|
case 5: GET_REG32(env->segs[R_ES].selector);
|
|
case 6: GET_REG32(env->segs[R_FS].selector);
|
|
case 7: GET_REG32(env->segs[R_GS].selector);
|
|
/* 8...15 x87 regs. */
|
|
case 16: GET_REG32(env->fpuc);
|
|
case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11);
|
|
case 18: GET_REG32(0); /* ftag */
|
|
case 19: GET_REG32(0); /* fiseg */
|
|
case 20: GET_REG32(0); /* fioff */
|
|
case 21: GET_REG32(0); /* foseg */
|
|
case 22: GET_REG32(0); /* fooff */
|
|
case 23: GET_REG32(0); /* fop */
|
|
/* 24+ xmm regs. */
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int i)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
if (i < CPU_NB_REGS) {
|
|
env->regs[gpr_map[i]] = ldtul_p(mem_buf);
|
|
return sizeof(target_ulong);
|
|
} else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) {
|
|
i -= CPU_NB_REGS + 8;
|
|
#ifdef USE_X86LDOUBLE
|
|
memcpy(&env->fpregs[i], mem_buf, 10);
|
|
#endif
|
|
return 10;
|
|
} else if (i >= CPU_NB_REGS + 24) {
|
|
i -= CPU_NB_REGS + 24;
|
|
if (i < CPU_NB_REGS) {
|
|
env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf);
|
|
env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8);
|
|
return 16;
|
|
} else if (i == CPU_NB_REGS) {
|
|
env->mxcsr = ldl_p(mem_buf);
|
|
return 4;
|
|
}
|
|
} else {
|
|
i -= CPU_NB_REGS;
|
|
switch (i) {
|
|
case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong);
|
|
case 1: env->eflags = ldl_p(mem_buf); return 4;
|
|
#if defined(CONFIG_USER_ONLY)
|
|
#define LOAD_SEG(index, sreg)\
|
|
tmp = ldl_p(mem_buf);\
|
|
if (tmp != env->segs[sreg].selector)\
|
|
cpu_x86_load_seg(env, sreg, tmp);
|
|
#else
|
|
/* FIXME: Honor segment registers. Needs to avoid raising an exception
|
|
when the selector is invalid. */
|
|
#define LOAD_SEG(index, sreg) do {} while(0)
|
|
#endif
|
|
case 2: LOAD_SEG(10, R_CS); return 4;
|
|
case 3: LOAD_SEG(11, R_SS); return 4;
|
|
case 4: LOAD_SEG(12, R_DS); return 4;
|
|
case 5: LOAD_SEG(13, R_ES); return 4;
|
|
case 6: LOAD_SEG(14, R_FS); return 4;
|
|
case 7: LOAD_SEG(15, R_GS); return 4;
|
|
/* 8...15 x87 regs. */
|
|
case 16: env->fpuc = ldl_p(mem_buf); return 4;
|
|
case 17:
|
|
tmp = ldl_p(mem_buf);
|
|
env->fpstt = (tmp >> 11) & 7;
|
|
env->fpus = tmp & ~0x3800;
|
|
return 4;
|
|
case 18: /* ftag */ return 4;
|
|
case 19: /* fiseg */ return 4;
|
|
case 20: /* fioff */ return 4;
|
|
case 21: /* foseg */ return 4;
|
|
case 22: /* fooff */ return 4;
|
|
case 23: /* fop */ return 4;
|
|
/* 24+ xmm regs. */
|
|
}
|
|
}
|
|
/* Unrecognised register. */
|
|
return 0;
|
|
}
|
|
|
|
#elif defined (TARGET_PPC)
|
|
|
|
#define NUM_CORE_REGS 71
|
|
|
|
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
if (n < 32) {
|
|
/* gprs */
|
|
GET_REGL(env->gpr[n]);
|
|
} else if (n < 64) {
|
|
/* fprs */
|
|
stfq_p(mem_buf, env->fpr[n]);
|
|
return 8;
|
|
} else {
|
|
switch (n) {
|
|
case 64: GET_REGL(env->nip);
|
|
case 65: GET_REGL(env->msr);
|
|
case 66:
|
|
{
|
|
uint32_t cr = 0;
|
|
int i;
|
|
for (i = 0; i < 8; i++)
|
|
cr |= env->crf[i] << (32 - ((i + 1) * 4));
|
|
GET_REG32(cr);
|
|
}
|
|
case 67: GET_REGL(env->lr);
|
|
case 68: GET_REGL(env->ctr);
|
|
case 69: GET_REGL(env->xer);
|
|
case 70: GET_REG32(0); /* fpscr */
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
if (n < 32) {
|
|
/* gprs */
|
|
env->gpr[n] = ldtul_p(mem_buf);
|
|
return sizeof(target_ulong);
|
|
} else if (n < 64) {
|
|
/* fprs */
|
|
env->fpr[n] = ldfq_p(mem_buf);
|
|
return 8;
|
|
} else {
|
|
switch (n) {
|
|
case 64:
|
|
env->nip = ldtul_p(mem_buf);
|
|
return sizeof(target_ulong);
|
|
case 65:
|
|
ppc_store_msr(env, ldtul_p(mem_buf));
|
|
return sizeof(target_ulong);
|
|
case 66:
|
|
{
|
|
uint32_t cr = ldl_p(mem_buf);
|
|
int i;
|
|
for (i = 0; i < 8; i++)
|
|
env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
|
|
return 4;
|
|
}
|
|
case 67:
|
|
env->lr = ldtul_p(mem_buf);
|
|
return sizeof(target_ulong);
|
|
case 68:
|
|
env->ctr = ldtul_p(mem_buf);
|
|
return sizeof(target_ulong);
|
|
case 69:
|
|
env->xer = ldtul_p(mem_buf);
|
|
return sizeof(target_ulong);
|
|
case 70:
|
|
/* fpscr */
|
|
return 4;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#elif defined (TARGET_SPARC)
|
|
|
|
#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
|
|
#define NUM_CORE_REGS 86
|
|
#else
|
|
#define NUM_CORE_REGS 73
|
|
#endif
|
|
|
|
#ifdef TARGET_ABI32
|
|
#define GET_REGA(val) GET_REG32(val)
|
|
#else
|
|
#define GET_REGA(val) GET_REGL(val)
|
|
#endif
|
|
|
|
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
if (n < 8) {
|
|
/* g0..g7 */
|
|
GET_REGA(env->gregs[n]);
|
|
}
|
|
if (n < 32) {
|
|
/* register window */
|
|
GET_REGA(env->regwptr[n - 8]);
|
|
}
|
|
#if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
|
|
if (n < 64) {
|
|
/* fprs */
|
|
GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
|
|
}
|
|
/* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
|
|
switch (n) {
|
|
case 64: GET_REGA(env->y);
|
|
case 65: GET_REGA(GET_PSR(env));
|
|
case 66: GET_REGA(env->wim);
|
|
case 67: GET_REGA(env->tbr);
|
|
case 68: GET_REGA(env->pc);
|
|
case 69: GET_REGA(env->npc);
|
|
case 70: GET_REGA(env->fsr);
|
|
case 71: GET_REGA(0); /* csr */
|
|
case 72: GET_REGA(0);
|
|
}
|
|
#else
|
|
if (n < 64) {
|
|
/* f0-f31 */
|
|
GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
|
|
}
|
|
if (n < 80) {
|
|
/* f32-f62 (double width, even numbers only) */
|
|
uint64_t val;
|
|
|
|
val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
|
|
val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
|
|
GET_REG64(val);
|
|
}
|
|
switch (n) {
|
|
case 80: GET_REGL(env->pc);
|
|
case 81: GET_REGL(env->npc);
|
|
case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
|
|
((env->asi & 0xff) << 24) |
|
|
((env->pstate & 0xfff) << 8) |
|
|
GET_CWP64(env));
|
|
case 83: GET_REGL(env->fsr);
|
|
case 84: GET_REGL(env->fprs);
|
|
case 85: GET_REGL(env->y);
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
#if defined(TARGET_ABI32)
|
|
abi_ulong tmp;
|
|
|
|
tmp = ldl_p(mem_buf);
|
|
#else
|
|
target_ulong tmp;
|
|
|
|
tmp = ldtul_p(mem_buf);
|
|
#endif
|
|
|
|
if (n < 8) {
|
|
/* g0..g7 */
|
|
env->gregs[n] = tmp;
|
|
} else if (n < 32) {
|
|
/* register window */
|
|
env->regwptr[n - 8] = tmp;
|
|
}
|
|
#if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
|
|
else if (n < 64) {
|
|
/* fprs */
|
|
*((uint32_t *)&env->fpr[n - 32]) = tmp;
|
|
} else {
|
|
/* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
|
|
switch (n) {
|
|
case 64: env->y = tmp; break;
|
|
case 65: PUT_PSR(env, tmp); break;
|
|
case 66: env->wim = tmp; break;
|
|
case 67: env->tbr = tmp; break;
|
|
case 68: env->pc = tmp; break;
|
|
case 69: env->npc = tmp; break;
|
|
case 70: env->fsr = tmp; break;
|
|
default: return 0;
|
|
}
|
|
}
|
|
return 4;
|
|
#else
|
|
else if (n < 64) {
|
|
/* f0-f31 */
|
|
env->fpr[n] = ldfl_p(mem_buf);
|
|
return 4;
|
|
} else if (n < 80) {
|
|
/* f32-f62 (double width, even numbers only) */
|
|
*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
|
|
*((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
|
|
} else {
|
|
switch (n) {
|
|
case 80: env->pc = tmp; break;
|
|
case 81: env->npc = tmp; break;
|
|
case 82:
|
|
PUT_CCR(env, tmp >> 32);
|
|
env->asi = (tmp >> 24) & 0xff;
|
|
env->pstate = (tmp >> 8) & 0xfff;
|
|
PUT_CWP64(env, tmp & 0xff);
|
|
break;
|
|
case 83: env->fsr = tmp; break;
|
|
case 84: env->fprs = tmp; break;
|
|
case 85: env->y = tmp; break;
|
|
default: return 0;
|
|
}
|
|
}
|
|
return 8;
|
|
#endif
|
|
}
|
|
#elif defined (TARGET_ARM)
|
|
|
|
/* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
|
|
whatever the target description contains. Due to a historical mishap
|
|
the FPA registers appear in between core integer regs and the CPSR.
|
|
We hack round this by giving the FPA regs zero size when talking to a
|
|
newer gdb. */
|
|
#define NUM_CORE_REGS 26
|
|
#define GDB_CORE_XML "arm-core.xml"
|
|
|
|
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
if (n < 16) {
|
|
/* Core integer register. */
|
|
GET_REG32(env->regs[n]);
|
|
}
|
|
if (n < 24) {
|
|
/* FPA registers. */
|
|
if (gdb_has_xml)
|
|
return 0;
|
|
memset(mem_buf, 0, 12);
|
|
return 12;
|
|
}
|
|
switch (n) {
|
|
case 24:
|
|
/* FPA status register. */
|
|
if (gdb_has_xml)
|
|
return 0;
|
|
GET_REG32(0);
|
|
case 25:
|
|
/* CPSR */
|
|
GET_REG32(cpsr_read(env));
|
|
}
|
|
/* Unknown register. */
|
|
return 0;
|
|
}
|
|
|
|
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
tmp = ldl_p(mem_buf);
|
|
|
|
/* Mask out low bit of PC to workaround gdb bugs. This will probably
|
|
cause problems if we ever implement the Jazelle DBX extensions. */
|
|
if (n == 15)
|
|
tmp &= ~1;
|
|
|
|
if (n < 16) {
|
|
/* Core integer register. */
|
|
env->regs[n] = tmp;
|
|
return 4;
|
|
}
|
|
if (n < 24) { /* 16-23 */
|
|
/* FPA registers (ignored). */
|
|
if (gdb_has_xml)
|
|
return 0;
|
|
return 12;
|
|
}
|
|
switch (n) {
|
|
case 24:
|
|
/* FPA status register (ignored). */
|
|
if (gdb_has_xml)
|
|
return 0;
|
|
return 4;
|
|
case 25:
|
|
/* CPSR */
|
|
cpsr_write (env, tmp, 0xffffffff);
|
|
return 4;
|
|
}
|
|
/* Unknown register. */
|
|
return 0;
|
|
}
|
|
|
|
#elif defined (TARGET_M68K)
|
|
|
|
#define NUM_CORE_REGS 18
|
|
|
|
#define GDB_CORE_XML "cf-core.xml"
|
|
|
|
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
if (n < 8) {
|
|
/* D0-D7 */
|
|
GET_REG32(env->dregs[n]);
|
|
} else if (n < 16) {
|
|
/* A0-A7 */
|
|
GET_REG32(env->aregs[n - 8]);
|
|
} else {
|
|
switch (n) {
|
|
case 16: GET_REG32(env->sr);
|
|
case 17: GET_REG32(env->pc);
|
|
}
|
|
}
|
|
/* FP registers not included here because they vary between
|
|
ColdFire and m68k. Use XML bits for these. */
|
|
return 0;
|
|
}
|
|
|
|
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
tmp = ldl_p(mem_buf);
|
|
|
|
if (n < 8) {
|
|
/* D0-D7 */
|
|
env->dregs[n] = tmp;
|
|
} else if (n < 8) {
|
|
/* A0-A7 */
|
|
env->aregs[n - 8] = tmp;
|
|
} else {
|
|
switch (n) {
|
|
case 16: env->sr = tmp; break;
|
|
case 17: env->pc = tmp; break;
|
|
default: return 0;
|
|
}
|
|
}
|
|
return 4;
|
|
}
|
|
#elif defined (TARGET_MIPS)
|
|
|
|
#define NUM_CORE_REGS 73
|
|
|
|
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
if (n < 32) {
|
|
GET_REGL(env->active_tc.gpr[n]);
|
|
}
|
|
if (env->CP0_Config1 & (1 << CP0C1_FP)) {
|
|
if (n >= 38 && n < 70) {
|
|
if (env->CP0_Status & (1 << CP0St_FR))
|
|
GET_REGL(env->active_fpu.fpr[n - 38].d);
|
|
else
|
|
GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
|
|
}
|
|
switch (n) {
|
|
case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
|
|
case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
|
|
}
|
|
}
|
|
switch (n) {
|
|
case 32: GET_REGL((int32_t)env->CP0_Status);
|
|
case 33: GET_REGL(env->active_tc.LO[0]);
|
|
case 34: GET_REGL(env->active_tc.HI[0]);
|
|
case 35: GET_REGL(env->CP0_BadVAddr);
|
|
case 36: GET_REGL((int32_t)env->CP0_Cause);
|
|
case 37: GET_REGL(env->active_tc.PC);
|
|
case 72: GET_REGL(0); /* fp */
|
|
case 89: GET_REGL((int32_t)env->CP0_PRid);
|
|
}
|
|
if (n >= 73 && n <= 88) {
|
|
/* 16 embedded regs. */
|
|
GET_REGL(0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* convert MIPS rounding mode in FCR31 to IEEE library */
|
|
static unsigned int ieee_rm[] =
|
|
{
|
|
float_round_nearest_even,
|
|
float_round_to_zero,
|
|
float_round_up,
|
|
float_round_down
|
|
};
|
|
#define RESTORE_ROUNDING_MODE \
|
|
set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
|
|
|
|
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
target_ulong tmp;
|
|
|
|
tmp = ldtul_p(mem_buf);
|
|
|
|
if (n < 32) {
|
|
env->active_tc.gpr[n] = tmp;
|
|
return sizeof(target_ulong);
|
|
}
|
|
if (env->CP0_Config1 & (1 << CP0C1_FP)
|
|
&& n >= 38 && n < 73) {
|
|
if (n < 70) {
|
|
if (env->CP0_Status & (1 << CP0St_FR))
|
|
env->active_fpu.fpr[n - 38].d = tmp;
|
|
else
|
|
env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
|
|
}
|
|
switch (n) {
|
|
case 70:
|
|
env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
|
|
/* set rounding mode */
|
|
RESTORE_ROUNDING_MODE;
|
|
#ifndef CONFIG_SOFTFLOAT
|
|
/* no floating point exception for native float */
|
|
SET_FP_ENABLE(env->active_fpu.fcr31, 0);
|
|
#endif
|
|
break;
|
|
case 71: env->active_fpu.fcr0 = tmp; break;
|
|
}
|
|
return sizeof(target_ulong);
|
|
}
|
|
switch (n) {
|
|
case 32: env->CP0_Status = tmp; break;
|
|
case 33: env->active_tc.LO[0] = tmp; break;
|
|
case 34: env->active_tc.HI[0] = tmp; break;
|
|
case 35: env->CP0_BadVAddr = tmp; break;
|
|
case 36: env->CP0_Cause = tmp; break;
|
|
case 37: env->active_tc.PC = tmp; break;
|
|
case 72: /* fp, ignored */ break;
|
|
default:
|
|
if (n > 89)
|
|
return 0;
|
|
/* Other registers are readonly. Ignore writes. */
|
|
break;
|
|
}
|
|
|
|
return sizeof(target_ulong);
|
|
}
|
|
#elif defined (TARGET_SH4)
|
|
|
|
/* Hint: Use "set architecture sh4" in GDB to see fpu registers */
|
|
/* FIXME: We should use XML for this. */
|
|
|
|
#define NUM_CORE_REGS 59
|
|
|
|
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
if (n < 8) {
|
|
if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
|
|
GET_REGL(env->gregs[n + 16]);
|
|
} else {
|
|
GET_REGL(env->gregs[n]);
|
|
}
|
|
} else if (n < 16) {
|
|
GET_REGL(env->gregs[n - 8]);
|
|
} else if (n >= 25 && n < 41) {
|
|
GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
|
|
} else if (n >= 43 && n < 51) {
|
|
GET_REGL(env->gregs[n - 43]);
|
|
} else if (n >= 51 && n < 59) {
|
|
GET_REGL(env->gregs[n - (51 - 16)]);
|
|
}
|
|
switch (n) {
|
|
case 16: GET_REGL(env->pc);
|
|
case 17: GET_REGL(env->pr);
|
|
case 18: GET_REGL(env->gbr);
|
|
case 19: GET_REGL(env->vbr);
|
|
case 20: GET_REGL(env->mach);
|
|
case 21: GET_REGL(env->macl);
|
|
case 22: GET_REGL(env->sr);
|
|
case 23: GET_REGL(env->fpul);
|
|
case 24: GET_REGL(env->fpscr);
|
|
case 41: GET_REGL(env->ssr);
|
|
case 42: GET_REGL(env->spc);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
tmp = ldl_p(mem_buf);
|
|
|
|
if (n < 8) {
|
|
if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
|
|
env->gregs[n + 16] = tmp;
|
|
} else {
|
|
env->gregs[n] = tmp;
|
|
}
|
|
return 4;
|
|
} else if (n < 16) {
|
|
env->gregs[n - 8] = tmp;
|
|
return 4;
|
|
} else if (n >= 25 && n < 41) {
|
|
env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
|
|
} else if (n >= 43 && n < 51) {
|
|
env->gregs[n - 43] = tmp;
|
|
return 4;
|
|
} else if (n >= 51 && n < 59) {
|
|
env->gregs[n - (51 - 16)] = tmp;
|
|
return 4;
|
|
}
|
|
switch (n) {
|
|
case 16: env->pc = tmp;
|
|
case 17: env->pr = tmp;
|
|
case 18: env->gbr = tmp;
|
|
case 19: env->vbr = tmp;
|
|
case 20: env->mach = tmp;
|
|
case 21: env->macl = tmp;
|
|
case 22: env->sr = tmp;
|
|
case 23: env->fpul = tmp;
|
|
case 24: env->fpscr = tmp;
|
|
case 41: env->ssr = tmp;
|
|
case 42: env->spc = tmp;
|
|
default: return 0;
|
|
}
|
|
|
|
return 4;
|
|
}
|
|
#elif defined (TARGET_CRIS)
|
|
|
|
#define NUM_CORE_REGS 49
|
|
|
|
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
uint8_t srs;
|
|
|
|
srs = env->pregs[PR_SRS];
|
|
if (n < 16) {
|
|
GET_REG32(env->regs[n]);
|
|
}
|
|
|
|
if (n >= 21 && n < 32) {
|
|
GET_REG32(env->pregs[n - 16]);
|
|
}
|
|
if (n >= 33 && n < 49) {
|
|
GET_REG32(env->sregs[srs][n - 33]);
|
|
}
|
|
switch (n) {
|
|
case 16: GET_REG8(env->pregs[0]);
|
|
case 17: GET_REG8(env->pregs[1]);
|
|
case 18: GET_REG32(env->pregs[2]);
|
|
case 19: GET_REG8(srs);
|
|
case 20: GET_REG16(env->pregs[4]);
|
|
case 32: GET_REG32(env->pc);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
if (n > 49)
|
|
return 0;
|
|
|
|
tmp = ldl_p(mem_buf);
|
|
|
|
if (n < 16) {
|
|
env->regs[n] = tmp;
|
|
}
|
|
|
|
if (n >= 21 && n < 32) {
|
|
env->pregs[n - 16] = tmp;
|
|
}
|
|
|
|
/* FIXME: Should support function regs be writable? */
|
|
switch (n) {
|
|
case 16: return 1;
|
|
case 17: return 1;
|
|
case 18: env->pregs[PR_PID] = tmp; break;
|
|
case 19: return 1;
|
|
case 20: return 2;
|
|
case 32: env->pc = tmp; break;
|
|
}
|
|
|
|
return 4;
|
|
}
|
|
#else
|
|
|
|
#define NUM_CORE_REGS 0
|
|
|
|
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
static int num_g_regs = NUM_CORE_REGS;
|
|
|
|
#ifdef GDB_CORE_XML
|
|
/* Encode data using the encoding for 'x' packets. */
|
|
static int memtox(char *buf, const char *mem, int len)
|
|
{
|
|
char *p = buf;
|
|
char c;
|
|
|
|
while (len--) {
|
|
c = *(mem++);
|
|
switch (c) {
|
|
case '#': case '$': case '*': case '}':
|
|
*(p++) = '}';
|
|
*(p++) = c ^ 0x20;
|
|
break;
|
|
default:
|
|
*(p++) = c;
|
|
break;
|
|
}
|
|
}
|
|
return p - buf;
|
|
}
|
|
|
|
const char *get_feature_xml(const char *p, const char **newp)
|
|
{
|
|
extern const char *const xml_builtin[][2];
|
|
size_t len;
|
|
int i;
|
|
const char *name;
|
|
static char target_xml[1024];
|
|
|
|
len = 0;
|
|
while (p[len] && p[len] != ':')
|
|
len++;
|
|
*newp = p + len;
|
|
|
|
name = NULL;
|
|
if (strncmp(p, "target.xml", len) == 0) {
|
|
/* Generate the XML description for this CPU. */
|
|
if (!target_xml[0]) {
|
|
GDBRegisterState *r;
|
|
|
|
snprintf(target_xml, sizeof(target_xml),
|
|
"<?xml version=\"1.0\"?>"
|
|
"<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
|
|
"<target>"
|
|
"<xi:include href=\"%s\"/>",
|
|
GDB_CORE_XML);
|
|
|
|
for (r = first_cpu->gdb_regs; r; r = r->next) {
|
|
strcat(target_xml, "<xi:include href=\"");
|
|
strcat(target_xml, r->xml);
|
|
strcat(target_xml, "\"/>");
|
|
}
|
|
strcat(target_xml, "</target>");
|
|
}
|
|
return target_xml;
|
|
}
|
|
for (i = 0; ; i++) {
|
|
name = xml_builtin[i][0];
|
|
if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
|
|
break;
|
|
}
|
|
return name ? xml_builtin[i][1] : NULL;
|
|
}
|
|
#endif
|
|
|
|
static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
|
|
{
|
|
GDBRegisterState *r;
|
|
|
|
if (reg < NUM_CORE_REGS)
|
|
return cpu_gdb_read_register(env, mem_buf, reg);
|
|
|
|
for (r = env->gdb_regs; r; r = r->next) {
|
|
if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
|
|
return r->get_reg(env, mem_buf, reg - r->base_reg);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
|
|
{
|
|
GDBRegisterState *r;
|
|
|
|
if (reg < NUM_CORE_REGS)
|
|
return cpu_gdb_write_register(env, mem_buf, reg);
|
|
|
|
for (r = env->gdb_regs; r; r = r->next) {
|
|
if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
|
|
return r->set_reg(env, mem_buf, reg - r->base_reg);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Register a supplemental set of CPU registers. If g_pos is nonzero it
|
|
specifies the first register number and these registers are included in
|
|
a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
|
|
gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
|
|
*/
|
|
|
|
void gdb_register_coprocessor(CPUState * env,
|
|
gdb_reg_cb get_reg, gdb_reg_cb set_reg,
|
|
int num_regs, const char *xml, int g_pos)
|
|
{
|
|
GDBRegisterState *s;
|
|
GDBRegisterState **p;
|
|
static int last_reg = NUM_CORE_REGS;
|
|
|
|
s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
|
|
s->base_reg = last_reg;
|
|
s->num_regs = num_regs;
|
|
s->get_reg = get_reg;
|
|
s->set_reg = set_reg;
|
|
s->xml = xml;
|
|
p = &env->gdb_regs;
|
|
while (*p) {
|
|
/* Check for duplicates. */
|
|
if (strcmp((*p)->xml, xml) == 0)
|
|
return;
|
|
p = &(*p)->next;
|
|
}
|
|
/* Add to end of list. */
|
|
last_reg += num_regs;
|
|
*p = s;
|
|
if (g_pos) {
|
|
if (g_pos != s->base_reg) {
|
|
fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
|
|
"Expected %d got %d\n", xml, g_pos, s->base_reg);
|
|
} else {
|
|
num_g_regs = last_reg;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* GDB breakpoint/watchpoint types */
|
|
#define GDB_BREAKPOINT_SW 0
|
|
#define GDB_BREAKPOINT_HW 1
|
|
#define GDB_WATCHPOINT_WRITE 2
|
|
#define GDB_WATCHPOINT_READ 3
|
|
#define GDB_WATCHPOINT_ACCESS 4
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
static const int xlat_gdb_type[] = {
|
|
[GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
|
|
[GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
|
|
[GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
|
|
};
|
|
#endif
|
|
|
|
static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
|
|
{
|
|
CPUState *env;
|
|
int err = 0;
|
|
|
|
switch (type) {
|
|
case GDB_BREAKPOINT_SW:
|
|
case GDB_BREAKPOINT_HW:
|
|
for (env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
|
|
if (err)
|
|
break;
|
|
}
|
|
return err;
|
|
#ifndef CONFIG_USER_ONLY
|
|
case GDB_WATCHPOINT_WRITE:
|
|
case GDB_WATCHPOINT_READ:
|
|
case GDB_WATCHPOINT_ACCESS:
|
|
for (env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
|
|
NULL);
|
|
if (err)
|
|
break;
|
|
}
|
|
return err;
|
|
#endif
|
|
default:
|
|
return -ENOSYS;
|
|
}
|
|
}
|
|
|
|
static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
|
|
{
|
|
CPUState *env;
|
|
int err = 0;
|
|
|
|
switch (type) {
|
|
case GDB_BREAKPOINT_SW:
|
|
case GDB_BREAKPOINT_HW:
|
|
for (env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
err = cpu_breakpoint_remove(env, addr, BP_GDB);
|
|
if (err)
|
|
break;
|
|
}
|
|
return err;
|
|
#ifndef CONFIG_USER_ONLY
|
|
case GDB_WATCHPOINT_WRITE:
|
|
case GDB_WATCHPOINT_READ:
|
|
case GDB_WATCHPOINT_ACCESS:
|
|
for (env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
|
|
if (err)
|
|
break;
|
|
}
|
|
return err;
|
|
#endif
|
|
default:
|
|
return -ENOSYS;
|
|
}
|
|
}
|
|
|
|
static void gdb_breakpoint_remove_all(void)
|
|
{
|
|
CPUState *env;
|
|
|
|
for (env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
cpu_breakpoint_remove_all(env, BP_GDB);
|
|
#ifndef CONFIG_USER_ONLY
|
|
cpu_watchpoint_remove_all(env, BP_GDB);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static int gdb_handle_packet(GDBState *s, const char *line_buf)
|
|
{
|
|
CPUState *env;
|
|
const char *p;
|
|
int ch, reg_size, type, res, thread;
|
|
char buf[MAX_PACKET_LENGTH];
|
|
uint8_t mem_buf[MAX_PACKET_LENGTH];
|
|
uint8_t *registers;
|
|
target_ulong addr, len;
|
|
|
|
#ifdef DEBUG_GDB
|
|
printf("command='%s'\n", line_buf);
|
|
#endif
|
|
p = line_buf;
|
|
ch = *p++;
|
|
switch(ch) {
|
|
case '?':
|
|
/* TODO: Make this return the correct value for user-mode. */
|
|
snprintf(buf, sizeof(buf), "T%02xthread:%02x;", SIGTRAP,
|
|
s->c_cpu->cpu_index+1);
|
|
put_packet(s, buf);
|
|
/* Remove all the breakpoints when this query is issued,
|
|
* because gdb is doing and initial connect and the state
|
|
* should be cleaned up.
|
|
*/
|
|
gdb_breakpoint_remove_all();
|
|
break;
|
|
case 'c':
|
|
if (*p != '\0') {
|
|
addr = strtoull(p, (char **)&p, 16);
|
|
#if defined(TARGET_I386)
|
|
s->c_cpu->eip = addr;
|
|
#elif defined (TARGET_PPC)
|
|
s->c_cpu->nip = addr;
|
|
#elif defined (TARGET_SPARC)
|
|
s->c_cpu->pc = addr;
|
|
s->c_cpu->npc = addr + 4;
|
|
#elif defined (TARGET_ARM)
|
|
s->c_cpu->regs[15] = addr;
|
|
#elif defined (TARGET_SH4)
|
|
s->c_cpu->pc = addr;
|
|
#elif defined (TARGET_MIPS)
|
|
s->c_cpu->active_tc.PC = addr;
|
|
#elif defined (TARGET_CRIS)
|
|
s->c_cpu->pc = addr;
|
|
#endif
|
|
}
|
|
gdb_continue(s);
|
|
return RS_IDLE;
|
|
case 'C':
|
|
s->signal = strtoul(p, (char **)&p, 16);
|
|
gdb_continue(s);
|
|
return RS_IDLE;
|
|
case 'k':
|
|
/* Kill the target */
|
|
fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
|
|
exit(0);
|
|
case 'D':
|
|
/* Detach packet */
|
|
gdb_breakpoint_remove_all();
|
|
gdb_continue(s);
|
|
put_packet(s, "OK");
|
|
break;
|
|
case 's':
|
|
if (*p != '\0') {
|
|
addr = strtoull(p, (char **)&p, 16);
|
|
#if defined(TARGET_I386)
|
|
s->c_cpu->eip = addr;
|
|
#elif defined (TARGET_PPC)
|
|
s->c_cpu->nip = addr;
|
|
#elif defined (TARGET_SPARC)
|
|
s->c_cpu->pc = addr;
|
|
s->c_cpu->npc = addr + 4;
|
|
#elif defined (TARGET_ARM)
|
|
s->c_cpu->regs[15] = addr;
|
|
#elif defined (TARGET_SH4)
|
|
s->c_cpu->pc = addr;
|
|
#elif defined (TARGET_MIPS)
|
|
s->c_cpu->active_tc.PC = addr;
|
|
#elif defined (TARGET_CRIS)
|
|
s->c_cpu->pc = addr;
|
|
#endif
|
|
}
|
|
cpu_single_step(s->c_cpu, sstep_flags);
|
|
gdb_continue(s);
|
|
return RS_IDLE;
|
|
case 'F':
|
|
{
|
|
target_ulong ret;
|
|
target_ulong err;
|
|
|
|
ret = strtoull(p, (char **)&p, 16);
|
|
if (*p == ',') {
|
|
p++;
|
|
err = strtoull(p, (char **)&p, 16);
|
|
} else {
|
|
err = 0;
|
|
}
|
|
if (*p == ',')
|
|
p++;
|
|
type = *p;
|
|
if (gdb_current_syscall_cb)
|
|
gdb_current_syscall_cb(s->c_cpu, ret, err);
|
|
if (type == 'C') {
|
|
put_packet(s, "T02");
|
|
} else {
|
|
gdb_continue(s);
|
|
}
|
|
}
|
|
break;
|
|
case 'g':
|
|
len = 0;
|
|
for (addr = 0; addr < num_g_regs; addr++) {
|
|
reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
|
|
len += reg_size;
|
|
}
|
|
memtohex(buf, mem_buf, len);
|
|
put_packet(s, buf);
|
|
break;
|
|
case 'G':
|
|
registers = mem_buf;
|
|
len = strlen(p) / 2;
|
|
hextomem((uint8_t *)registers, p, len);
|
|
for (addr = 0; addr < num_g_regs && len > 0; addr++) {
|
|
reg_size = gdb_write_register(s->g_cpu, registers, addr);
|
|
len -= reg_size;
|
|
registers += reg_size;
|
|
}
|
|
put_packet(s, "OK");
|
|
break;
|
|
case 'm':
|
|
addr = strtoull(p, (char **)&p, 16);
|
|
if (*p == ',')
|
|
p++;
|
|
len = strtoull(p, NULL, 16);
|
|
if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
|
|
put_packet (s, "E14");
|
|
} else {
|
|
memtohex(buf, mem_buf, len);
|
|
put_packet(s, buf);
|
|
}
|
|
break;
|
|
case 'M':
|
|
addr = strtoull(p, (char **)&p, 16);
|
|
if (*p == ',')
|
|
p++;
|
|
len = strtoull(p, (char **)&p, 16);
|
|
if (*p == ':')
|
|
p++;
|
|
hextomem(mem_buf, p, len);
|
|
if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
|
|
put_packet(s, "E14");
|
|
else
|
|
put_packet(s, "OK");
|
|
break;
|
|
case 'p':
|
|
/* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
|
|
This works, but can be very slow. Anything new enough to
|
|
understand XML also knows how to use this properly. */
|
|
if (!gdb_has_xml)
|
|
goto unknown_command;
|
|
addr = strtoull(p, (char **)&p, 16);
|
|
reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
|
|
if (reg_size) {
|
|
memtohex(buf, mem_buf, reg_size);
|
|
put_packet(s, buf);
|
|
} else {
|
|
put_packet(s, "E14");
|
|
}
|
|
break;
|
|
case 'P':
|
|
if (!gdb_has_xml)
|
|
goto unknown_command;
|
|
addr = strtoull(p, (char **)&p, 16);
|
|
if (*p == '=')
|
|
p++;
|
|
reg_size = strlen(p) / 2;
|
|
hextomem(mem_buf, p, reg_size);
|
|
gdb_write_register(s->g_cpu, mem_buf, addr);
|
|
put_packet(s, "OK");
|
|
break;
|
|
case 'Z':
|
|
case 'z':
|
|
type = strtoul(p, (char **)&p, 16);
|
|
if (*p == ',')
|
|
p++;
|
|
addr = strtoull(p, (char **)&p, 16);
|
|
if (*p == ',')
|
|
p++;
|
|
len = strtoull(p, (char **)&p, 16);
|
|
if (ch == 'Z')
|
|
res = gdb_breakpoint_insert(addr, len, type);
|
|
else
|
|
res = gdb_breakpoint_remove(addr, len, type);
|
|
if (res >= 0)
|
|
put_packet(s, "OK");
|
|
else if (res == -ENOSYS)
|
|
put_packet(s, "");
|
|
else
|
|
put_packet(s, "E22");
|
|
break;
|
|
case 'H':
|
|
type = *p++;
|
|
thread = strtoull(p, (char **)&p, 16);
|
|
if (thread == -1 || thread == 0) {
|
|
put_packet(s, "OK");
|
|
break;
|
|
}
|
|
for (env = first_cpu; env != NULL; env = env->next_cpu)
|
|
if (env->cpu_index + 1 == thread)
|
|
break;
|
|
if (env == NULL) {
|
|
put_packet(s, "E22");
|
|
break;
|
|
}
|
|
switch (type) {
|
|
case 'c':
|
|
s->c_cpu = env;
|
|
put_packet(s, "OK");
|
|
break;
|
|
case 'g':
|
|
s->g_cpu = env;
|
|
put_packet(s, "OK");
|
|
break;
|
|
default:
|
|
put_packet(s, "E22");
|
|
break;
|
|
}
|
|
break;
|
|
case 'T':
|
|
thread = strtoull(p, (char **)&p, 16);
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (thread > 0 && thread < smp_cpus + 1)
|
|
#else
|
|
if (thread == 1)
|
|
#endif
|
|
put_packet(s, "OK");
|
|
else
|
|
put_packet(s, "E22");
|
|
break;
|
|
case 'q':
|
|
case 'Q':
|
|
/* parse any 'q' packets here */
|
|
if (!strcmp(p,"qemu.sstepbits")) {
|
|
/* Query Breakpoint bit definitions */
|
|
snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
|
|
SSTEP_ENABLE,
|
|
SSTEP_NOIRQ,
|
|
SSTEP_NOTIMER);
|
|
put_packet(s, buf);
|
|
break;
|
|
} else if (strncmp(p,"qemu.sstep",10) == 0) {
|
|
/* Display or change the sstep_flags */
|
|
p += 10;
|
|
if (*p != '=') {
|
|
/* Display current setting */
|
|
snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
|
|
put_packet(s, buf);
|
|
break;
|
|
}
|
|
p++;
|
|
type = strtoul(p, (char **)&p, 16);
|
|
sstep_flags = type;
|
|
put_packet(s, "OK");
|
|
break;
|
|
} else if (strcmp(p,"C") == 0) {
|
|
/* "Current thread" remains vague in the spec, so always return
|
|
* the first CPU (gdb returns the first thread). */
|
|
put_packet(s, "QC1");
|
|
break;
|
|
} else if (strcmp(p,"fThreadInfo") == 0) {
|
|
s->query_cpu = first_cpu;
|
|
goto report_cpuinfo;
|
|
} else if (strcmp(p,"sThreadInfo") == 0) {
|
|
report_cpuinfo:
|
|
if (s->query_cpu) {
|
|
snprintf(buf, sizeof(buf), "m%x", s->query_cpu->cpu_index+1);
|
|
put_packet(s, buf);
|
|
s->query_cpu = s->query_cpu->next_cpu;
|
|
} else
|
|
put_packet(s, "l");
|
|
break;
|
|
} else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
|
|
thread = strtoull(p+16, (char **)&p, 16);
|
|
for (env = first_cpu; env != NULL; env = env->next_cpu)
|
|
if (env->cpu_index + 1 == thread) {
|
|
len = snprintf((char *)mem_buf, sizeof(mem_buf),
|
|
"CPU#%d [%s]", env->cpu_index,
|
|
env->halted ? "halted " : "running");
|
|
memtohex(buf, mem_buf, len);
|
|
put_packet(s, buf);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
#ifdef CONFIG_LINUX_USER
|
|
else if (strncmp(p, "Offsets", 7) == 0) {
|
|
TaskState *ts = s->c_cpu->opaque;
|
|
|
|
snprintf(buf, sizeof(buf),
|
|
"Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
|
|
";Bss=" TARGET_ABI_FMT_lx,
|
|
ts->info->code_offset,
|
|
ts->info->data_offset,
|
|
ts->info->data_offset);
|
|
put_packet(s, buf);
|
|
break;
|
|
}
|
|
#endif
|
|
if (strncmp(p, "Supported", 9) == 0) {
|
|
snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
|
|
#ifdef GDB_CORE_XML
|
|
strcat(buf, ";qXfer:features:read+");
|
|
#endif
|
|
put_packet(s, buf);
|
|
break;
|
|
}
|
|
#ifdef GDB_CORE_XML
|
|
if (strncmp(p, "Xfer:features:read:", 19) == 0) {
|
|
const char *xml;
|
|
target_ulong total_len;
|
|
|
|
gdb_has_xml = 1;
|
|
p += 19;
|
|
xml = get_feature_xml(p, &p);
|
|
if (!xml) {
|
|
snprintf(buf, sizeof(buf), "E00");
|
|
put_packet(s, buf);
|
|
break;
|
|
}
|
|
|
|
if (*p == ':')
|
|
p++;
|
|
addr = strtoul(p, (char **)&p, 16);
|
|
if (*p == ',')
|
|
p++;
|
|
len = strtoul(p, (char **)&p, 16);
|
|
|
|
total_len = strlen(xml);
|
|
if (addr > total_len) {
|
|
snprintf(buf, sizeof(buf), "E00");
|
|
put_packet(s, buf);
|
|
break;
|
|
}
|
|
if (len > (MAX_PACKET_LENGTH - 5) / 2)
|
|
len = (MAX_PACKET_LENGTH - 5) / 2;
|
|
if (len < total_len - addr) {
|
|
buf[0] = 'm';
|
|
len = memtox(buf + 1, xml + addr, len);
|
|
} else {
|
|
buf[0] = 'l';
|
|
len = memtox(buf + 1, xml + addr, total_len - addr);
|
|
}
|
|
put_packet_binary(s, buf, len + 1);
|
|
break;
|
|
}
|
|
#endif
|
|
/* Unrecognised 'q' command. */
|
|
goto unknown_command;
|
|
|
|
default:
|
|
unknown_command:
|
|
/* put empty packet */
|
|
buf[0] = '\0';
|
|
put_packet(s, buf);
|
|
break;
|
|
}
|
|
return RS_IDLE;
|
|
}
|
|
|
|
extern void tb_flush(CPUState *env);
|
|
|
|
void gdb_set_stop_cpu(CPUState *env)
|
|
{
|
|
gdbserver_state->c_cpu = env;
|
|
gdbserver_state->g_cpu = env;
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
static void gdb_vm_stopped(void *opaque, int reason)
|
|
{
|
|
GDBState *s = gdbserver_state;
|
|
CPUState *env = s->c_cpu;
|
|
char buf[256];
|
|
const char *type;
|
|
int ret;
|
|
|
|
if (s->state == RS_SYSCALL)
|
|
return;
|
|
|
|
/* disable single step if it was enable */
|
|
cpu_single_step(env, 0);
|
|
|
|
if (reason == EXCP_DEBUG) {
|
|
if (env->watchpoint_hit) {
|
|
switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
|
|
case BP_MEM_READ:
|
|
type = "r";
|
|
break;
|
|
case BP_MEM_ACCESS:
|
|
type = "a";
|
|
break;
|
|
default:
|
|
type = "";
|
|
break;
|
|
}
|
|
snprintf(buf, sizeof(buf),
|
|
"T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
|
|
SIGTRAP, env->cpu_index+1, type,
|
|
env->watchpoint_hit->vaddr);
|
|
put_packet(s, buf);
|
|
env->watchpoint_hit = NULL;
|
|
return;
|
|
}
|
|
tb_flush(env);
|
|
ret = SIGTRAP;
|
|
} else if (reason == EXCP_INTERRUPT) {
|
|
ret = SIGINT;
|
|
} else {
|
|
ret = 0;
|
|
}
|
|
snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, env->cpu_index+1);
|
|
put_packet(s, buf);
|
|
}
|
|
#endif
|
|
|
|
/* Send a gdb syscall request.
|
|
This accepts limited printf-style format specifiers, specifically:
|
|
%x - target_ulong argument printed in hex.
|
|
%lx - 64-bit argument printed in hex.
|
|
%s - string pointer (target_ulong) and length (int) pair. */
|
|
void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
|
|
{
|
|
va_list va;
|
|
char buf[256];
|
|
char *p;
|
|
target_ulong addr;
|
|
uint64_t i64;
|
|
GDBState *s;
|
|
|
|
s = gdbserver_state;
|
|
if (!s)
|
|
return;
|
|
gdb_current_syscall_cb = cb;
|
|
s->state = RS_SYSCALL;
|
|
#ifndef CONFIG_USER_ONLY
|
|
vm_stop(EXCP_DEBUG);
|
|
#endif
|
|
s->state = RS_IDLE;
|
|
va_start(va, fmt);
|
|
p = buf;
|
|
*(p++) = 'F';
|
|
while (*fmt) {
|
|
if (*fmt == '%') {
|
|
fmt++;
|
|
switch (*fmt++) {
|
|
case 'x':
|
|
addr = va_arg(va, target_ulong);
|
|
p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
|
|
break;
|
|
case 'l':
|
|
if (*(fmt++) != 'x')
|
|
goto bad_format;
|
|
i64 = va_arg(va, uint64_t);
|
|
p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
|
|
break;
|
|
case 's':
|
|
addr = va_arg(va, target_ulong);
|
|
p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
|
|
addr, va_arg(va, int));
|
|
break;
|
|
default:
|
|
bad_format:
|
|
fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
|
|
fmt - 1);
|
|
break;
|
|
}
|
|
} else {
|
|
*(p++) = *(fmt++);
|
|
}
|
|
}
|
|
*p = 0;
|
|
va_end(va);
|
|
put_packet(s, buf);
|
|
#ifdef CONFIG_USER_ONLY
|
|
gdb_handlesig(s->c_cpu, 0);
|
|
#else
|
|
cpu_interrupt(s->c_cpu, CPU_INTERRUPT_EXIT);
|
|
#endif
|
|
}
|
|
|
|
static void gdb_read_byte(GDBState *s, int ch)
|
|
{
|
|
int i, csum;
|
|
uint8_t reply;
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (s->last_packet_len) {
|
|
/* Waiting for a response to the last packet. If we see the start
|
|
of a new command then abandon the previous response. */
|
|
if (ch == '-') {
|
|
#ifdef DEBUG_GDB
|
|
printf("Got NACK, retransmitting\n");
|
|
#endif
|
|
put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
|
|
}
|
|
#ifdef DEBUG_GDB
|
|
else if (ch == '+')
|
|
printf("Got ACK\n");
|
|
else
|
|
printf("Got '%c' when expecting ACK/NACK\n", ch);
|
|
#endif
|
|
if (ch == '+' || ch == '$')
|
|
s->last_packet_len = 0;
|
|
if (ch != '$')
|
|
return;
|
|
}
|
|
if (vm_running) {
|
|
/* when the CPU is running, we cannot do anything except stop
|
|
it when receiving a char */
|
|
vm_stop(EXCP_INTERRUPT);
|
|
} else
|
|
#endif
|
|
{
|
|
switch(s->state) {
|
|
case RS_IDLE:
|
|
if (ch == '$') {
|
|
s->line_buf_index = 0;
|
|
s->state = RS_GETLINE;
|
|
}
|
|
break;
|
|
case RS_GETLINE:
|
|
if (ch == '#') {
|
|
s->state = RS_CHKSUM1;
|
|
} else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
|
|
s->state = RS_IDLE;
|
|
} else {
|
|
s->line_buf[s->line_buf_index++] = ch;
|
|
}
|
|
break;
|
|
case RS_CHKSUM1:
|
|
s->line_buf[s->line_buf_index] = '\0';
|
|
s->line_csum = fromhex(ch) << 4;
|
|
s->state = RS_CHKSUM2;
|
|
break;
|
|
case RS_CHKSUM2:
|
|
s->line_csum |= fromhex(ch);
|
|
csum = 0;
|
|
for(i = 0; i < s->line_buf_index; i++) {
|
|
csum += s->line_buf[i];
|
|
}
|
|
if (s->line_csum != (csum & 0xff)) {
|
|
reply = '-';
|
|
put_buffer(s, &reply, 1);
|
|
s->state = RS_IDLE;
|
|
} else {
|
|
reply = '+';
|
|
put_buffer(s, &reply, 1);
|
|
s->state = gdb_handle_packet(s, s->line_buf);
|
|
}
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
int
|
|
gdb_handlesig (CPUState *env, int sig)
|
|
{
|
|
GDBState *s;
|
|
char buf[256];
|
|
int n;
|
|
|
|
s = gdbserver_state;
|
|
if (gdbserver_fd < 0 || s->fd < 0)
|
|
return sig;
|
|
|
|
/* disable single step if it was enabled */
|
|
cpu_single_step(env, 0);
|
|
tb_flush(env);
|
|
|
|
if (sig != 0)
|
|
{
|
|
snprintf(buf, sizeof(buf), "S%02x", sig);
|
|
put_packet(s, buf);
|
|
}
|
|
/* put_packet() might have detected that the peer terminated the
|
|
connection. */
|
|
if (s->fd < 0)
|
|
return sig;
|
|
|
|
sig = 0;
|
|
s->state = RS_IDLE;
|
|
s->running_state = 0;
|
|
while (s->running_state == 0) {
|
|
n = read (s->fd, buf, 256);
|
|
if (n > 0)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < n; i++)
|
|
gdb_read_byte (s, buf[i]);
|
|
}
|
|
else if (n == 0 || errno != EAGAIN)
|
|
{
|
|
/* XXX: Connection closed. Should probably wait for annother
|
|
connection before continuing. */
|
|
return sig;
|
|
}
|
|
}
|
|
sig = s->signal;
|
|
s->signal = 0;
|
|
return sig;
|
|
}
|
|
|
|
/* Tell the remote gdb that the process has exited. */
|
|
void gdb_exit(CPUState *env, int code)
|
|
{
|
|
GDBState *s;
|
|
char buf[4];
|
|
|
|
s = gdbserver_state;
|
|
if (gdbserver_fd < 0 || s->fd < 0)
|
|
return;
|
|
|
|
snprintf(buf, sizeof(buf), "W%02x", code);
|
|
put_packet(s, buf);
|
|
}
|
|
|
|
|
|
static void gdb_accept(void)
|
|
{
|
|
GDBState *s;
|
|
struct sockaddr_in sockaddr;
|
|
socklen_t len;
|
|
int val, fd;
|
|
|
|
for(;;) {
|
|
len = sizeof(sockaddr);
|
|
fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
|
|
if (fd < 0 && errno != EINTR) {
|
|
perror("accept");
|
|
return;
|
|
} else if (fd >= 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* set short latency */
|
|
val = 1;
|
|
setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
|
|
|
|
s = qemu_mallocz(sizeof(GDBState));
|
|
if (!s) {
|
|
errno = ENOMEM;
|
|
perror("accept");
|
|
return;
|
|
}
|
|
|
|
memset (s, 0, sizeof (GDBState));
|
|
s->c_cpu = first_cpu;
|
|
s->g_cpu = first_cpu;
|
|
s->fd = fd;
|
|
gdb_has_xml = 0;
|
|
|
|
gdbserver_state = s;
|
|
|
|
fcntl(fd, F_SETFL, O_NONBLOCK);
|
|
}
|
|
|
|
static int gdbserver_open(int port)
|
|
{
|
|
struct sockaddr_in sockaddr;
|
|
int fd, val, ret;
|
|
|
|
fd = socket(PF_INET, SOCK_STREAM, 0);
|
|
if (fd < 0) {
|
|
perror("socket");
|
|
return -1;
|
|
}
|
|
|
|
/* allow fast reuse */
|
|
val = 1;
|
|
setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
|
|
|
|
sockaddr.sin_family = AF_INET;
|
|
sockaddr.sin_port = htons(port);
|
|
sockaddr.sin_addr.s_addr = 0;
|
|
ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
|
|
if (ret < 0) {
|
|
perror("bind");
|
|
return -1;
|
|
}
|
|
ret = listen(fd, 0);
|
|
if (ret < 0) {
|
|
perror("listen");
|
|
return -1;
|
|
}
|
|
return fd;
|
|
}
|
|
|
|
int gdbserver_start(int port)
|
|
{
|
|
gdbserver_fd = gdbserver_open(port);
|
|
if (gdbserver_fd < 0)
|
|
return -1;
|
|
/* accept connections */
|
|
gdb_accept();
|
|
return 0;
|
|
}
|
|
#else
|
|
static int gdb_chr_can_receive(void *opaque)
|
|
{
|
|
/* We can handle an arbitrarily large amount of data.
|
|
Pick the maximum packet size, which is as good as anything. */
|
|
return MAX_PACKET_LENGTH;
|
|
}
|
|
|
|
static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
gdb_read_byte(gdbserver_state, buf[i]);
|
|
}
|
|
}
|
|
|
|
static void gdb_chr_event(void *opaque, int event)
|
|
{
|
|
switch (event) {
|
|
case CHR_EVENT_RESET:
|
|
vm_stop(EXCP_INTERRUPT);
|
|
gdb_has_xml = 0;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
int gdbserver_start(const char *port)
|
|
{
|
|
GDBState *s;
|
|
char gdbstub_port_name[128];
|
|
int port_num;
|
|
char *p;
|
|
CharDriverState *chr;
|
|
|
|
if (!port || !*port)
|
|
return -1;
|
|
|
|
port_num = strtol(port, &p, 10);
|
|
if (*p == 0) {
|
|
/* A numeric value is interpreted as a port number. */
|
|
snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
|
|
"tcp::%d,nowait,nodelay,server", port_num);
|
|
port = gdbstub_port_name;
|
|
}
|
|
|
|
chr = qemu_chr_open("gdb", port);
|
|
if (!chr)
|
|
return -1;
|
|
|
|
s = qemu_mallocz(sizeof(GDBState));
|
|
if (!s) {
|
|
return -1;
|
|
}
|
|
s->c_cpu = first_cpu;
|
|
s->g_cpu = first_cpu;
|
|
s->chr = chr;
|
|
gdbserver_state = s;
|
|
qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
|
|
gdb_chr_event, NULL);
|
|
qemu_add_vm_stop_handler(gdb_vm_stopped, NULL);
|
|
return 0;
|
|
}
|
|
#endif
|