qemu-e2k/hw/ide/pci.c
Andrea Arcangeli 953844d102 ide: Avoid canceling IDE DMA
The reason for not actually canceling the I/O is because with
virtualization and lots of VM running, a guest fs may mistake a
overload of the host, as an IDE timeout. So rather than canceling the
I/O, it's safer to wait I/O completion and simulate that the I/O has
completed just before the io cancellation was requested by the
guest. This way if ntfs or an app writes data without checking for
-EIO retval, and it thinks the write has succeeded, it's less likely
to run into troubles. Similar issues for reads.

Furthermore because the DMA operation is splitted into many synchronous
aio_read/write if there's more than one entry in the SG table, without this
patch the DMA would be cancelled in the middle, something we've no idea if it
happens on real hardware too or not. Overall this seems a great risk for zero
gain.

This approach is sure safer than previous code given we can't pretend all guest
fs code out there to check for errors and reply the DMA if it was completed
partially, given a timeout would never materialize on a real harddisk unless
there are defective blocks (and defective blocks are practically only an issue
for reads never for writes in any recent hardware as writing to blocks is the
way to fix them) or the harddisk breaks as a whole.

Signed-off-by: Izik Eidus <ieidus@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2010-08-03 15:57:22 +02:00

232 lines
6.7 KiB
C

/*
* QEMU IDE Emulation: PCI Bus support.
*
* Copyright (c) 2003 Fabrice Bellard
* Copyright (c) 2006 Openedhand Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <hw/hw.h>
#include <hw/pc.h>
#include <hw/pci.h>
#include <hw/isa.h>
#include "block.h"
#include "block_int.h"
#include "sysemu.h"
#include "dma.h"
#include <hw/ide/pci.h>
void bmdma_cmd_writeb(void *opaque, uint32_t addr, uint32_t val)
{
BMDMAState *bm = opaque;
#ifdef DEBUG_IDE
printf("%s: 0x%08x\n", __func__, val);
#endif
if (!(val & BM_CMD_START)) {
/*
* We can't cancel Scatter Gather DMA in the middle of the
* operation or a partial (not full) DMA transfer would reach
* the storage so we wait for completion instead (we beahve
* like if the DMA was completed by the time the guest trying
* to cancel dma with bmdma_cmd_writeb with BM_CMD_START not
* set).
*
* In the future we'll be able to safely cancel the I/O if the
* whole DMA operation will be submitted to disk with a single
* aio operation with preadv/pwritev.
*/
if (bm->aiocb) {
qemu_aio_flush();
#ifdef DEBUG_IDE
if (bm->aiocb)
printf("ide_dma_cancel: aiocb still pending");
if (bm->status & BM_STATUS_DMAING)
printf("ide_dma_cancel: BM_STATUS_DMAING still pending");
#endif
}
bm->cmd = val & 0x09;
} else {
if (!(bm->status & BM_STATUS_DMAING)) {
bm->status |= BM_STATUS_DMAING;
/* start dma transfer if possible */
if (bm->dma_cb)
bm->dma_cb(bm, 0);
}
bm->cmd = val & 0x09;
}
}
uint32_t bmdma_addr_readb(void *opaque, uint32_t addr)
{
BMDMAState *bm = opaque;
uint32_t val;
val = (bm->addr >> ((addr & 3) * 8)) & 0xff;
#ifdef DEBUG_IDE
printf("%s: 0x%08x\n", __func__, val);
#endif
return val;
}
void bmdma_addr_writeb(void *opaque, uint32_t addr, uint32_t val)
{
BMDMAState *bm = opaque;
int shift = (addr & 3) * 8;
#ifdef DEBUG_IDE
printf("%s: 0x%08x\n", __func__, val);
#endif
bm->addr &= ~(0xFF << shift);
bm->addr |= ((val & 0xFF) << shift) & ~3;
bm->cur_addr = bm->addr;
}
uint32_t bmdma_addr_readw(void *opaque, uint32_t addr)
{
BMDMAState *bm = opaque;
uint32_t val;
val = (bm->addr >> ((addr & 3) * 8)) & 0xffff;
#ifdef DEBUG_IDE
printf("%s: 0x%08x\n", __func__, val);
#endif
return val;
}
void bmdma_addr_writew(void *opaque, uint32_t addr, uint32_t val)
{
BMDMAState *bm = opaque;
int shift = (addr & 3) * 8;
#ifdef DEBUG_IDE
printf("%s: 0x%08x\n", __func__, val);
#endif
bm->addr &= ~(0xFFFF << shift);
bm->addr |= ((val & 0xFFFF) << shift) & ~3;
bm->cur_addr = bm->addr;
}
uint32_t bmdma_addr_readl(void *opaque, uint32_t addr)
{
BMDMAState *bm = opaque;
uint32_t val;
val = bm->addr;
#ifdef DEBUG_IDE
printf("%s: 0x%08x\n", __func__, val);
#endif
return val;
}
void bmdma_addr_writel(void *opaque, uint32_t addr, uint32_t val)
{
BMDMAState *bm = opaque;
#ifdef DEBUG_IDE
printf("%s: 0x%08x\n", __func__, val);
#endif
bm->addr = val & ~3;
bm->cur_addr = bm->addr;
}
static bool ide_bmdma_current_needed(void *opaque)
{
BMDMAState *bm = opaque;
return (bm->cur_prd_len != 0);
}
static const VMStateDescription vmstate_bmdma_current = {
.name = "ide bmdma_current",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField []) {
VMSTATE_UINT32(cur_addr, BMDMAState),
VMSTATE_UINT32(cur_prd_last, BMDMAState),
VMSTATE_UINT32(cur_prd_addr, BMDMAState),
VMSTATE_UINT32(cur_prd_len, BMDMAState),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_bmdma = {
.name = "ide bmdma",
.version_id = 3,
.minimum_version_id = 0,
.minimum_version_id_old = 0,
.fields = (VMStateField []) {
VMSTATE_UINT8(cmd, BMDMAState),
VMSTATE_UINT8(status, BMDMAState),
VMSTATE_UINT32(addr, BMDMAState),
VMSTATE_INT64(sector_num, BMDMAState),
VMSTATE_UINT32(nsector, BMDMAState),
VMSTATE_UINT8(unit, BMDMAState),
VMSTATE_END_OF_LIST()
},
.subsections = (VMStateSubsection []) {
{
.vmsd = &vmstate_bmdma_current,
.needed = ide_bmdma_current_needed,
}, {
/* empty */
}
}
};
static int ide_pci_post_load(void *opaque, int version_id)
{
PCIIDEState *d = opaque;
int i;
for(i = 0; i < 2; i++) {
/* current versions always store 0/1, but older version
stored bigger values. We only need last bit */
d->bmdma[i].unit &= 1;
}
return 0;
}
const VMStateDescription vmstate_ide_pci = {
.name = "ide",
.version_id = 3,
.minimum_version_id = 0,
.minimum_version_id_old = 0,
.post_load = ide_pci_post_load,
.fields = (VMStateField []) {
VMSTATE_PCI_DEVICE(dev, PCIIDEState),
VMSTATE_STRUCT_ARRAY(bmdma, PCIIDEState, 2, 0,
vmstate_bmdma, BMDMAState),
VMSTATE_IDE_BUS_ARRAY(bus, PCIIDEState, 2),
VMSTATE_IDE_DRIVES(bus[0].ifs, PCIIDEState),
VMSTATE_IDE_DRIVES(bus[1].ifs, PCIIDEState),
VMSTATE_END_OF_LIST()
}
};
void pci_ide_create_devs(PCIDevice *dev, DriveInfo **hd_table)
{
PCIIDEState *d = DO_UPCAST(PCIIDEState, dev, dev);
static const int bus[4] = { 0, 0, 1, 1 };
static const int unit[4] = { 0, 1, 0, 1 };
int i;
for (i = 0; i < 4; i++) {
if (hd_table[i] == NULL)
continue;
ide_create_drive(d->bus+bus[i], unit[i], hd_table[i]);
}
}