qemu-e2k/migration/ram.c
Juan Quintela a6323300e8 migration/rdma: Unfold hook_ram_load()
There is only one flag called with: RAM_CONTROL_BLOCK_REG.

Reviewed-by: Li Zhijian <lizhijian@fujitsu.com>
Signed-off-by: Juan Quintela <quintela@redhat.com>
Message-ID: <20231011203527.9061-6-quintela@redhat.com>
2023-10-17 09:25:13 +02:00

4379 lines
134 KiB
C

/*
* QEMU System Emulator
*
* Copyright (c) 2003-2008 Fabrice Bellard
* Copyright (c) 2011-2015 Red Hat Inc
*
* Authors:
* Juan Quintela <quintela@redhat.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu/cutils.h"
#include "qemu/bitops.h"
#include "qemu/bitmap.h"
#include "qemu/madvise.h"
#include "qemu/main-loop.h"
#include "xbzrle.h"
#include "ram-compress.h"
#include "ram.h"
#include "migration.h"
#include "migration-stats.h"
#include "migration/register.h"
#include "migration/misc.h"
#include "qemu-file.h"
#include "postcopy-ram.h"
#include "page_cache.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "qapi/qapi-types-migration.h"
#include "qapi/qapi-events-migration.h"
#include "qapi/qapi-commands-migration.h"
#include "qapi/qmp/qerror.h"
#include "trace.h"
#include "exec/ram_addr.h"
#include "exec/target_page.h"
#include "qemu/rcu_queue.h"
#include "migration/colo.h"
#include "block.h"
#include "sysemu/cpu-throttle.h"
#include "savevm.h"
#include "qemu/iov.h"
#include "multifd.h"
#include "sysemu/runstate.h"
#include "rdma.h"
#include "options.h"
#include "sysemu/dirtylimit.h"
#include "sysemu/kvm.h"
#include "hw/boards.h" /* for machine_dump_guest_core() */
#if defined(__linux__)
#include "qemu/userfaultfd.h"
#endif /* defined(__linux__) */
/***********************************************************/
/* ram save/restore */
/*
* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
* worked for pages that were filled with the same char. We switched
* it to only search for the zero value. And to avoid confusion with
* RAM_SAVE_FLAG_COMPRESS_PAGE just rename it.
*/
/*
* RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now
*/
#define RAM_SAVE_FLAG_FULL 0x01
#define RAM_SAVE_FLAG_ZERO 0x02
#define RAM_SAVE_FLAG_MEM_SIZE 0x04
#define RAM_SAVE_FLAG_PAGE 0x08
#define RAM_SAVE_FLAG_EOS 0x10
#define RAM_SAVE_FLAG_CONTINUE 0x20
#define RAM_SAVE_FLAG_XBZRLE 0x40
/* 0x80 is reserved in qemu-file.h for RAM_SAVE_FLAG_HOOK */
#define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
#define RAM_SAVE_FLAG_MULTIFD_FLUSH 0x200
/* We can't use any flag that is bigger than 0x200 */
XBZRLECacheStats xbzrle_counters;
/* used by the search for pages to send */
struct PageSearchStatus {
/* The migration channel used for a specific host page */
QEMUFile *pss_channel;
/* Last block from where we have sent data */
RAMBlock *last_sent_block;
/* Current block being searched */
RAMBlock *block;
/* Current page to search from */
unsigned long page;
/* Set once we wrap around */
bool complete_round;
/* Whether we're sending a host page */
bool host_page_sending;
/* The start/end of current host page. Invalid if host_page_sending==false */
unsigned long host_page_start;
unsigned long host_page_end;
};
typedef struct PageSearchStatus PageSearchStatus;
/* struct contains XBZRLE cache and a static page
used by the compression */
static struct {
/* buffer used for XBZRLE encoding */
uint8_t *encoded_buf;
/* buffer for storing page content */
uint8_t *current_buf;
/* Cache for XBZRLE, Protected by lock. */
PageCache *cache;
QemuMutex lock;
/* it will store a page full of zeros */
uint8_t *zero_target_page;
/* buffer used for XBZRLE decoding */
uint8_t *decoded_buf;
} XBZRLE;
static void XBZRLE_cache_lock(void)
{
if (migrate_xbzrle()) {
qemu_mutex_lock(&XBZRLE.lock);
}
}
static void XBZRLE_cache_unlock(void)
{
if (migrate_xbzrle()) {
qemu_mutex_unlock(&XBZRLE.lock);
}
}
/**
* xbzrle_cache_resize: resize the xbzrle cache
*
* This function is called from migrate_params_apply in main
* thread, possibly while a migration is in progress. A running
* migration may be using the cache and might finish during this call,
* hence changes to the cache are protected by XBZRLE.lock().
*
* Returns 0 for success or -1 for error
*
* @new_size: new cache size
* @errp: set *errp if the check failed, with reason
*/
int xbzrle_cache_resize(uint64_t new_size, Error **errp)
{
PageCache *new_cache;
int64_t ret = 0;
/* Check for truncation */
if (new_size != (size_t)new_size) {
error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
"exceeding address space");
return -1;
}
if (new_size == migrate_xbzrle_cache_size()) {
/* nothing to do */
return 0;
}
XBZRLE_cache_lock();
if (XBZRLE.cache != NULL) {
new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
if (!new_cache) {
ret = -1;
goto out;
}
cache_fini(XBZRLE.cache);
XBZRLE.cache = new_cache;
}
out:
XBZRLE_cache_unlock();
return ret;
}
static bool postcopy_preempt_active(void)
{
return migrate_postcopy_preempt() && migration_in_postcopy();
}
bool migrate_ram_is_ignored(RAMBlock *block)
{
return !qemu_ram_is_migratable(block) ||
(migrate_ignore_shared() && qemu_ram_is_shared(block)
&& qemu_ram_is_named_file(block));
}
#undef RAMBLOCK_FOREACH
int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
{
RAMBlock *block;
int ret = 0;
RCU_READ_LOCK_GUARD();
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
ret = func(block, opaque);
if (ret) {
break;
}
}
return ret;
}
static void ramblock_recv_map_init(void)
{
RAMBlock *rb;
RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
assert(!rb->receivedmap);
rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
}
}
int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
{
return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
rb->receivedmap);
}
bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
{
return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
}
void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
{
set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
}
void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
size_t nr)
{
bitmap_set_atomic(rb->receivedmap,
ramblock_recv_bitmap_offset(host_addr, rb),
nr);
}
#define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
/*
* Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
*
* Returns >0 if success with sent bytes, or <0 if error.
*/
int64_t ramblock_recv_bitmap_send(QEMUFile *file,
const char *block_name)
{
RAMBlock *block = qemu_ram_block_by_name(block_name);
unsigned long *le_bitmap, nbits;
uint64_t size;
if (!block) {
error_report("%s: invalid block name: %s", __func__, block_name);
return -1;
}
nbits = block->postcopy_length >> TARGET_PAGE_BITS;
/*
* Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
* machines we may need 4 more bytes for padding (see below
* comment). So extend it a bit before hand.
*/
le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
/*
* Always use little endian when sending the bitmap. This is
* required that when source and destination VMs are not using the
* same endianness. (Note: big endian won't work.)
*/
bitmap_to_le(le_bitmap, block->receivedmap, nbits);
/* Size of the bitmap, in bytes */
size = DIV_ROUND_UP(nbits, 8);
/*
* size is always aligned to 8 bytes for 64bit machines, but it
* may not be true for 32bit machines. We need this padding to
* make sure the migration can survive even between 32bit and
* 64bit machines.
*/
size = ROUND_UP(size, 8);
qemu_put_be64(file, size);
qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
/*
* Mark as an end, in case the middle part is screwed up due to
* some "mysterious" reason.
*/
qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
qemu_fflush(file);
g_free(le_bitmap);
if (qemu_file_get_error(file)) {
return qemu_file_get_error(file);
}
return size + sizeof(size);
}
/*
* An outstanding page request, on the source, having been received
* and queued
*/
struct RAMSrcPageRequest {
RAMBlock *rb;
hwaddr offset;
hwaddr len;
QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
};
/* State of RAM for migration */
struct RAMState {
/*
* PageSearchStatus structures for the channels when send pages.
* Protected by the bitmap_mutex.
*/
PageSearchStatus pss[RAM_CHANNEL_MAX];
/* UFFD file descriptor, used in 'write-tracking' migration */
int uffdio_fd;
/* total ram size in bytes */
uint64_t ram_bytes_total;
/* Last block that we have visited searching for dirty pages */
RAMBlock *last_seen_block;
/* Last dirty target page we have sent */
ram_addr_t last_page;
/* last ram version we have seen */
uint32_t last_version;
/* How many times we have dirty too many pages */
int dirty_rate_high_cnt;
/* these variables are used for bitmap sync */
/* last time we did a full bitmap_sync */
int64_t time_last_bitmap_sync;
/* bytes transferred at start_time */
uint64_t bytes_xfer_prev;
/* number of dirty pages since start_time */
uint64_t num_dirty_pages_period;
/* xbzrle misses since the beginning of the period */
uint64_t xbzrle_cache_miss_prev;
/* Amount of xbzrle pages since the beginning of the period */
uint64_t xbzrle_pages_prev;
/* Amount of xbzrle encoded bytes since the beginning of the period */
uint64_t xbzrle_bytes_prev;
/* Are we really using XBZRLE (e.g., after the first round). */
bool xbzrle_started;
/* Are we on the last stage of migration */
bool last_stage;
/* compression statistics since the beginning of the period */
/* amount of count that no free thread to compress data */
uint64_t compress_thread_busy_prev;
/* amount bytes after compression */
uint64_t compressed_size_prev;
/* amount of compressed pages */
uint64_t compress_pages_prev;
/* total handled target pages at the beginning of period */
uint64_t target_page_count_prev;
/* total handled target pages since start */
uint64_t target_page_count;
/* number of dirty bits in the bitmap */
uint64_t migration_dirty_pages;
/*
* Protects:
* - dirty/clear bitmap
* - migration_dirty_pages
* - pss structures
*/
QemuMutex bitmap_mutex;
/* The RAMBlock used in the last src_page_requests */
RAMBlock *last_req_rb;
/* Queue of outstanding page requests from the destination */
QemuMutex src_page_req_mutex;
QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
/*
* This is only used when postcopy is in recovery phase, to communicate
* between the migration thread and the return path thread on dirty
* bitmap synchronizations. This field is unused in other stages of
* RAM migration.
*/
unsigned int postcopy_bmap_sync_requested;
};
typedef struct RAMState RAMState;
static RAMState *ram_state;
static NotifierWithReturnList precopy_notifier_list;
/* Whether postcopy has queued requests? */
static bool postcopy_has_request(RAMState *rs)
{
return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
}
void precopy_infrastructure_init(void)
{
notifier_with_return_list_init(&precopy_notifier_list);
}
void precopy_add_notifier(NotifierWithReturn *n)
{
notifier_with_return_list_add(&precopy_notifier_list, n);
}
void precopy_remove_notifier(NotifierWithReturn *n)
{
notifier_with_return_remove(n);
}
int precopy_notify(PrecopyNotifyReason reason, Error **errp)
{
PrecopyNotifyData pnd;
pnd.reason = reason;
pnd.errp = errp;
return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
}
uint64_t ram_bytes_remaining(void)
{
return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
0;
}
void ram_transferred_add(uint64_t bytes)
{
if (runstate_is_running()) {
stat64_add(&mig_stats.precopy_bytes, bytes);
} else if (migration_in_postcopy()) {
stat64_add(&mig_stats.postcopy_bytes, bytes);
} else {
stat64_add(&mig_stats.downtime_bytes, bytes);
}
stat64_add(&mig_stats.transferred, bytes);
}
struct MigrationOps {
int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss);
};
typedef struct MigrationOps MigrationOps;
MigrationOps *migration_ops;
static int ram_save_host_page_urgent(PageSearchStatus *pss);
/* NOTE: page is the PFN not real ram_addr_t. */
static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
{
pss->block = rb;
pss->page = page;
pss->complete_round = false;
}
/*
* Check whether two PSSs are actively sending the same page. Return true
* if it is, false otherwise.
*/
static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
{
return pss1->host_page_sending && pss2->host_page_sending &&
(pss1->host_page_start == pss2->host_page_start);
}
/**
* save_page_header: write page header to wire
*
* If this is the 1st block, it also writes the block identification
*
* Returns the number of bytes written
*
* @pss: current PSS channel status
* @block: block that contains the page we want to send
* @offset: offset inside the block for the page
* in the lower bits, it contains flags
*/
static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
RAMBlock *block, ram_addr_t offset)
{
size_t size, len;
bool same_block = (block == pss->last_sent_block);
if (same_block) {
offset |= RAM_SAVE_FLAG_CONTINUE;
}
qemu_put_be64(f, offset);
size = 8;
if (!same_block) {
len = strlen(block->idstr);
qemu_put_byte(f, len);
qemu_put_buffer(f, (uint8_t *)block->idstr, len);
size += 1 + len;
pss->last_sent_block = block;
}
return size;
}
/**
* mig_throttle_guest_down: throttle down the guest
*
* Reduce amount of guest cpu execution to hopefully slow down memory
* writes. If guest dirty memory rate is reduced below the rate at
* which we can transfer pages to the destination then we should be
* able to complete migration. Some workloads dirty memory way too
* fast and will not effectively converge, even with auto-converge.
*/
static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
uint64_t bytes_dirty_threshold)
{
uint64_t pct_initial = migrate_cpu_throttle_initial();
uint64_t pct_increment = migrate_cpu_throttle_increment();
bool pct_tailslow = migrate_cpu_throttle_tailslow();
int pct_max = migrate_max_cpu_throttle();
uint64_t throttle_now = cpu_throttle_get_percentage();
uint64_t cpu_now, cpu_ideal, throttle_inc;
/* We have not started throttling yet. Let's start it. */
if (!cpu_throttle_active()) {
cpu_throttle_set(pct_initial);
} else {
/* Throttling already on, just increase the rate */
if (!pct_tailslow) {
throttle_inc = pct_increment;
} else {
/* Compute the ideal CPU percentage used by Guest, which may
* make the dirty rate match the dirty rate threshold. */
cpu_now = 100 - throttle_now;
cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
bytes_dirty_period);
throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
}
cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
}
}
void mig_throttle_counter_reset(void)
{
RAMState *rs = ram_state;
rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
rs->num_dirty_pages_period = 0;
rs->bytes_xfer_prev = stat64_get(&mig_stats.transferred);
}
/**
* xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
*
* @rs: current RAM state
* @current_addr: address for the zero page
*
* Update the xbzrle cache to reflect a page that's been sent as all 0.
* The important thing is that a stale (not-yet-0'd) page be replaced
* by the new data.
* As a bonus, if the page wasn't in the cache it gets added so that
* when a small write is made into the 0'd page it gets XBZRLE sent.
*/
static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
{
/* We don't care if this fails to allocate a new cache page
* as long as it updated an old one */
cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
stat64_get(&mig_stats.dirty_sync_count));
}
#define ENCODING_FLAG_XBZRLE 0x1
/**
* save_xbzrle_page: compress and send current page
*
* Returns: 1 means that we wrote the page
* 0 means that page is identical to the one already sent
* -1 means that xbzrle would be longer than normal
*
* @rs: current RAM state
* @pss: current PSS channel
* @current_data: pointer to the address of the page contents
* @current_addr: addr of the page
* @block: block that contains the page we want to send
* @offset: offset inside the block for the page
*/
static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
uint8_t **current_data, ram_addr_t current_addr,
RAMBlock *block, ram_addr_t offset)
{
int encoded_len = 0, bytes_xbzrle;
uint8_t *prev_cached_page;
QEMUFile *file = pss->pss_channel;
uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
xbzrle_counters.cache_miss++;
if (!rs->last_stage) {
if (cache_insert(XBZRLE.cache, current_addr, *current_data,
generation) == -1) {
return -1;
} else {
/* update *current_data when the page has been
inserted into cache */
*current_data = get_cached_data(XBZRLE.cache, current_addr);
}
}
return -1;
}
/*
* Reaching here means the page has hit the xbzrle cache, no matter what
* encoding result it is (normal encoding, overflow or skipping the page),
* count the page as encoded. This is used to calculate the encoding rate.
*
* Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
* 2nd page turns out to be skipped (i.e. no new bytes written to the
* page), the overall encoding rate will be 8KB / 2KB = 4, which has the
* skipped page included. In this way, the encoding rate can tell if the
* guest page is good for xbzrle encoding.
*/
xbzrle_counters.pages++;
prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
/* save current buffer into memory */
memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
/* XBZRLE encoding (if there is no overflow) */
encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
TARGET_PAGE_SIZE);
/*
* Update the cache contents, so that it corresponds to the data
* sent, in all cases except where we skip the page.
*/
if (!rs->last_stage && encoded_len != 0) {
memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
/*
* In the case where we couldn't compress, ensure that the caller
* sends the data from the cache, since the guest might have
* changed the RAM since we copied it.
*/
*current_data = prev_cached_page;
}
if (encoded_len == 0) {
trace_save_xbzrle_page_skipping();
return 0;
} else if (encoded_len == -1) {
trace_save_xbzrle_page_overflow();
xbzrle_counters.overflow++;
xbzrle_counters.bytes += TARGET_PAGE_SIZE;
return -1;
}
/* Send XBZRLE based compressed page */
bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
offset | RAM_SAVE_FLAG_XBZRLE);
qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
qemu_put_be16(file, encoded_len);
qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
bytes_xbzrle += encoded_len + 1 + 2;
/*
* Like compressed_size (please see update_compress_thread_counts),
* the xbzrle encoded bytes don't count the 8 byte header with
* RAM_SAVE_FLAG_CONTINUE.
*/
xbzrle_counters.bytes += bytes_xbzrle - 8;
ram_transferred_add(bytes_xbzrle);
return 1;
}
/**
* pss_find_next_dirty: find the next dirty page of current ramblock
*
* This function updates pss->page to point to the next dirty page index
* within the ramblock to migrate, or the end of ramblock when nothing
* found. Note that when pss->host_page_sending==true it means we're
* during sending a host page, so we won't look for dirty page that is
* outside the host page boundary.
*
* @pss: the current page search status
*/
static void pss_find_next_dirty(PageSearchStatus *pss)
{
RAMBlock *rb = pss->block;
unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
unsigned long *bitmap = rb->bmap;
if (migrate_ram_is_ignored(rb)) {
/* Points directly to the end, so we know no dirty page */
pss->page = size;
return;
}
/*
* If during sending a host page, only look for dirty pages within the
* current host page being send.
*/
if (pss->host_page_sending) {
assert(pss->host_page_end);
size = MIN(size, pss->host_page_end);
}
pss->page = find_next_bit(bitmap, size, pss->page);
}
static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
unsigned long page)
{
uint8_t shift;
hwaddr size, start;
if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
return;
}
shift = rb->clear_bmap_shift;
/*
* CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
* can make things easier sometimes since then start address
* of the small chunk will always be 64 pages aligned so the
* bitmap will always be aligned to unsigned long. We should
* even be able to remove this restriction but I'm simply
* keeping it.
*/
assert(shift >= 6);
size = 1ULL << (TARGET_PAGE_BITS + shift);
start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
memory_region_clear_dirty_bitmap(rb->mr, start, size);
}
static void
migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
unsigned long start,
unsigned long npages)
{
unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
/*
* Clear pages from start to start + npages - 1, so the end boundary is
* exclusive.
*/
for (i = chunk_start; i < chunk_end; i += chunk_pages) {
migration_clear_memory_region_dirty_bitmap(rb, i);
}
}
/*
* colo_bitmap_find_diry:find contiguous dirty pages from start
*
* Returns the page offset within memory region of the start of the contiguout
* dirty page
*
* @rs: current RAM state
* @rb: RAMBlock where to search for dirty pages
* @start: page where we start the search
* @num: the number of contiguous dirty pages
*/
static inline
unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
unsigned long start, unsigned long *num)
{
unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
unsigned long *bitmap = rb->bmap;
unsigned long first, next;
*num = 0;
if (migrate_ram_is_ignored(rb)) {
return size;
}
first = find_next_bit(bitmap, size, start);
if (first >= size) {
return first;
}
next = find_next_zero_bit(bitmap, size, first + 1);
assert(next >= first);
*num = next - first;
return first;
}
static inline bool migration_bitmap_clear_dirty(RAMState *rs,
RAMBlock *rb,
unsigned long page)
{
bool ret;
/*
* Clear dirty bitmap if needed. This _must_ be called before we
* send any of the page in the chunk because we need to make sure
* we can capture further page content changes when we sync dirty
* log the next time. So as long as we are going to send any of
* the page in the chunk we clear the remote dirty bitmap for all.
* Clearing it earlier won't be a problem, but too late will.
*/
migration_clear_memory_region_dirty_bitmap(rb, page);
ret = test_and_clear_bit(page, rb->bmap);
if (ret) {
rs->migration_dirty_pages--;
}
return ret;
}
static void dirty_bitmap_clear_section(MemoryRegionSection *section,
void *opaque)
{
const hwaddr offset = section->offset_within_region;
const hwaddr size = int128_get64(section->size);
const unsigned long start = offset >> TARGET_PAGE_BITS;
const unsigned long npages = size >> TARGET_PAGE_BITS;
RAMBlock *rb = section->mr->ram_block;
uint64_t *cleared_bits = opaque;
/*
* We don't grab ram_state->bitmap_mutex because we expect to run
* only when starting migration or during postcopy recovery where
* we don't have concurrent access.
*/
if (!migration_in_postcopy() && !migrate_background_snapshot()) {
migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
}
*cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
bitmap_clear(rb->bmap, start, npages);
}
/*
* Exclude all dirty pages from migration that fall into a discarded range as
* managed by a RamDiscardManager responsible for the mapped memory region of
* the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
*
* Discarded pages ("logically unplugged") have undefined content and must
* not get migrated, because even reading these pages for migration might
* result in undesired behavior.
*
* Returns the number of cleared bits in the RAMBlock dirty bitmap.
*
* Note: The result is only stable while migrating (precopy/postcopy).
*/
static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
{
uint64_t cleared_bits = 0;
if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
MemoryRegionSection section = {
.mr = rb->mr,
.offset_within_region = 0,
.size = int128_make64(qemu_ram_get_used_length(rb)),
};
ram_discard_manager_replay_discarded(rdm, &section,
dirty_bitmap_clear_section,
&cleared_bits);
}
return cleared_bits;
}
/*
* Check if a host-page aligned page falls into a discarded range as managed by
* a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
*
* Note: The result is only stable while migrating (precopy/postcopy).
*/
bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
{
if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
MemoryRegionSection section = {
.mr = rb->mr,
.offset_within_region = start,
.size = int128_make64(qemu_ram_pagesize(rb)),
};
return !ram_discard_manager_is_populated(rdm, &section);
}
return false;
}
/* Called with RCU critical section */
static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
{
uint64_t new_dirty_pages =
cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
rs->migration_dirty_pages += new_dirty_pages;
rs->num_dirty_pages_period += new_dirty_pages;
}
/**
* ram_pagesize_summary: calculate all the pagesizes of a VM
*
* Returns a summary bitmap of the page sizes of all RAMBlocks
*
* For VMs with just normal pages this is equivalent to the host page
* size. If it's got some huge pages then it's the OR of all the
* different page sizes.
*/
uint64_t ram_pagesize_summary(void)
{
RAMBlock *block;
uint64_t summary = 0;
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
summary |= block->page_size;
}
return summary;
}
uint64_t ram_get_total_transferred_pages(void)
{
return stat64_get(&mig_stats.normal_pages) +
stat64_get(&mig_stats.zero_pages) +
compression_counters.pages + xbzrle_counters.pages;
}
static void migration_update_rates(RAMState *rs, int64_t end_time)
{
uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
double compressed_size;
/* calculate period counters */
stat64_set(&mig_stats.dirty_pages_rate,
rs->num_dirty_pages_period * 1000 /
(end_time - rs->time_last_bitmap_sync));
if (!page_count) {
return;
}
if (migrate_xbzrle()) {
double encoded_size, unencoded_size;
xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
rs->xbzrle_cache_miss_prev) / page_count;
rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
TARGET_PAGE_SIZE;
encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
xbzrle_counters.encoding_rate = 0;
} else {
xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
}
rs->xbzrle_pages_prev = xbzrle_counters.pages;
rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
}
if (migrate_compress()) {
compression_counters.busy_rate = (double)(compression_counters.busy -
rs->compress_thread_busy_prev) / page_count;
rs->compress_thread_busy_prev = compression_counters.busy;
compressed_size = compression_counters.compressed_size -
rs->compressed_size_prev;
if (compressed_size) {
double uncompressed_size = (compression_counters.pages -
rs->compress_pages_prev) * TARGET_PAGE_SIZE;
/* Compression-Ratio = Uncompressed-size / Compressed-size */
compression_counters.compression_rate =
uncompressed_size / compressed_size;
rs->compress_pages_prev = compression_counters.pages;
rs->compressed_size_prev = compression_counters.compressed_size;
}
}
}
/*
* Enable dirty-limit to throttle down the guest
*/
static void migration_dirty_limit_guest(void)
{
/*
* dirty page rate quota for all vCPUs fetched from
* migration parameter 'vcpu_dirty_limit'
*/
static int64_t quota_dirtyrate;
MigrationState *s = migrate_get_current();
/*
* If dirty limit already enabled and migration parameter
* vcpu-dirty-limit untouched.
*/
if (dirtylimit_in_service() &&
quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
return;
}
quota_dirtyrate = s->parameters.vcpu_dirty_limit;
/*
* Set all vCPU a quota dirtyrate, note that the second
* parameter will be ignored if setting all vCPU for the vm
*/
qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
trace_migration_dirty_limit_guest(quota_dirtyrate);
}
static void migration_trigger_throttle(RAMState *rs)
{
uint64_t threshold = migrate_throttle_trigger_threshold();
uint64_t bytes_xfer_period =
stat64_get(&mig_stats.transferred) - rs->bytes_xfer_prev;
uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
/* During block migration the auto-converge logic incorrectly detects
* that ram migration makes no progress. Avoid this by disabling the
* throttling logic during the bulk phase of block migration. */
if (blk_mig_bulk_active()) {
return;
}
/*
* The following detection logic can be refined later. For now:
* Check to see if the ratio between dirtied bytes and the approx.
* amount of bytes that just got transferred since the last time
* we were in this routine reaches the threshold. If that happens
* twice, start or increase throttling.
*/
if ((bytes_dirty_period > bytes_dirty_threshold) &&
(++rs->dirty_rate_high_cnt >= 2)) {
rs->dirty_rate_high_cnt = 0;
if (migrate_auto_converge()) {
trace_migration_throttle();
mig_throttle_guest_down(bytes_dirty_period,
bytes_dirty_threshold);
} else if (migrate_dirty_limit()) {
migration_dirty_limit_guest();
}
}
}
static void migration_bitmap_sync(RAMState *rs, bool last_stage)
{
RAMBlock *block;
int64_t end_time;
stat64_add(&mig_stats.dirty_sync_count, 1);
if (!rs->time_last_bitmap_sync) {
rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
}
trace_migration_bitmap_sync_start();
memory_global_dirty_log_sync(last_stage);
qemu_mutex_lock(&rs->bitmap_mutex);
WITH_RCU_READ_LOCK_GUARD() {
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
ramblock_sync_dirty_bitmap(rs, block);
}
stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
}
qemu_mutex_unlock(&rs->bitmap_mutex);
memory_global_after_dirty_log_sync();
trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
/* more than 1 second = 1000 millisecons */
if (end_time > rs->time_last_bitmap_sync + 1000) {
migration_trigger_throttle(rs);
migration_update_rates(rs, end_time);
rs->target_page_count_prev = rs->target_page_count;
/* reset period counters */
rs->time_last_bitmap_sync = end_time;
rs->num_dirty_pages_period = 0;
rs->bytes_xfer_prev = stat64_get(&mig_stats.transferred);
}
if (migrate_events()) {
uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
qapi_event_send_migration_pass(generation);
}
}
static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage)
{
Error *local_err = NULL;
/*
* The current notifier usage is just an optimization to migration, so we
* don't stop the normal migration process in the error case.
*/
if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
error_report_err(local_err);
local_err = NULL;
}
migration_bitmap_sync(rs, last_stage);
if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
error_report_err(local_err);
}
}
void ram_release_page(const char *rbname, uint64_t offset)
{
if (!migrate_release_ram() || !migration_in_postcopy()) {
return;
}
ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
}
/**
* save_zero_page_to_file: send the zero page to the file
*
* Returns the size of data written to the file, 0 means the page is not
* a zero page
*
* @pss: current PSS channel
* @block: block that contains the page we want to send
* @offset: offset inside the block for the page
*/
static int save_zero_page_to_file(PageSearchStatus *pss, QEMUFile *file,
RAMBlock *block, ram_addr_t offset)
{
uint8_t *p = block->host + offset;
int len = 0;
if (buffer_is_zero(p, TARGET_PAGE_SIZE)) {
len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO);
qemu_put_byte(file, 0);
len += 1;
ram_release_page(block->idstr, offset);
}
return len;
}
/**
* save_zero_page: send the zero page to the stream
*
* Returns the number of pages written.
*
* @pss: current PSS channel
* @block: block that contains the page we want to send
* @offset: offset inside the block for the page
*/
static int save_zero_page(PageSearchStatus *pss, QEMUFile *f, RAMBlock *block,
ram_addr_t offset)
{
int len = save_zero_page_to_file(pss, f, block, offset);
if (len) {
stat64_add(&mig_stats.zero_pages, 1);
ram_transferred_add(len);
return 1;
}
return -1;
}
/*
* @pages: the number of pages written by the control path,
* < 0 - error
* > 0 - number of pages written
*
* Return true if the pages has been saved, otherwise false is returned.
*/
static bool control_save_page(PageSearchStatus *pss, RAMBlock *block,
ram_addr_t offset, int *pages)
{
int ret;
ret = ram_control_save_page(pss->pss_channel, block->offset, offset,
TARGET_PAGE_SIZE);
if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
return false;
}
if (ret == RAM_SAVE_CONTROL_DELAYED) {
*pages = 1;
return true;
}
*pages = ret;
return true;
}
/*
* directly send the page to the stream
*
* Returns the number of pages written.
*
* @pss: current PSS channel
* @block: block that contains the page we want to send
* @offset: offset inside the block for the page
* @buf: the page to be sent
* @async: send to page asyncly
*/
static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
ram_addr_t offset, uint8_t *buf, bool async)
{
QEMUFile *file = pss->pss_channel;
ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
offset | RAM_SAVE_FLAG_PAGE));
if (async) {
qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
migrate_release_ram() &&
migration_in_postcopy());
} else {
qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
}
ram_transferred_add(TARGET_PAGE_SIZE);
stat64_add(&mig_stats.normal_pages, 1);
return 1;
}
/**
* ram_save_page: send the given page to the stream
*
* Returns the number of pages written.
* < 0 - error
* >=0 - Number of pages written - this might legally be 0
* if xbzrle noticed the page was the same.
*
* @rs: current RAM state
* @block: block that contains the page we want to send
* @offset: offset inside the block for the page
*/
static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
{
int pages = -1;
uint8_t *p;
bool send_async = true;
RAMBlock *block = pss->block;
ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
ram_addr_t current_addr = block->offset + offset;
p = block->host + offset;
trace_ram_save_page(block->idstr, (uint64_t)offset, p);
XBZRLE_cache_lock();
if (rs->xbzrle_started && !migration_in_postcopy()) {
pages = save_xbzrle_page(rs, pss, &p, current_addr,
block, offset);
if (!rs->last_stage) {
/* Can't send this cached data async, since the cache page
* might get updated before it gets to the wire
*/
send_async = false;
}
}
/* XBZRLE overflow or normal page */
if (pages == -1) {
pages = save_normal_page(pss, block, offset, p, send_async);
}
XBZRLE_cache_unlock();
return pages;
}
static int ram_save_multifd_page(QEMUFile *file, RAMBlock *block,
ram_addr_t offset)
{
if (multifd_queue_page(file, block, offset) < 0) {
return -1;
}
stat64_add(&mig_stats.normal_pages, 1);
return 1;
}
static void
update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
{
ram_transferred_add(bytes_xmit);
if (param->result == RES_ZEROPAGE) {
stat64_add(&mig_stats.zero_pages, 1);
return;
}
/* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
compression_counters.compressed_size += bytes_xmit - 8;
compression_counters.pages++;
}
static bool save_page_use_compression(RAMState *rs);
static int send_queued_data(CompressParam *param)
{
PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY];
MigrationState *ms = migrate_get_current();
QEMUFile *file = ms->to_dst_file;
int len = 0;
RAMBlock *block = param->block;
ram_addr_t offset = param->offset;
if (param->result == RES_NONE) {
return 0;
}
assert(block == pss->last_sent_block);
if (param->result == RES_ZEROPAGE) {
assert(qemu_file_buffer_empty(param->file));
len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO);
qemu_put_byte(file, 0);
len += 1;
ram_release_page(block->idstr, offset);
} else if (param->result == RES_COMPRESS) {
assert(!qemu_file_buffer_empty(param->file));
len += save_page_header(pss, file, block,
offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
len += qemu_put_qemu_file(file, param->file);
} else {
abort();
}
update_compress_thread_counts(param, len);
return len;
}
static void ram_flush_compressed_data(RAMState *rs)
{
if (!save_page_use_compression(rs)) {
return;
}
flush_compressed_data(send_queued_data);
}
#define PAGE_ALL_CLEAN 0
#define PAGE_TRY_AGAIN 1
#define PAGE_DIRTY_FOUND 2
/**
* find_dirty_block: find the next dirty page and update any state
* associated with the search process.
*
* Returns:
* <0: An error happened
* PAGE_ALL_CLEAN: no dirty page found, give up
* PAGE_TRY_AGAIN: no dirty page found, retry for next block
* PAGE_DIRTY_FOUND: dirty page found
*
* @rs: current RAM state
* @pss: data about the state of the current dirty page scan
* @again: set to false if the search has scanned the whole of RAM
*/
static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
{
/* Update pss->page for the next dirty bit in ramblock */
pss_find_next_dirty(pss);
if (pss->complete_round && pss->block == rs->last_seen_block &&
pss->page >= rs->last_page) {
/*
* We've been once around the RAM and haven't found anything.
* Give up.
*/
return PAGE_ALL_CLEAN;
}
if (!offset_in_ramblock(pss->block,
((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
/* Didn't find anything in this RAM Block */
pss->page = 0;
pss->block = QLIST_NEXT_RCU(pss->block, next);
if (!pss->block) {
if (migrate_multifd() &&
!migrate_multifd_flush_after_each_section()) {
QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
int ret = multifd_send_sync_main(f);
if (ret < 0) {
return ret;
}
qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
qemu_fflush(f);
}
/*
* If memory migration starts over, we will meet a dirtied page
* which may still exists in compression threads's ring, so we
* should flush the compressed data to make sure the new page
* is not overwritten by the old one in the destination.
*
* Also If xbzrle is on, stop using the data compression at this
* point. In theory, xbzrle can do better than compression.
*/
ram_flush_compressed_data(rs);
/* Hit the end of the list */
pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
/* Flag that we've looped */
pss->complete_round = true;
/* After the first round, enable XBZRLE. */
if (migrate_xbzrle()) {
rs->xbzrle_started = true;
}
}
/* Didn't find anything this time, but try again on the new block */
return PAGE_TRY_AGAIN;
} else {
/* We've found something */
return PAGE_DIRTY_FOUND;
}
}
/**
* unqueue_page: gets a page of the queue
*
* Helper for 'get_queued_page' - gets a page off the queue
*
* Returns the block of the page (or NULL if none available)
*
* @rs: current RAM state
* @offset: used to return the offset within the RAMBlock
*/
static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
{
struct RAMSrcPageRequest *entry;
RAMBlock *block = NULL;
if (!postcopy_has_request(rs)) {
return NULL;
}
QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
/*
* This should _never_ change even after we take the lock, because no one
* should be taking anything off the request list other than us.
*/
assert(postcopy_has_request(rs));
entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
block = entry->rb;
*offset = entry->offset;
if (entry->len > TARGET_PAGE_SIZE) {
entry->len -= TARGET_PAGE_SIZE;
entry->offset += TARGET_PAGE_SIZE;
} else {
memory_region_unref(block->mr);
QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
g_free(entry);
migration_consume_urgent_request();
}
return block;
}
#if defined(__linux__)
/**
* poll_fault_page: try to get next UFFD write fault page and, if pending fault
* is found, return RAM block pointer and page offset
*
* Returns pointer to the RAMBlock containing faulting page,
* NULL if no write faults are pending
*
* @rs: current RAM state
* @offset: page offset from the beginning of the block
*/
static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
{
struct uffd_msg uffd_msg;
void *page_address;
RAMBlock *block;
int res;
if (!migrate_background_snapshot()) {
return NULL;
}
res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
if (res <= 0) {
return NULL;
}
page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
block = qemu_ram_block_from_host(page_address, false, offset);
assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
return block;
}
/**
* ram_save_release_protection: release UFFD write protection after
* a range of pages has been saved
*
* @rs: current RAM state
* @pss: page-search-status structure
* @start_page: index of the first page in the range relative to pss->block
*
* Returns 0 on success, negative value in case of an error
*/
static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
unsigned long start_page)
{
int res = 0;
/* Check if page is from UFFD-managed region. */
if (pss->block->flags & RAM_UF_WRITEPROTECT) {
void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
/* Flush async buffers before un-protect. */
qemu_fflush(pss->pss_channel);
/* Un-protect memory range. */
res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
false, false);
}
return res;
}
/* ram_write_tracking_available: check if kernel supports required UFFD features
*
* Returns true if supports, false otherwise
*/
bool ram_write_tracking_available(void)
{
uint64_t uffd_features;
int res;
res = uffd_query_features(&uffd_features);
return (res == 0 &&
(uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
}
/* ram_write_tracking_compatible: check if guest configuration is
* compatible with 'write-tracking'
*
* Returns true if compatible, false otherwise
*/
bool ram_write_tracking_compatible(void)
{
const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
int uffd_fd;
RAMBlock *block;
bool ret = false;
/* Open UFFD file descriptor */
uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
if (uffd_fd < 0) {
return false;
}
RCU_READ_LOCK_GUARD();
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
uint64_t uffd_ioctls;
/* Nothing to do with read-only and MMIO-writable regions */
if (block->mr->readonly || block->mr->rom_device) {
continue;
}
/* Try to register block memory via UFFD-IO to track writes */
if (uffd_register_memory(uffd_fd, block->host, block->max_length,
UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
goto out;
}
if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
goto out;
}
}
ret = true;
out:
uffd_close_fd(uffd_fd);
return ret;
}
static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
ram_addr_t size)
{
const ram_addr_t end = offset + size;
/*
* We read one byte of each page; this will preallocate page tables if
* required and populate the shared zeropage on MAP_PRIVATE anonymous memory
* where no page was populated yet. This might require adaption when
* supporting other mappings, like shmem.
*/
for (; offset < end; offset += block->page_size) {
char tmp = *((char *)block->host + offset);
/* Don't optimize the read out */
asm volatile("" : "+r" (tmp));
}
}
static inline int populate_read_section(MemoryRegionSection *section,
void *opaque)
{
const hwaddr size = int128_get64(section->size);
hwaddr offset = section->offset_within_region;
RAMBlock *block = section->mr->ram_block;
populate_read_range(block, offset, size);
return 0;
}
/*
* ram_block_populate_read: preallocate page tables and populate pages in the
* RAM block by reading a byte of each page.
*
* Since it's solely used for userfault_fd WP feature, here we just
* hardcode page size to qemu_real_host_page_size.
*
* @block: RAM block to populate
*/
static void ram_block_populate_read(RAMBlock *rb)
{
/*
* Skip populating all pages that fall into a discarded range as managed by
* a RamDiscardManager responsible for the mapped memory region of the
* RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
* must not get populated automatically. We don't have to track
* modifications via userfaultfd WP reliably, because these pages will
* not be part of the migration stream either way -- see
* ramblock_dirty_bitmap_exclude_discarded_pages().
*
* Note: The result is only stable while migrating (precopy/postcopy).
*/
if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
MemoryRegionSection section = {
.mr = rb->mr,
.offset_within_region = 0,
.size = rb->mr->size,
};
ram_discard_manager_replay_populated(rdm, &section,
populate_read_section, NULL);
} else {
populate_read_range(rb, 0, rb->used_length);
}
}
/*
* ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
*/
void ram_write_tracking_prepare(void)
{
RAMBlock *block;
RCU_READ_LOCK_GUARD();
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
/* Nothing to do with read-only and MMIO-writable regions */
if (block->mr->readonly || block->mr->rom_device) {
continue;
}
/*
* Populate pages of the RAM block before enabling userfault_fd
* write protection.
*
* This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
* UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
* pages with pte_none() entries in page table.
*/
ram_block_populate_read(block);
}
}
static inline int uffd_protect_section(MemoryRegionSection *section,
void *opaque)
{
const hwaddr size = int128_get64(section->size);
const hwaddr offset = section->offset_within_region;
RAMBlock *rb = section->mr->ram_block;
int uffd_fd = (uintptr_t)opaque;
return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
false);
}
static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
{
assert(rb->flags & RAM_UF_WRITEPROTECT);
/* See ram_block_populate_read() */
if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
MemoryRegionSection section = {
.mr = rb->mr,
.offset_within_region = 0,
.size = rb->mr->size,
};
return ram_discard_manager_replay_populated(rdm, &section,
uffd_protect_section,
(void *)(uintptr_t)uffd_fd);
}
return uffd_change_protection(uffd_fd, rb->host,
rb->used_length, true, false);
}
/*
* ram_write_tracking_start: start UFFD-WP memory tracking
*
* Returns 0 for success or negative value in case of error
*/
int ram_write_tracking_start(void)
{
int uffd_fd;
RAMState *rs = ram_state;
RAMBlock *block;
/* Open UFFD file descriptor */
uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
if (uffd_fd < 0) {
return uffd_fd;
}
rs->uffdio_fd = uffd_fd;
RCU_READ_LOCK_GUARD();
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
/* Nothing to do with read-only and MMIO-writable regions */
if (block->mr->readonly || block->mr->rom_device) {
continue;
}
/* Register block memory with UFFD to track writes */
if (uffd_register_memory(rs->uffdio_fd, block->host,
block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
goto fail;
}
block->flags |= RAM_UF_WRITEPROTECT;
memory_region_ref(block->mr);
/* Apply UFFD write protection to the block memory range */
if (ram_block_uffd_protect(block, uffd_fd)) {
goto fail;
}
trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
block->host, block->max_length);
}
return 0;
fail:
error_report("ram_write_tracking_start() failed: restoring initial memory state");
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
continue;
}
uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
/* Cleanup flags and remove reference */
block->flags &= ~RAM_UF_WRITEPROTECT;
memory_region_unref(block->mr);
}
uffd_close_fd(uffd_fd);
rs->uffdio_fd = -1;
return -1;
}
/**
* ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
*/
void ram_write_tracking_stop(void)
{
RAMState *rs = ram_state;
RAMBlock *block;
RCU_READ_LOCK_GUARD();
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
continue;
}
uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
block->host, block->max_length);
/* Cleanup flags and remove reference */
block->flags &= ~RAM_UF_WRITEPROTECT;
memory_region_unref(block->mr);
}
/* Finally close UFFD file descriptor */
uffd_close_fd(rs->uffdio_fd);
rs->uffdio_fd = -1;
}
#else
/* No target OS support, stubs just fail or ignore */
static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
{
(void) rs;
(void) offset;
return NULL;
}
static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
unsigned long start_page)
{
(void) rs;
(void) pss;
(void) start_page;
return 0;
}
bool ram_write_tracking_available(void)
{
return false;
}
bool ram_write_tracking_compatible(void)
{
assert(0);
return false;
}
int ram_write_tracking_start(void)
{
assert(0);
return -1;
}
void ram_write_tracking_stop(void)
{
assert(0);
}
#endif /* defined(__linux__) */
/**
* get_queued_page: unqueue a page from the postcopy requests
*
* Skips pages that are already sent (!dirty)
*
* Returns true if a queued page is found
*
* @rs: current RAM state
* @pss: data about the state of the current dirty page scan
*/
static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
{
RAMBlock *block;
ram_addr_t offset;
bool dirty;
do {
block = unqueue_page(rs, &offset);
/*
* We're sending this page, and since it's postcopy nothing else
* will dirty it, and we must make sure it doesn't get sent again
* even if this queue request was received after the background
* search already sent it.
*/
if (block) {
unsigned long page;
page = offset >> TARGET_PAGE_BITS;
dirty = test_bit(page, block->bmap);
if (!dirty) {
trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
page);
} else {
trace_get_queued_page(block->idstr, (uint64_t)offset, page);
}
}
} while (block && !dirty);
if (!block) {
/*
* Poll write faults too if background snapshot is enabled; that's
* when we have vcpus got blocked by the write protected pages.
*/
block = poll_fault_page(rs, &offset);
}
if (block) {
/*
* We want the background search to continue from the queued page
* since the guest is likely to want other pages near to the page
* it just requested.
*/
pss->block = block;
pss->page = offset >> TARGET_PAGE_BITS;
/*
* This unqueued page would break the "one round" check, even is
* really rare.
*/
pss->complete_round = false;
}
return !!block;
}
/**
* migration_page_queue_free: drop any remaining pages in the ram
* request queue
*
* It should be empty at the end anyway, but in error cases there may
* be some left. in case that there is any page left, we drop it.
*
*/
static void migration_page_queue_free(RAMState *rs)
{
struct RAMSrcPageRequest *mspr, *next_mspr;
/* This queue generally should be empty - but in the case of a failed
* migration might have some droppings in.
*/
RCU_READ_LOCK_GUARD();
QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
memory_region_unref(mspr->rb->mr);
QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
g_free(mspr);
}
}
/**
* ram_save_queue_pages: queue the page for transmission
*
* A request from postcopy destination for example.
*
* Returns zero on success or negative on error
*
* @rbname: Name of the RAMBLock of the request. NULL means the
* same that last one.
* @start: starting address from the start of the RAMBlock
* @len: length (in bytes) to send
*/
int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
{
RAMBlock *ramblock;
RAMState *rs = ram_state;
stat64_add(&mig_stats.postcopy_requests, 1);
RCU_READ_LOCK_GUARD();
if (!rbname) {
/* Reuse last RAMBlock */
ramblock = rs->last_req_rb;
if (!ramblock) {
/*
* Shouldn't happen, we can't reuse the last RAMBlock if
* it's the 1st request.
*/
error_report("ram_save_queue_pages no previous block");
return -1;
}
} else {
ramblock = qemu_ram_block_by_name(rbname);
if (!ramblock) {
/* We shouldn't be asked for a non-existent RAMBlock */
error_report("ram_save_queue_pages no block '%s'", rbname);
return -1;
}
rs->last_req_rb = ramblock;
}
trace_ram_save_queue_pages(ramblock->idstr, start, len);
if (!offset_in_ramblock(ramblock, start + len - 1)) {
error_report("%s request overrun start=" RAM_ADDR_FMT " len="
RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
__func__, start, len, ramblock->used_length);
return -1;
}
/*
* When with postcopy preempt, we send back the page directly in the
* rp-return thread.
*/
if (postcopy_preempt_active()) {
ram_addr_t page_start = start >> TARGET_PAGE_BITS;
size_t page_size = qemu_ram_pagesize(ramblock);
PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
int ret = 0;
qemu_mutex_lock(&rs->bitmap_mutex);
pss_init(pss, ramblock, page_start);
/*
* Always use the preempt channel, and make sure it's there. It's
* safe to access without lock, because when rp-thread is running
* we should be the only one who operates on the qemufile
*/
pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
assert(pss->pss_channel);
/*
* It must be either one or multiple of host page size. Just
* assert; if something wrong we're mostly split brain anyway.
*/
assert(len % page_size == 0);
while (len) {
if (ram_save_host_page_urgent(pss)) {
error_report("%s: ram_save_host_page_urgent() failed: "
"ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
__func__, ramblock->idstr, start);
ret = -1;
break;
}
/*
* NOTE: after ram_save_host_page_urgent() succeeded, pss->page
* will automatically be moved and point to the next host page
* we're going to send, so no need to update here.
*
* Normally QEMU never sends >1 host page in requests, so
* logically we don't even need that as the loop should only
* run once, but just to be consistent.
*/
len -= page_size;
};
qemu_mutex_unlock(&rs->bitmap_mutex);
return ret;
}
struct RAMSrcPageRequest *new_entry =
g_new0(struct RAMSrcPageRequest, 1);
new_entry->rb = ramblock;
new_entry->offset = start;
new_entry->len = len;
memory_region_ref(ramblock->mr);
qemu_mutex_lock(&rs->src_page_req_mutex);
QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
migration_make_urgent_request();
qemu_mutex_unlock(&rs->src_page_req_mutex);
return 0;
}
static bool save_page_use_compression(RAMState *rs)
{
if (!migrate_compress()) {
return false;
}
/*
* If xbzrle is enabled (e.g., after first round of migration), stop
* using the data compression. In theory, xbzrle can do better than
* compression.
*/
if (rs->xbzrle_started) {
return false;
}
return true;
}
/*
* try to compress the page before posting it out, return true if the page
* has been properly handled by compression, otherwise needs other
* paths to handle it
*/
static bool save_compress_page(RAMState *rs, PageSearchStatus *pss,
RAMBlock *block, ram_addr_t offset)
{
if (!save_page_use_compression(rs)) {
return false;
}
/*
* When starting the process of a new block, the first page of
* the block should be sent out before other pages in the same
* block, and all the pages in last block should have been sent
* out, keeping this order is important, because the 'cont' flag
* is used to avoid resending the block name.
*
* We post the fist page as normal page as compression will take
* much CPU resource.
*/
if (block != pss->last_sent_block) {
ram_flush_compressed_data(rs);
return false;
}
if (compress_page_with_multi_thread(block, offset, send_queued_data) > 0) {
return true;
}
compression_counters.busy++;
return false;
}
/**
* ram_save_target_page_legacy: save one target page
*
* Returns the number of pages written
*
* @rs: current RAM state
* @pss: data about the page we want to send
*/
static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss)
{
RAMBlock *block = pss->block;
ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
int res;
if (control_save_page(pss, block, offset, &res)) {
return res;
}
if (save_compress_page(rs, pss, block, offset)) {
return 1;
}
res = save_zero_page(pss, pss->pss_channel, block, offset);
if (res > 0) {
/* Must let xbzrle know, otherwise a previous (now 0'd) cached
* page would be stale
*/
if (rs->xbzrle_started) {
XBZRLE_cache_lock();
xbzrle_cache_zero_page(rs, block->offset + offset);
XBZRLE_cache_unlock();
}
return res;
}
/*
* Do not use multifd in postcopy as one whole host page should be
* placed. Meanwhile postcopy requires atomic update of pages, so even
* if host page size == guest page size the dest guest during run may
* still see partially copied pages which is data corruption.
*/
if (migrate_multifd() && !migration_in_postcopy()) {
return ram_save_multifd_page(pss->pss_channel, block, offset);
}
return ram_save_page(rs, pss);
}
/* Should be called before sending a host page */
static void pss_host_page_prepare(PageSearchStatus *pss)
{
/* How many guest pages are there in one host page? */
size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
pss->host_page_sending = true;
if (guest_pfns <= 1) {
/*
* This covers both when guest psize == host psize, or when guest
* has larger psize than the host (guest_pfns==0).
*
* For the latter, we always send one whole guest page per
* iteration of the host page (example: an Alpha VM on x86 host
* will have guest psize 8K while host psize 4K).
*/
pss->host_page_start = pss->page;
pss->host_page_end = pss->page + 1;
} else {
/*
* The host page spans over multiple guest pages, we send them
* within the same host page iteration.
*/
pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
}
}
/*
* Whether the page pointed by PSS is within the host page being sent.
* Must be called after a previous pss_host_page_prepare().
*/
static bool pss_within_range(PageSearchStatus *pss)
{
ram_addr_t ram_addr;
assert(pss->host_page_sending);
/* Over host-page boundary? */
if (pss->page >= pss->host_page_end) {
return false;
}
ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
return offset_in_ramblock(pss->block, ram_addr);
}
static void pss_host_page_finish(PageSearchStatus *pss)
{
pss->host_page_sending = false;
/* This is not needed, but just to reset it */
pss->host_page_start = pss->host_page_end = 0;
}
/*
* Send an urgent host page specified by `pss'. Need to be called with
* bitmap_mutex held.
*
* Returns 0 if save host page succeeded, false otherwise.
*/
static int ram_save_host_page_urgent(PageSearchStatus *pss)
{
bool page_dirty, sent = false;
RAMState *rs = ram_state;
int ret = 0;
trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
pss_host_page_prepare(pss);
/*
* If precopy is sending the same page, let it be done in precopy, or
* we could send the same page in two channels and none of them will
* receive the whole page.
*/
if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
trace_postcopy_preempt_hit(pss->block->idstr,
pss->page << TARGET_PAGE_BITS);
return 0;
}
do {
page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
if (page_dirty) {
/* Be strict to return code; it must be 1, or what else? */
if (migration_ops->ram_save_target_page(rs, pss) != 1) {
error_report_once("%s: ram_save_target_page failed", __func__);
ret = -1;
goto out;
}
sent = true;
}
pss_find_next_dirty(pss);
} while (pss_within_range(pss));
out:
pss_host_page_finish(pss);
/* For urgent requests, flush immediately if sent */
if (sent) {
qemu_fflush(pss->pss_channel);
}
return ret;
}
/**
* ram_save_host_page: save a whole host page
*
* Starting at *offset send pages up to the end of the current host
* page. It's valid for the initial offset to point into the middle of
* a host page in which case the remainder of the hostpage is sent.
* Only dirty target pages are sent. Note that the host page size may
* be a huge page for this block.
*
* The saving stops at the boundary of the used_length of the block
* if the RAMBlock isn't a multiple of the host page size.
*
* The caller must be with ram_state.bitmap_mutex held to call this
* function. Note that this function can temporarily release the lock, but
* when the function is returned it'll make sure the lock is still held.
*
* Returns the number of pages written or negative on error
*
* @rs: current RAM state
* @pss: data about the page we want to send
*/
static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
{
bool page_dirty, preempt_active = postcopy_preempt_active();
int tmppages, pages = 0;
size_t pagesize_bits =
qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
unsigned long start_page = pss->page;
int res;
if (migrate_ram_is_ignored(pss->block)) {
error_report("block %s should not be migrated !", pss->block->idstr);
return 0;
}
/* Update host page boundary information */
pss_host_page_prepare(pss);
do {
page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
/* Check the pages is dirty and if it is send it */
if (page_dirty) {
/*
* Properly yield the lock only in postcopy preempt mode
* because both migration thread and rp-return thread can
* operate on the bitmaps.
*/
if (preempt_active) {
qemu_mutex_unlock(&rs->bitmap_mutex);
}
tmppages = migration_ops->ram_save_target_page(rs, pss);
if (tmppages >= 0) {
pages += tmppages;
/*
* Allow rate limiting to happen in the middle of huge pages if
* something is sent in the current iteration.
*/
if (pagesize_bits > 1 && tmppages > 0) {
migration_rate_limit();
}
}
if (preempt_active) {
qemu_mutex_lock(&rs->bitmap_mutex);
}
} else {
tmppages = 0;
}
if (tmppages < 0) {
pss_host_page_finish(pss);
return tmppages;
}
pss_find_next_dirty(pss);
} while (pss_within_range(pss));
pss_host_page_finish(pss);
res = ram_save_release_protection(rs, pss, start_page);
return (res < 0 ? res : pages);
}
/**
* ram_find_and_save_block: finds a dirty page and sends it to f
*
* Called within an RCU critical section.
*
* Returns the number of pages written where zero means no dirty pages,
* or negative on error
*
* @rs: current RAM state
*
* On systems where host-page-size > target-page-size it will send all the
* pages in a host page that are dirty.
*/
static int ram_find_and_save_block(RAMState *rs)
{
PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
int pages = 0;
/* No dirty page as there is zero RAM */
if (!rs->ram_bytes_total) {
return pages;
}
/*
* Always keep last_seen_block/last_page valid during this procedure,
* because find_dirty_block() relies on these values (e.g., we compare
* last_seen_block with pss.block to see whether we searched all the
* ramblocks) to detect the completion of migration. Having NULL value
* of last_seen_block can conditionally cause below loop to run forever.
*/
if (!rs->last_seen_block) {
rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
rs->last_page = 0;
}
pss_init(pss, rs->last_seen_block, rs->last_page);
while (true){
if (!get_queued_page(rs, pss)) {
/* priority queue empty, so just search for something dirty */
int res = find_dirty_block(rs, pss);
if (res != PAGE_DIRTY_FOUND) {
if (res == PAGE_ALL_CLEAN) {
break;
} else if (res == PAGE_TRY_AGAIN) {
continue;
} else if (res < 0) {
pages = res;
break;
}
}
}
pages = ram_save_host_page(rs, pss);
if (pages) {
break;
}
}
rs->last_seen_block = pss->block;
rs->last_page = pss->page;
return pages;
}
static uint64_t ram_bytes_total_with_ignored(void)
{
RAMBlock *block;
uint64_t total = 0;
RCU_READ_LOCK_GUARD();
RAMBLOCK_FOREACH_MIGRATABLE(block) {
total += block->used_length;
}
return total;
}
uint64_t ram_bytes_total(void)
{
RAMBlock *block;
uint64_t total = 0;
RCU_READ_LOCK_GUARD();
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
total += block->used_length;
}
return total;
}
static void xbzrle_load_setup(void)
{
XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
}
static void xbzrle_load_cleanup(void)
{
g_free(XBZRLE.decoded_buf);
XBZRLE.decoded_buf = NULL;
}
static void ram_state_cleanup(RAMState **rsp)
{
if (*rsp) {
migration_page_queue_free(*rsp);
qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
g_free(*rsp);
*rsp = NULL;
}
}
static void xbzrle_cleanup(void)
{
XBZRLE_cache_lock();
if (XBZRLE.cache) {
cache_fini(XBZRLE.cache);
g_free(XBZRLE.encoded_buf);
g_free(XBZRLE.current_buf);
g_free(XBZRLE.zero_target_page);
XBZRLE.cache = NULL;
XBZRLE.encoded_buf = NULL;
XBZRLE.current_buf = NULL;
XBZRLE.zero_target_page = NULL;
}
XBZRLE_cache_unlock();
}
static void ram_save_cleanup(void *opaque)
{
RAMState **rsp = opaque;
RAMBlock *block;
/* We don't use dirty log with background snapshots */
if (!migrate_background_snapshot()) {
/* caller have hold iothread lock or is in a bh, so there is
* no writing race against the migration bitmap
*/
if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
/*
* do not stop dirty log without starting it, since
* memory_global_dirty_log_stop will assert that
* memory_global_dirty_log_start/stop used in pairs
*/
memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
}
}
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
g_free(block->clear_bmap);
block->clear_bmap = NULL;
g_free(block->bmap);
block->bmap = NULL;
}
xbzrle_cleanup();
compress_threads_save_cleanup();
ram_state_cleanup(rsp);
g_free(migration_ops);
migration_ops = NULL;
}
static void ram_state_reset(RAMState *rs)
{
int i;
for (i = 0; i < RAM_CHANNEL_MAX; i++) {
rs->pss[i].last_sent_block = NULL;
}
rs->last_seen_block = NULL;
rs->last_page = 0;
rs->last_version = ram_list.version;
rs->xbzrle_started = false;
}
#define MAX_WAIT 50 /* ms, half buffered_file limit */
/* **** functions for postcopy ***** */
void ram_postcopy_migrated_memory_release(MigrationState *ms)
{
struct RAMBlock *block;
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
unsigned long *bitmap = block->bmap;
unsigned long range = block->used_length >> TARGET_PAGE_BITS;
unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
while (run_start < range) {
unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
ram_discard_range(block->idstr,
((ram_addr_t)run_start) << TARGET_PAGE_BITS,
((ram_addr_t)(run_end - run_start))
<< TARGET_PAGE_BITS);
run_start = find_next_zero_bit(bitmap, range, run_end + 1);
}
}
}
/**
* postcopy_send_discard_bm_ram: discard a RAMBlock
*
* Callback from postcopy_each_ram_send_discard for each RAMBlock
*
* @ms: current migration state
* @block: RAMBlock to discard
*/
static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
{
unsigned long end = block->used_length >> TARGET_PAGE_BITS;
unsigned long current;
unsigned long *bitmap = block->bmap;
for (current = 0; current < end; ) {
unsigned long one = find_next_bit(bitmap, end, current);
unsigned long zero, discard_length;
if (one >= end) {
break;
}
zero = find_next_zero_bit(bitmap, end, one + 1);
if (zero >= end) {
discard_length = end - one;
} else {
discard_length = zero - one;
}
postcopy_discard_send_range(ms, one, discard_length);
current = one + discard_length;
}
}
static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
/**
* postcopy_each_ram_send_discard: discard all RAMBlocks
*
* Utility for the outgoing postcopy code.
* Calls postcopy_send_discard_bm_ram for each RAMBlock
* passing it bitmap indexes and name.
* (qemu_ram_foreach_block ends up passing unscaled lengths
* which would mean postcopy code would have to deal with target page)
*
* @ms: current migration state
*/
static void postcopy_each_ram_send_discard(MigrationState *ms)
{
struct RAMBlock *block;
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
postcopy_discard_send_init(ms, block->idstr);
/*
* Deal with TPS != HPS and huge pages. It discard any partially sent
* host-page size chunks, mark any partially dirty host-page size
* chunks as all dirty. In this case the host-page is the host-page
* for the particular RAMBlock, i.e. it might be a huge page.
*/
postcopy_chunk_hostpages_pass(ms, block);
/*
* Postcopy sends chunks of bitmap over the wire, but it
* just needs indexes at this point, avoids it having
* target page specific code.
*/
postcopy_send_discard_bm_ram(ms, block);
postcopy_discard_send_finish(ms);
}
}
/**
* postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
*
* Helper for postcopy_chunk_hostpages; it's called twice to
* canonicalize the two bitmaps, that are similar, but one is
* inverted.
*
* Postcopy requires that all target pages in a hostpage are dirty or
* clean, not a mix. This function canonicalizes the bitmaps.
*
* @ms: current migration state
* @block: block that contains the page we want to canonicalize
*/
static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
{
RAMState *rs = ram_state;
unsigned long *bitmap = block->bmap;
unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
unsigned long run_start;
if (block->page_size == TARGET_PAGE_SIZE) {
/* Easy case - TPS==HPS for a non-huge page RAMBlock */
return;
}
/* Find a dirty page */
run_start = find_next_bit(bitmap, pages, 0);
while (run_start < pages) {
/*
* If the start of this run of pages is in the middle of a host
* page, then we need to fixup this host page.
*/
if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
/* Find the end of this run */
run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
/*
* If the end isn't at the start of a host page, then the
* run doesn't finish at the end of a host page
* and we need to discard.
*/
}
if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
unsigned long page;
unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
host_ratio);
run_start = QEMU_ALIGN_UP(run_start, host_ratio);
/* Clean up the bitmap */
for (page = fixup_start_addr;
page < fixup_start_addr + host_ratio; page++) {
/*
* Remark them as dirty, updating the count for any pages
* that weren't previously dirty.
*/
rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
}
}
/* Find the next dirty page for the next iteration */
run_start = find_next_bit(bitmap, pages, run_start);
}
}
/**
* ram_postcopy_send_discard_bitmap: transmit the discard bitmap
*
* Transmit the set of pages to be discarded after precopy to the target
* these are pages that:
* a) Have been previously transmitted but are now dirty again
* b) Pages that have never been transmitted, this ensures that
* any pages on the destination that have been mapped by background
* tasks get discarded (transparent huge pages is the specific concern)
* Hopefully this is pretty sparse
*
* @ms: current migration state
*/
void ram_postcopy_send_discard_bitmap(MigrationState *ms)
{
RAMState *rs = ram_state;
RCU_READ_LOCK_GUARD();
/* This should be our last sync, the src is now paused */
migration_bitmap_sync(rs, false);
/* Easiest way to make sure we don't resume in the middle of a host-page */
rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
rs->last_seen_block = NULL;
rs->last_page = 0;
postcopy_each_ram_send_discard(ms);
trace_ram_postcopy_send_discard_bitmap();
}
/**
* ram_discard_range: discard dirtied pages at the beginning of postcopy
*
* Returns zero on success
*
* @rbname: name of the RAMBlock of the request. NULL means the
* same that last one.
* @start: RAMBlock starting page
* @length: RAMBlock size
*/
int ram_discard_range(const char *rbname, uint64_t start, size_t length)
{
trace_ram_discard_range(rbname, start, length);
RCU_READ_LOCK_GUARD();
RAMBlock *rb = qemu_ram_block_by_name(rbname);
if (!rb) {
error_report("ram_discard_range: Failed to find block '%s'", rbname);
return -1;
}
/*
* On source VM, we don't need to update the received bitmap since
* we don't even have one.
*/
if (rb->receivedmap) {
bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
length >> qemu_target_page_bits());
}
return ram_block_discard_range(rb, start, length);
}
/*
* For every allocation, we will try not to crash the VM if the
* allocation failed.
*/
static int xbzrle_init(void)
{
Error *local_err = NULL;
if (!migrate_xbzrle()) {
return 0;
}
XBZRLE_cache_lock();
XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
if (!XBZRLE.zero_target_page) {
error_report("%s: Error allocating zero page", __func__);
goto err_out;
}
XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
TARGET_PAGE_SIZE, &local_err);
if (!XBZRLE.cache) {
error_report_err(local_err);
goto free_zero_page;
}
XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
if (!XBZRLE.encoded_buf) {
error_report("%s: Error allocating encoded_buf", __func__);
goto free_cache;
}
XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
if (!XBZRLE.current_buf) {
error_report("%s: Error allocating current_buf", __func__);
goto free_encoded_buf;
}
/* We are all good */
XBZRLE_cache_unlock();
return 0;
free_encoded_buf:
g_free(XBZRLE.encoded_buf);
XBZRLE.encoded_buf = NULL;
free_cache:
cache_fini(XBZRLE.cache);
XBZRLE.cache = NULL;
free_zero_page:
g_free(XBZRLE.zero_target_page);
XBZRLE.zero_target_page = NULL;
err_out:
XBZRLE_cache_unlock();
return -ENOMEM;
}
static int ram_state_init(RAMState **rsp)
{
*rsp = g_try_new0(RAMState, 1);
if (!*rsp) {
error_report("%s: Init ramstate fail", __func__);
return -1;
}
qemu_mutex_init(&(*rsp)->bitmap_mutex);
qemu_mutex_init(&(*rsp)->src_page_req_mutex);
QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
(*rsp)->ram_bytes_total = ram_bytes_total();
/*
* Count the total number of pages used by ram blocks not including any
* gaps due to alignment or unplugs.
* This must match with the initial values of dirty bitmap.
*/
(*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
ram_state_reset(*rsp);
return 0;
}
static void ram_list_init_bitmaps(void)
{
MigrationState *ms = migrate_get_current();
RAMBlock *block;
unsigned long pages;
uint8_t shift;
/* Skip setting bitmap if there is no RAM */
if (ram_bytes_total()) {
shift = ms->clear_bitmap_shift;
if (shift > CLEAR_BITMAP_SHIFT_MAX) {
error_report("clear_bitmap_shift (%u) too big, using "
"max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
shift = CLEAR_BITMAP_SHIFT_MAX;
} else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
error_report("clear_bitmap_shift (%u) too small, using "
"min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
shift = CLEAR_BITMAP_SHIFT_MIN;
}
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
pages = block->max_length >> TARGET_PAGE_BITS;
/*
* The initial dirty bitmap for migration must be set with all
* ones to make sure we'll migrate every guest RAM page to
* destination.
* Here we set RAMBlock.bmap all to 1 because when rebegin a
* new migration after a failed migration, ram_list.
* dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
* guest memory.
*/
block->bmap = bitmap_new(pages);
bitmap_set(block->bmap, 0, pages);
block->clear_bmap_shift = shift;
block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
}
}
}
static void migration_bitmap_clear_discarded_pages(RAMState *rs)
{
unsigned long pages;
RAMBlock *rb;
RCU_READ_LOCK_GUARD();
RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
rs->migration_dirty_pages -= pages;
}
}
static void ram_init_bitmaps(RAMState *rs)
{
qemu_mutex_lock_ramlist();
WITH_RCU_READ_LOCK_GUARD() {
ram_list_init_bitmaps();
/* We don't use dirty log with background snapshots */
if (!migrate_background_snapshot()) {
memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
migration_bitmap_sync_precopy(rs, false);
}
}
qemu_mutex_unlock_ramlist();
/*
* After an eventual first bitmap sync, fixup the initial bitmap
* containing all 1s to exclude any discarded pages from migration.
*/
migration_bitmap_clear_discarded_pages(rs);
}
static int ram_init_all(RAMState **rsp)
{
if (ram_state_init(rsp)) {
return -1;
}
if (xbzrle_init()) {
ram_state_cleanup(rsp);
return -1;
}
ram_init_bitmaps(*rsp);
return 0;
}
static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
{
RAMBlock *block;
uint64_t pages = 0;
/*
* Postcopy is not using xbzrle/compression, so no need for that.
* Also, since source are already halted, we don't need to care
* about dirty page logging as well.
*/
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
pages += bitmap_count_one(block->bmap,
block->used_length >> TARGET_PAGE_BITS);
}
/* This may not be aligned with current bitmaps. Recalculate. */
rs->migration_dirty_pages = pages;
ram_state_reset(rs);
/* Update RAMState cache of output QEMUFile */
rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
trace_ram_state_resume_prepare(pages);
}
/*
* This function clears bits of the free pages reported by the caller from the
* migration dirty bitmap. @addr is the host address corresponding to the
* start of the continuous guest free pages, and @len is the total bytes of
* those pages.
*/
void qemu_guest_free_page_hint(void *addr, size_t len)
{
RAMBlock *block;
ram_addr_t offset;
size_t used_len, start, npages;
MigrationState *s = migrate_get_current();
/* This function is currently expected to be used during live migration */
if (!migration_is_setup_or_active(s->state)) {
return;
}
for (; len > 0; len -= used_len, addr += used_len) {
block = qemu_ram_block_from_host(addr, false, &offset);
if (unlikely(!block || offset >= block->used_length)) {
/*
* The implementation might not support RAMBlock resize during
* live migration, but it could happen in theory with future
* updates. So we add a check here to capture that case.
*/
error_report_once("%s unexpected error", __func__);
return;
}
if (len <= block->used_length - offset) {
used_len = len;
} else {
used_len = block->used_length - offset;
}
start = offset >> TARGET_PAGE_BITS;
npages = used_len >> TARGET_PAGE_BITS;
qemu_mutex_lock(&ram_state->bitmap_mutex);
/*
* The skipped free pages are equavalent to be sent from clear_bmap's
* perspective, so clear the bits from the memory region bitmap which
* are initially set. Otherwise those skipped pages will be sent in
* the next round after syncing from the memory region bitmap.
*/
migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
ram_state->migration_dirty_pages -=
bitmap_count_one_with_offset(block->bmap, start, npages);
bitmap_clear(block->bmap, start, npages);
qemu_mutex_unlock(&ram_state->bitmap_mutex);
}
}
/*
* Each of ram_save_setup, ram_save_iterate and ram_save_complete has
* long-running RCU critical section. When rcu-reclaims in the code
* start to become numerous it will be necessary to reduce the
* granularity of these critical sections.
*/
/**
* ram_save_setup: Setup RAM for migration
*
* Returns zero to indicate success and negative for error
*
* @f: QEMUFile where to send the data
* @opaque: RAMState pointer
*/
static int ram_save_setup(QEMUFile *f, void *opaque)
{
RAMState **rsp = opaque;
RAMBlock *block;
int ret;
if (compress_threads_save_setup()) {
return -1;
}
/* migration has already setup the bitmap, reuse it. */
if (!migration_in_colo_state()) {
if (ram_init_all(rsp) != 0) {
compress_threads_save_cleanup();
return -1;
}
}
(*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
WITH_RCU_READ_LOCK_GUARD() {
qemu_put_be64(f, ram_bytes_total_with_ignored()
| RAM_SAVE_FLAG_MEM_SIZE);
RAMBLOCK_FOREACH_MIGRATABLE(block) {
qemu_put_byte(f, strlen(block->idstr));
qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
qemu_put_be64(f, block->used_length);
if (migrate_postcopy_ram() && block->page_size !=
qemu_host_page_size) {
qemu_put_be64(f, block->page_size);
}
if (migrate_ignore_shared()) {
qemu_put_be64(f, block->mr->addr);
}
}
}
ret = qemu_rdma_registration_start(f, RAM_CONTROL_SETUP);
if (ret < 0) {
qemu_file_set_error(f, ret);
}
ret = qemu_rdma_registration_stop(f, RAM_CONTROL_SETUP);
if (ret < 0) {
qemu_file_set_error(f, ret);
}
migration_ops = g_malloc0(sizeof(MigrationOps));
migration_ops->ram_save_target_page = ram_save_target_page_legacy;
qemu_mutex_unlock_iothread();
ret = multifd_send_sync_main(f);
qemu_mutex_lock_iothread();
if (ret < 0) {
return ret;
}
if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) {
qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
}
qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
qemu_fflush(f);
return 0;
}
/**
* ram_save_iterate: iterative stage for migration
*
* Returns zero to indicate success and negative for error
*
* @f: QEMUFile where to send the data
* @opaque: RAMState pointer
*/
static int ram_save_iterate(QEMUFile *f, void *opaque)
{
RAMState **temp = opaque;
RAMState *rs = *temp;
int ret = 0;
int i;
int64_t t0;
int done = 0;
if (blk_mig_bulk_active()) {
/* Avoid transferring ram during bulk phase of block migration as
* the bulk phase will usually take a long time and transferring
* ram updates during that time is pointless. */
goto out;
}
/*
* We'll take this lock a little bit long, but it's okay for two reasons.
* Firstly, the only possible other thread to take it is who calls
* qemu_guest_free_page_hint(), which should be rare; secondly, see
* MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
* guarantees that we'll at least released it in a regular basis.
*/
qemu_mutex_lock(&rs->bitmap_mutex);
WITH_RCU_READ_LOCK_GUARD() {
if (ram_list.version != rs->last_version) {
ram_state_reset(rs);
}
/* Read version before ram_list.blocks */
smp_rmb();
ret = qemu_rdma_registration_start(f, RAM_CONTROL_ROUND);
if (ret < 0) {
qemu_file_set_error(f, ret);
}
t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
i = 0;
while ((ret = migration_rate_exceeded(f)) == 0 ||
postcopy_has_request(rs)) {
int pages;
if (qemu_file_get_error(f)) {
break;
}
pages = ram_find_and_save_block(rs);
/* no more pages to sent */
if (pages == 0) {
done = 1;
break;
}
if (pages < 0) {
qemu_file_set_error(f, pages);
break;
}
rs->target_page_count += pages;
/*
* During postcopy, it is necessary to make sure one whole host
* page is sent in one chunk.
*/
if (migrate_postcopy_ram()) {
ram_flush_compressed_data(rs);
}
/*
* we want to check in the 1st loop, just in case it was the 1st
* time and we had to sync the dirty bitmap.
* qemu_clock_get_ns() is a bit expensive, so we only check each
* some iterations
*/
if ((i & 63) == 0) {
uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
1000000;
if (t1 > MAX_WAIT) {
trace_ram_save_iterate_big_wait(t1, i);
break;
}
}
i++;
}
}
qemu_mutex_unlock(&rs->bitmap_mutex);
/*
* Must occur before EOS (or any QEMUFile operation)
* because of RDMA protocol.
*/
ret = qemu_rdma_registration_stop(f, RAM_CONTROL_ROUND);
if (ret < 0) {
qemu_file_set_error(f, ret);
}
out:
if (ret >= 0
&& migration_is_setup_or_active(migrate_get_current()->state)) {
if (migrate_multifd() && migrate_multifd_flush_after_each_section()) {
ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel);
if (ret < 0) {
return ret;
}
}
qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
qemu_fflush(f);
ram_transferred_add(8);
ret = qemu_file_get_error(f);
}
if (ret < 0) {
return ret;
}
return done;
}
/**
* ram_save_complete: function called to send the remaining amount of ram
*
* Returns zero to indicate success or negative on error
*
* Called with iothread lock
*
* @f: QEMUFile where to send the data
* @opaque: RAMState pointer
*/
static int ram_save_complete(QEMUFile *f, void *opaque)
{
RAMState **temp = opaque;
RAMState *rs = *temp;
int ret = 0;
rs->last_stage = !migration_in_colo_state();
WITH_RCU_READ_LOCK_GUARD() {
if (!migration_in_postcopy()) {
migration_bitmap_sync_precopy(rs, true);
}
ret = qemu_rdma_registration_start(f, RAM_CONTROL_FINISH);
if (ret < 0) {
qemu_file_set_error(f, ret);
}
/* try transferring iterative blocks of memory */
/* flush all remaining blocks regardless of rate limiting */
qemu_mutex_lock(&rs->bitmap_mutex);
while (true) {
int pages;
pages = ram_find_and_save_block(rs);
/* no more blocks to sent */
if (pages == 0) {
break;
}
if (pages < 0) {
ret = pages;
break;
}
}
qemu_mutex_unlock(&rs->bitmap_mutex);
ram_flush_compressed_data(rs);
int ret = qemu_rdma_registration_stop(f, RAM_CONTROL_FINISH);
if (ret < 0) {
qemu_file_set_error(f, ret);
}
}
if (ret < 0) {
return ret;
}
ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel);
if (ret < 0) {
return ret;
}
if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) {
qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
}
qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
qemu_fflush(f);
return 0;
}
static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
uint64_t *can_postcopy)
{
RAMState **temp = opaque;
RAMState *rs = *temp;
uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
if (migrate_postcopy_ram()) {
/* We can do postcopy, and all the data is postcopiable */
*can_postcopy += remaining_size;
} else {
*must_precopy += remaining_size;
}
}
static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
uint64_t *can_postcopy)
{
MigrationState *s = migrate_get_current();
RAMState **temp = opaque;
RAMState *rs = *temp;
uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
if (!migration_in_postcopy() && remaining_size < s->threshold_size) {
qemu_mutex_lock_iothread();
WITH_RCU_READ_LOCK_GUARD() {
migration_bitmap_sync_precopy(rs, false);
}
qemu_mutex_unlock_iothread();
remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
}
if (migrate_postcopy_ram()) {
/* We can do postcopy, and all the data is postcopiable */
*can_postcopy += remaining_size;
} else {
*must_precopy += remaining_size;
}
}
static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
{
unsigned int xh_len;
int xh_flags;
uint8_t *loaded_data;
/* extract RLE header */
xh_flags = qemu_get_byte(f);
xh_len = qemu_get_be16(f);
if (xh_flags != ENCODING_FLAG_XBZRLE) {
error_report("Failed to load XBZRLE page - wrong compression!");
return -1;
}
if (xh_len > TARGET_PAGE_SIZE) {
error_report("Failed to load XBZRLE page - len overflow!");
return -1;
}
loaded_data = XBZRLE.decoded_buf;
/* load data and decode */
/* it can change loaded_data to point to an internal buffer */
qemu_get_buffer_in_place(f, &loaded_data, xh_len);
/* decode RLE */
if (xbzrle_decode_buffer(loaded_data, xh_len, host,
TARGET_PAGE_SIZE) == -1) {
error_report("Failed to load XBZRLE page - decode error!");
return -1;
}
return 0;
}
/**
* ram_block_from_stream: read a RAMBlock id from the migration stream
*
* Must be called from within a rcu critical section.
*
* Returns a pointer from within the RCU-protected ram_list.
*
* @mis: the migration incoming state pointer
* @f: QEMUFile where to read the data from
* @flags: Page flags (mostly to see if it's a continuation of previous block)
* @channel: the channel we're using
*/
static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
QEMUFile *f, int flags,
int channel)
{
RAMBlock *block = mis->last_recv_block[channel];
char id[256];
uint8_t len;
if (flags & RAM_SAVE_FLAG_CONTINUE) {
if (!block) {
error_report("Ack, bad migration stream!");
return NULL;
}
return block;
}
len = qemu_get_byte(f);
qemu_get_buffer(f, (uint8_t *)id, len);
id[len] = 0;
block = qemu_ram_block_by_name(id);
if (!block) {
error_report("Can't find block %s", id);
return NULL;
}
if (migrate_ram_is_ignored(block)) {
error_report("block %s should not be migrated !", id);
return NULL;
}
mis->last_recv_block[channel] = block;
return block;
}
static inline void *host_from_ram_block_offset(RAMBlock *block,
ram_addr_t offset)
{
if (!offset_in_ramblock(block, offset)) {
return NULL;
}
return block->host + offset;
}
static void *host_page_from_ram_block_offset(RAMBlock *block,
ram_addr_t offset)
{
/* Note: Explicitly no check against offset_in_ramblock(). */
return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
block->page_size);
}
static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
ram_addr_t offset)
{
return ((uintptr_t)block->host + offset) & (block->page_size - 1);
}
void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
{
qemu_mutex_lock(&ram_state->bitmap_mutex);
for (int i = 0; i < pages; i++) {
ram_addr_t offset = normal[i];
ram_state->migration_dirty_pages += !test_and_set_bit(
offset >> TARGET_PAGE_BITS,
block->bmap);
}
qemu_mutex_unlock(&ram_state->bitmap_mutex);
}
static inline void *colo_cache_from_block_offset(RAMBlock *block,
ram_addr_t offset, bool record_bitmap)
{
if (!offset_in_ramblock(block, offset)) {
return NULL;
}
if (!block->colo_cache) {
error_report("%s: colo_cache is NULL in block :%s",
__func__, block->idstr);
return NULL;
}
/*
* During colo checkpoint, we need bitmap of these migrated pages.
* It help us to decide which pages in ram cache should be flushed
* into VM's RAM later.
*/
if (record_bitmap) {
colo_record_bitmap(block, &offset, 1);
}
return block->colo_cache + offset;
}
/**
* ram_handle_compressed: handle the zero page case
*
* If a page (or a whole RDMA chunk) has been
* determined to be zero, then zap it.
*
* @host: host address for the zero page
* @ch: what the page is filled from. We only support zero
* @size: size of the zero page
*/
void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
{
if (ch != 0 || !buffer_is_zero(host, size)) {
memset(host, ch, size);
}
}
static void colo_init_ram_state(void)
{
ram_state_init(&ram_state);
}
/*
* colo cache: this is for secondary VM, we cache the whole
* memory of the secondary VM, it is need to hold the global lock
* to call this helper.
*/
int colo_init_ram_cache(void)
{
RAMBlock *block;
WITH_RCU_READ_LOCK_GUARD() {
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
block->colo_cache = qemu_anon_ram_alloc(block->used_length,
NULL, false, false);
if (!block->colo_cache) {
error_report("%s: Can't alloc memory for COLO cache of block %s,"
"size 0x" RAM_ADDR_FMT, __func__, block->idstr,
block->used_length);
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
if (block->colo_cache) {
qemu_anon_ram_free(block->colo_cache, block->used_length);
block->colo_cache = NULL;
}
}
return -errno;
}
if (!machine_dump_guest_core(current_machine)) {
qemu_madvise(block->colo_cache, block->used_length,
QEMU_MADV_DONTDUMP);
}
}
}
/*
* Record the dirty pages that sent by PVM, we use this dirty bitmap together
* with to decide which page in cache should be flushed into SVM's RAM. Here
* we use the same name 'ram_bitmap' as for migration.
*/
if (ram_bytes_total()) {
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
block->bmap = bitmap_new(pages);
}
}
colo_init_ram_state();
return 0;
}
/* TODO: duplicated with ram_init_bitmaps */
void colo_incoming_start_dirty_log(void)
{
RAMBlock *block = NULL;
/* For memory_global_dirty_log_start below. */
qemu_mutex_lock_iothread();
qemu_mutex_lock_ramlist();
memory_global_dirty_log_sync(false);
WITH_RCU_READ_LOCK_GUARD() {
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
ramblock_sync_dirty_bitmap(ram_state, block);
/* Discard this dirty bitmap record */
bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
}
memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
}
ram_state->migration_dirty_pages = 0;
qemu_mutex_unlock_ramlist();
qemu_mutex_unlock_iothread();
}
/* It is need to hold the global lock to call this helper */
void colo_release_ram_cache(void)
{
RAMBlock *block;
memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
g_free(block->bmap);
block->bmap = NULL;
}
WITH_RCU_READ_LOCK_GUARD() {
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
if (block->colo_cache) {
qemu_anon_ram_free(block->colo_cache, block->used_length);
block->colo_cache = NULL;
}
}
}
ram_state_cleanup(&ram_state);
}
/**
* ram_load_setup: Setup RAM for migration incoming side
*
* Returns zero to indicate success and negative for error
*
* @f: QEMUFile where to receive the data
* @opaque: RAMState pointer
*/
static int ram_load_setup(QEMUFile *f, void *opaque)
{
xbzrle_load_setup();
ramblock_recv_map_init();
return 0;
}
static int ram_load_cleanup(void *opaque)
{
RAMBlock *rb;
RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
qemu_ram_block_writeback(rb);
}
xbzrle_load_cleanup();
RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
g_free(rb->receivedmap);
rb->receivedmap = NULL;
}
return 0;
}
/**
* ram_postcopy_incoming_init: allocate postcopy data structures
*
* Returns 0 for success and negative if there was one error
*
* @mis: current migration incoming state
*
* Allocate data structures etc needed by incoming migration with
* postcopy-ram. postcopy-ram's similarly names
* postcopy_ram_incoming_init does the work.
*/
int ram_postcopy_incoming_init(MigrationIncomingState *mis)
{
return postcopy_ram_incoming_init(mis);
}
/**
* ram_load_postcopy: load a page in postcopy case
*
* Returns 0 for success or -errno in case of error
*
* Called in postcopy mode by ram_load().
* rcu_read_lock is taken prior to this being called.
*
* @f: QEMUFile where to send the data
* @channel: the channel to use for loading
*/
int ram_load_postcopy(QEMUFile *f, int channel)
{
int flags = 0, ret = 0;
bool place_needed = false;
bool matches_target_page_size = false;
MigrationIncomingState *mis = migration_incoming_get_current();
PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
ram_addr_t addr;
void *page_buffer = NULL;
void *place_source = NULL;
RAMBlock *block = NULL;
uint8_t ch;
int len;
addr = qemu_get_be64(f);
/*
* If qemu file error, we should stop here, and then "addr"
* may be invalid
*/
ret = qemu_file_get_error(f);
if (ret) {
break;
}
flags = addr & ~TARGET_PAGE_MASK;
addr &= TARGET_PAGE_MASK;
trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
RAM_SAVE_FLAG_COMPRESS_PAGE)) {
block = ram_block_from_stream(mis, f, flags, channel);
if (!block) {
ret = -EINVAL;
break;
}
/*
* Relying on used_length is racy and can result in false positives.
* We might place pages beyond used_length in case RAM was shrunk
* while in postcopy, which is fine - trying to place via
* UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
*/
if (!block->host || addr >= block->postcopy_length) {
error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
ret = -EINVAL;
break;
}
tmp_page->target_pages++;
matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
/*
* Postcopy requires that we place whole host pages atomically;
* these may be huge pages for RAMBlocks that are backed by
* hugetlbfs.
* To make it atomic, the data is read into a temporary page
* that's moved into place later.
* The migration protocol uses, possibly smaller, target-pages
* however the source ensures it always sends all the components
* of a host page in one chunk.
*/
page_buffer = tmp_page->tmp_huge_page +
host_page_offset_from_ram_block_offset(block, addr);
/* If all TP are zero then we can optimise the place */
if (tmp_page->target_pages == 1) {
tmp_page->host_addr =
host_page_from_ram_block_offset(block, addr);
} else if (tmp_page->host_addr !=
host_page_from_ram_block_offset(block, addr)) {
/* not the 1st TP within the HP */
error_report("Non-same host page detected on channel %d: "
"Target host page %p, received host page %p "
"(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
channel, tmp_page->host_addr,
host_page_from_ram_block_offset(block, addr),
block->idstr, addr, tmp_page->target_pages);
ret = -EINVAL;
break;
}
/*
* If it's the last part of a host page then we place the host
* page
*/
if (tmp_page->target_pages ==
(block->page_size / TARGET_PAGE_SIZE)) {
place_needed = true;
}
place_source = tmp_page->tmp_huge_page;
}
switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
case RAM_SAVE_FLAG_ZERO:
ch = qemu_get_byte(f);
/*
* Can skip to set page_buffer when
* this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
*/
if (ch || !matches_target_page_size) {
memset(page_buffer, ch, TARGET_PAGE_SIZE);
}
if (ch) {
tmp_page->all_zero = false;
}
break;
case RAM_SAVE_FLAG_PAGE:
tmp_page->all_zero = false;
if (!matches_target_page_size) {
/* For huge pages, we always use temporary buffer */
qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
} else {
/*
* For small pages that matches target page size, we
* avoid the qemu_file copy. Instead we directly use
* the buffer of QEMUFile to place the page. Note: we
* cannot do any QEMUFile operation before using that
* buffer to make sure the buffer is valid when
* placing the page.
*/
qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
TARGET_PAGE_SIZE);
}
break;
case RAM_SAVE_FLAG_COMPRESS_PAGE:
tmp_page->all_zero = false;
len = qemu_get_be32(f);
if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
error_report("Invalid compressed data length: %d", len);
ret = -EINVAL;
break;
}
decompress_data_with_multi_threads(f, page_buffer, len);
break;
case RAM_SAVE_FLAG_MULTIFD_FLUSH:
multifd_recv_sync_main();
break;
case RAM_SAVE_FLAG_EOS:
/* normal exit */
if (migrate_multifd() &&
migrate_multifd_flush_after_each_section()) {
multifd_recv_sync_main();
}
break;
default:
error_report("Unknown combination of migration flags: 0x%x"
" (postcopy mode)", flags);
ret = -EINVAL;
break;
}
/* Got the whole host page, wait for decompress before placing. */
if (place_needed) {
ret |= wait_for_decompress_done();
}
/* Detect for any possible file errors */
if (!ret && qemu_file_get_error(f)) {
ret = qemu_file_get_error(f);
}
if (!ret && place_needed) {
if (tmp_page->all_zero) {
ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
} else {
ret = postcopy_place_page(mis, tmp_page->host_addr,
place_source, block);
}
place_needed = false;
postcopy_temp_page_reset(tmp_page);
}
}
return ret;
}
static bool postcopy_is_running(void)
{
PostcopyState ps = postcopy_state_get();
return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
}
/*
* Flush content of RAM cache into SVM's memory.
* Only flush the pages that be dirtied by PVM or SVM or both.
*/
void colo_flush_ram_cache(void)
{
RAMBlock *block = NULL;
void *dst_host;
void *src_host;
unsigned long offset = 0;
memory_global_dirty_log_sync(false);
qemu_mutex_lock(&ram_state->bitmap_mutex);
WITH_RCU_READ_LOCK_GUARD() {
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
ramblock_sync_dirty_bitmap(ram_state, block);
}
}
trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
WITH_RCU_READ_LOCK_GUARD() {
block = QLIST_FIRST_RCU(&ram_list.blocks);
while (block) {
unsigned long num = 0;
offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
if (!offset_in_ramblock(block,
((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
offset = 0;
num = 0;
block = QLIST_NEXT_RCU(block, next);
} else {
unsigned long i = 0;
for (i = 0; i < num; i++) {
migration_bitmap_clear_dirty(ram_state, block, offset + i);
}
dst_host = block->host
+ (((ram_addr_t)offset) << TARGET_PAGE_BITS);
src_host = block->colo_cache
+ (((ram_addr_t)offset) << TARGET_PAGE_BITS);
memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
offset += num;
}
}
}
qemu_mutex_unlock(&ram_state->bitmap_mutex);
trace_colo_flush_ram_cache_end();
}
/**
* ram_load_precopy: load pages in precopy case
*
* Returns 0 for success or -errno in case of error
*
* Called in precopy mode by ram_load().
* rcu_read_lock is taken prior to this being called.
*
* @f: QEMUFile where to send the data
*/
static int ram_load_precopy(QEMUFile *f)
{
MigrationIncomingState *mis = migration_incoming_get_current();
int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
/* ADVISE is earlier, it shows the source has the postcopy capability on */
bool postcopy_advised = migration_incoming_postcopy_advised();
if (!migrate_compress()) {
invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
}
while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
ram_addr_t addr, total_ram_bytes;
void *host = NULL, *host_bak = NULL;
uint8_t ch;
/*
* Yield periodically to let main loop run, but an iteration of
* the main loop is expensive, so do it each some iterations
*/
if ((i & 32767) == 0 && qemu_in_coroutine()) {
aio_co_schedule(qemu_get_current_aio_context(),
qemu_coroutine_self());
qemu_coroutine_yield();
}
i++;
addr = qemu_get_be64(f);
flags = addr & ~TARGET_PAGE_MASK;
addr &= TARGET_PAGE_MASK;
if (flags & invalid_flags) {
if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
error_report("Received an unexpected compressed page");
}
ret = -EINVAL;
break;
}
if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
RAMBlock *block = ram_block_from_stream(mis, f, flags,
RAM_CHANNEL_PRECOPY);
host = host_from_ram_block_offset(block, addr);
/*
* After going into COLO stage, we should not load the page
* into SVM's memory directly, we put them into colo_cache firstly.
* NOTE: We need to keep a copy of SVM's ram in colo_cache.
* Previously, we copied all these memory in preparing stage of COLO
* while we need to stop VM, which is a time-consuming process.
* Here we optimize it by a trick, back-up every page while in
* migration process while COLO is enabled, though it affects the
* speed of the migration, but it obviously reduce the downtime of
* back-up all SVM'S memory in COLO preparing stage.
*/
if (migration_incoming_colo_enabled()) {
if (migration_incoming_in_colo_state()) {
/* In COLO stage, put all pages into cache temporarily */
host = colo_cache_from_block_offset(block, addr, true);
} else {
/*
* In migration stage but before COLO stage,
* Put all pages into both cache and SVM's memory.
*/
host_bak = colo_cache_from_block_offset(block, addr, false);
}
}
if (!host) {
error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
ret = -EINVAL;
break;
}
if (!migration_incoming_in_colo_state()) {
ramblock_recv_bitmap_set(block, host);
}
trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
}
switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
case RAM_SAVE_FLAG_MEM_SIZE:
/* Synchronize RAM block list */
total_ram_bytes = addr;
while (!ret && total_ram_bytes) {
RAMBlock *block;
char id[256];
ram_addr_t length;
len = qemu_get_byte(f);
qemu_get_buffer(f, (uint8_t *)id, len);
id[len] = 0;
length = qemu_get_be64(f);
block = qemu_ram_block_by_name(id);
if (block && !qemu_ram_is_migratable(block)) {
error_report("block %s should not be migrated !", id);
ret = -EINVAL;
} else if (block) {
if (length != block->used_length) {
Error *local_err = NULL;
ret = qemu_ram_resize(block, length,
&local_err);
if (local_err) {
error_report_err(local_err);
}
}
/* For postcopy we need to check hugepage sizes match */
if (postcopy_advised && migrate_postcopy_ram() &&
block->page_size != qemu_host_page_size) {
uint64_t remote_page_size = qemu_get_be64(f);
if (remote_page_size != block->page_size) {
error_report("Mismatched RAM page size %s "
"(local) %zd != %" PRId64,
id, block->page_size,
remote_page_size);
ret = -EINVAL;
}
}
if (migrate_ignore_shared()) {
hwaddr addr2 = qemu_get_be64(f);
if (migrate_ram_is_ignored(block) &&
block->mr->addr != addr2) {
error_report("Mismatched GPAs for block %s "
"%" PRId64 "!= %" PRId64,
id, (uint64_t)addr2,
(uint64_t)block->mr->addr);
ret = -EINVAL;
}
}
ret = rdma_block_notification_handle(f, block->idstr);
if (ret < 0) {
qemu_file_set_error(f, ret);
}
} else {
error_report("Unknown ramblock \"%s\", cannot "
"accept migration", id);
ret = -EINVAL;
}
total_ram_bytes -= length;
}
break;
case RAM_SAVE_FLAG_ZERO:
ch = qemu_get_byte(f);
ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
break;
case RAM_SAVE_FLAG_PAGE:
qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
break;
case RAM_SAVE_FLAG_COMPRESS_PAGE:
len = qemu_get_be32(f);
if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
error_report("Invalid compressed data length: %d", len);
ret = -EINVAL;
break;
}
decompress_data_with_multi_threads(f, host, len);
break;
case RAM_SAVE_FLAG_XBZRLE:
if (load_xbzrle(f, addr, host) < 0) {
error_report("Failed to decompress XBZRLE page at "
RAM_ADDR_FMT, addr);
ret = -EINVAL;
break;
}
break;
case RAM_SAVE_FLAG_MULTIFD_FLUSH:
multifd_recv_sync_main();
break;
case RAM_SAVE_FLAG_EOS:
/* normal exit */
if (migrate_multifd() &&
migrate_multifd_flush_after_each_section()) {
multifd_recv_sync_main();
}
break;
case RAM_SAVE_FLAG_HOOK:
ret = qemu_rdma_registration_handle(f);
if (ret < 0) {
qemu_file_set_error(f, ret);
}
break;
default:
error_report("Unknown combination of migration flags: 0x%x", flags);
ret = -EINVAL;
}
if (!ret) {
ret = qemu_file_get_error(f);
}
if (!ret && host_bak) {
memcpy(host_bak, host, TARGET_PAGE_SIZE);
}
}
ret |= wait_for_decompress_done();
return ret;
}
static int ram_load(QEMUFile *f, void *opaque, int version_id)
{
int ret = 0;
static uint64_t seq_iter;
/*
* If system is running in postcopy mode, page inserts to host memory must
* be atomic
*/
bool postcopy_running = postcopy_is_running();
seq_iter++;
if (version_id != 4) {
return -EINVAL;
}
/*
* This RCU critical section can be very long running.
* When RCU reclaims in the code start to become numerous,
* it will be necessary to reduce the granularity of this
* critical section.
*/
WITH_RCU_READ_LOCK_GUARD() {
if (postcopy_running) {
/*
* Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of
* postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
* service fast page faults.
*/
ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
} else {
ret = ram_load_precopy(f);
}
}
trace_ram_load_complete(ret, seq_iter);
return ret;
}
static bool ram_has_postcopy(void *opaque)
{
RAMBlock *rb;
RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
if (ramblock_is_pmem(rb)) {
info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
"is not supported now!", rb->idstr, rb->host);
return false;
}
}
return migrate_postcopy_ram();
}
/* Sync all the dirty bitmap with destination VM. */
static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
{
RAMBlock *block;
QEMUFile *file = s->to_dst_file;
trace_ram_dirty_bitmap_sync_start();
qatomic_set(&rs->postcopy_bmap_sync_requested, 0);
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
qemu_savevm_send_recv_bitmap(file, block->idstr);
trace_ram_dirty_bitmap_request(block->idstr);
qatomic_inc(&rs->postcopy_bmap_sync_requested);
}
trace_ram_dirty_bitmap_sync_wait();
/* Wait until all the ramblocks' dirty bitmap synced */
while (qatomic_read(&rs->postcopy_bmap_sync_requested)) {
migration_rp_wait(s);
}
trace_ram_dirty_bitmap_sync_complete();
return 0;
}
/*
* Read the received bitmap, revert it as the initial dirty bitmap.
* This is only used when the postcopy migration is paused but wants
* to resume from a middle point.
*/
int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
{
int ret = -EINVAL;
/* from_dst_file is always valid because we're within rp_thread */
QEMUFile *file = s->rp_state.from_dst_file;
g_autofree unsigned long *le_bitmap = NULL;
unsigned long nbits = block->used_length >> TARGET_PAGE_BITS;
uint64_t local_size = DIV_ROUND_UP(nbits, 8);
uint64_t size, end_mark;
RAMState *rs = ram_state;
trace_ram_dirty_bitmap_reload_begin(block->idstr);
if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
error_report("%s: incorrect state %s", __func__,
MigrationStatus_str(s->state));
return -EINVAL;
}
/*
* Note: see comments in ramblock_recv_bitmap_send() on why we
* need the endianness conversion, and the paddings.
*/
local_size = ROUND_UP(local_size, 8);
/* Add paddings */
le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
size = qemu_get_be64(file);
/* The size of the bitmap should match with our ramblock */
if (size != local_size) {
error_report("%s: ramblock '%s' bitmap size mismatch "
"(0x%"PRIx64" != 0x%"PRIx64")", __func__,
block->idstr, size, local_size);
return -EINVAL;
}
size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
end_mark = qemu_get_be64(file);
ret = qemu_file_get_error(file);
if (ret || size != local_size) {
error_report("%s: read bitmap failed for ramblock '%s': %d"
" (size 0x%"PRIx64", got: 0x%"PRIx64")",
__func__, block->idstr, ret, local_size, size);
return -EIO;
}
if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64,
__func__, block->idstr, end_mark);
return -EINVAL;
}
/*
* Endianness conversion. We are during postcopy (though paused).
* The dirty bitmap won't change. We can directly modify it.
*/
bitmap_from_le(block->bmap, le_bitmap, nbits);
/*
* What we received is "received bitmap". Revert it as the initial
* dirty bitmap for this ramblock.
*/
bitmap_complement(block->bmap, block->bmap, nbits);
/* Clear dirty bits of discarded ranges that we don't want to migrate. */
ramblock_dirty_bitmap_clear_discarded_pages(block);
/* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
trace_ram_dirty_bitmap_reload_complete(block->idstr);
qatomic_dec(&rs->postcopy_bmap_sync_requested);
/*
* We succeeded to sync bitmap for current ramblock. Always kick the
* migration thread to check whether all requested bitmaps are
* reloaded. NOTE: it's racy to only kick when requested==0, because
* we don't know whether the migration thread may still be increasing
* it.
*/
migration_rp_kick(s);
return 0;
}
static int ram_resume_prepare(MigrationState *s, void *opaque)
{
RAMState *rs = *(RAMState **)opaque;
int ret;
ret = ram_dirty_bitmap_sync_all(s, rs);
if (ret) {
return ret;
}
ram_state_resume_prepare(rs, s->to_dst_file);
return 0;
}
void postcopy_preempt_shutdown_file(MigrationState *s)
{
qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
qemu_fflush(s->postcopy_qemufile_src);
}
static SaveVMHandlers savevm_ram_handlers = {
.save_setup = ram_save_setup,
.save_live_iterate = ram_save_iterate,
.save_live_complete_postcopy = ram_save_complete,
.save_live_complete_precopy = ram_save_complete,
.has_postcopy = ram_has_postcopy,
.state_pending_exact = ram_state_pending_exact,
.state_pending_estimate = ram_state_pending_estimate,
.load_state = ram_load,
.save_cleanup = ram_save_cleanup,
.load_setup = ram_load_setup,
.load_cleanup = ram_load_cleanup,
.resume_prepare = ram_resume_prepare,
};
static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
size_t old_size, size_t new_size)
{
PostcopyState ps = postcopy_state_get();
ram_addr_t offset;
RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
Error *err = NULL;
if (!rb) {
error_report("RAM block not found");
return;
}
if (migrate_ram_is_ignored(rb)) {
return;
}
if (!migration_is_idle()) {
/*
* Precopy code on the source cannot deal with the size of RAM blocks
* changing at random points in time - especially after sending the
* RAM block sizes in the migration stream, they must no longer change.
* Abort and indicate a proper reason.
*/
error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
migration_cancel(err);
error_free(err);
}
switch (ps) {
case POSTCOPY_INCOMING_ADVISE:
/*
* Update what ram_postcopy_incoming_init()->init_range() does at the
* time postcopy was advised. Syncing RAM blocks with the source will
* result in RAM resizes.
*/
if (old_size < new_size) {
if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
error_report("RAM block '%s' discard of resized RAM failed",
rb->idstr);
}
}
rb->postcopy_length = new_size;
break;
case POSTCOPY_INCOMING_NONE:
case POSTCOPY_INCOMING_RUNNING:
case POSTCOPY_INCOMING_END:
/*
* Once our guest is running, postcopy does no longer care about
* resizes. When growing, the new memory was not available on the
* source, no handler needed.
*/
break;
default:
error_report("RAM block '%s' resized during postcopy state: %d",
rb->idstr, ps);
exit(-1);
}
}
static RAMBlockNotifier ram_mig_ram_notifier = {
.ram_block_resized = ram_mig_ram_block_resized,
};
void ram_mig_init(void)
{
qemu_mutex_init(&XBZRLE.lock);
register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
ram_block_notifier_add(&ram_mig_ram_notifier);
}