qemu-e2k/hw/virtio/vhost-vdpa.c
Si-Wei Liu d71b0609fc vhost-vdpa: change name and polarity for vhost_vdpa_one_time_request()
The name vhost_vdpa_one_time_request() was confusing. No
matter whatever it returns, its typical occurrence had
always been at requests that only need to be applied once.
And the name didn't suggest what it actually checks for.
Change it to vhost_vdpa_first_dev() with polarity flipped
for better readibility of code. That way it is able to
reflect what the check is really about.

This call is applicable to request which performs operation
only once, before queues are set up, and usually at the beginning
of the caller function. Document the requirement for it in place.

Signed-off-by: Si-Wei Liu <si-wei.liu@oracle.com>
Message-Id: <1651890498-24478-7-git-send-email-si-wei.liu@oracle.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Stefano Garzarella <sgarzare@redhat.com>
Acked-by: Jason Wang <jasowang@redhat.com>
2022-05-16 16:15:41 -04:00

1310 lines
38 KiB
C

/*
* vhost-vdpa
*
* Copyright(c) 2017-2018 Intel Corporation.
* Copyright(c) 2020 Red Hat, Inc.
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include <linux/vhost.h>
#include <linux/vfio.h>
#include <sys/eventfd.h>
#include <sys/ioctl.h>
#include "hw/virtio/vhost.h"
#include "hw/virtio/vhost-backend.h"
#include "hw/virtio/virtio-net.h"
#include "hw/virtio/vhost-shadow-virtqueue.h"
#include "hw/virtio/vhost-vdpa.h"
#include "exec/address-spaces.h"
#include "qemu/cutils.h"
#include "qemu/main-loop.h"
#include "cpu.h"
#include "trace.h"
#include "qapi/error.h"
/*
* Return one past the end of the end of section. Be careful with uint64_t
* conversions!
*/
static Int128 vhost_vdpa_section_end(const MemoryRegionSection *section)
{
Int128 llend = int128_make64(section->offset_within_address_space);
llend = int128_add(llend, section->size);
llend = int128_and(llend, int128_exts64(TARGET_PAGE_MASK));
return llend;
}
static bool vhost_vdpa_listener_skipped_section(MemoryRegionSection *section,
uint64_t iova_min,
uint64_t iova_max)
{
Int128 llend;
if ((!memory_region_is_ram(section->mr) &&
!memory_region_is_iommu(section->mr)) ||
memory_region_is_protected(section->mr) ||
/* vhost-vDPA doesn't allow MMIO to be mapped */
memory_region_is_ram_device(section->mr)) {
return true;
}
if (section->offset_within_address_space < iova_min) {
error_report("RAM section out of device range (min=0x%" PRIx64
", addr=0x%" HWADDR_PRIx ")",
iova_min, section->offset_within_address_space);
return true;
}
llend = vhost_vdpa_section_end(section);
if (int128_gt(llend, int128_make64(iova_max))) {
error_report("RAM section out of device range (max=0x%" PRIx64
", end addr=0x%" PRIx64 ")",
iova_max, int128_get64(llend));
return true;
}
return false;
}
static int vhost_vdpa_dma_map(struct vhost_vdpa *v, hwaddr iova, hwaddr size,
void *vaddr, bool readonly)
{
struct vhost_msg_v2 msg = {};
int fd = v->device_fd;
int ret = 0;
msg.type = v->msg_type;
msg.iotlb.iova = iova;
msg.iotlb.size = size;
msg.iotlb.uaddr = (uint64_t)(uintptr_t)vaddr;
msg.iotlb.perm = readonly ? VHOST_ACCESS_RO : VHOST_ACCESS_RW;
msg.iotlb.type = VHOST_IOTLB_UPDATE;
trace_vhost_vdpa_dma_map(v, fd, msg.type, msg.iotlb.iova, msg.iotlb.size,
msg.iotlb.uaddr, msg.iotlb.perm, msg.iotlb.type);
if (write(fd, &msg, sizeof(msg)) != sizeof(msg)) {
error_report("failed to write, fd=%d, errno=%d (%s)",
fd, errno, strerror(errno));
return -EIO ;
}
return ret;
}
static int vhost_vdpa_dma_unmap(struct vhost_vdpa *v, hwaddr iova,
hwaddr size)
{
struct vhost_msg_v2 msg = {};
int fd = v->device_fd;
int ret = 0;
msg.type = v->msg_type;
msg.iotlb.iova = iova;
msg.iotlb.size = size;
msg.iotlb.type = VHOST_IOTLB_INVALIDATE;
trace_vhost_vdpa_dma_unmap(v, fd, msg.type, msg.iotlb.iova,
msg.iotlb.size, msg.iotlb.type);
if (write(fd, &msg, sizeof(msg)) != sizeof(msg)) {
error_report("failed to write, fd=%d, errno=%d (%s)",
fd, errno, strerror(errno));
return -EIO ;
}
return ret;
}
static void vhost_vdpa_listener_begin_batch(struct vhost_vdpa *v)
{
int fd = v->device_fd;
struct vhost_msg_v2 msg = {
.type = v->msg_type,
.iotlb.type = VHOST_IOTLB_BATCH_BEGIN,
};
trace_vhost_vdpa_listener_begin_batch(v, fd, msg.type, msg.iotlb.type);
if (write(fd, &msg, sizeof(msg)) != sizeof(msg)) {
error_report("failed to write, fd=%d, errno=%d (%s)",
fd, errno, strerror(errno));
}
}
static void vhost_vdpa_iotlb_batch_begin_once(struct vhost_vdpa *v)
{
if (v->dev->backend_cap & (0x1ULL << VHOST_BACKEND_F_IOTLB_BATCH) &&
!v->iotlb_batch_begin_sent) {
vhost_vdpa_listener_begin_batch(v);
}
v->iotlb_batch_begin_sent = true;
}
static void vhost_vdpa_listener_commit(MemoryListener *listener)
{
struct vhost_vdpa *v = container_of(listener, struct vhost_vdpa, listener);
struct vhost_dev *dev = v->dev;
struct vhost_msg_v2 msg = {};
int fd = v->device_fd;
if (!(dev->backend_cap & (0x1ULL << VHOST_BACKEND_F_IOTLB_BATCH))) {
return;
}
if (!v->iotlb_batch_begin_sent) {
return;
}
msg.type = v->msg_type;
msg.iotlb.type = VHOST_IOTLB_BATCH_END;
trace_vhost_vdpa_listener_commit(v, fd, msg.type, msg.iotlb.type);
if (write(fd, &msg, sizeof(msg)) != sizeof(msg)) {
error_report("failed to write, fd=%d, errno=%d (%s)",
fd, errno, strerror(errno));
}
v->iotlb_batch_begin_sent = false;
}
static void vhost_vdpa_listener_region_add(MemoryListener *listener,
MemoryRegionSection *section)
{
struct vhost_vdpa *v = container_of(listener, struct vhost_vdpa, listener);
hwaddr iova;
Int128 llend, llsize;
void *vaddr;
int ret;
if (vhost_vdpa_listener_skipped_section(section, v->iova_range.first,
v->iova_range.last)) {
return;
}
if (unlikely((section->offset_within_address_space & ~TARGET_PAGE_MASK) !=
(section->offset_within_region & ~TARGET_PAGE_MASK))) {
error_report("%s received unaligned region", __func__);
return;
}
iova = TARGET_PAGE_ALIGN(section->offset_within_address_space);
llend = vhost_vdpa_section_end(section);
if (int128_ge(int128_make64(iova), llend)) {
return;
}
memory_region_ref(section->mr);
/* Here we assume that memory_region_is_ram(section->mr)==true */
vaddr = memory_region_get_ram_ptr(section->mr) +
section->offset_within_region +
(iova - section->offset_within_address_space);
trace_vhost_vdpa_listener_region_add(v, iova, int128_get64(llend),
vaddr, section->readonly);
llsize = int128_sub(llend, int128_make64(iova));
if (v->shadow_vqs_enabled) {
DMAMap mem_region = {
.translated_addr = (hwaddr)(uintptr_t)vaddr,
.size = int128_get64(llsize) - 1,
.perm = IOMMU_ACCESS_FLAG(true, section->readonly),
};
int r = vhost_iova_tree_map_alloc(v->iova_tree, &mem_region);
if (unlikely(r != IOVA_OK)) {
error_report("Can't allocate a mapping (%d)", r);
goto fail;
}
iova = mem_region.iova;
}
vhost_vdpa_iotlb_batch_begin_once(v);
ret = vhost_vdpa_dma_map(v, iova, int128_get64(llsize),
vaddr, section->readonly);
if (ret) {
error_report("vhost vdpa map fail!");
goto fail;
}
return;
fail:
/*
* On the initfn path, store the first error in the container so we
* can gracefully fail. Runtime, there's not much we can do other
* than throw a hardware error.
*/
error_report("vhost-vdpa: DMA mapping failed, unable to continue");
return;
}
static void vhost_vdpa_listener_region_del(MemoryListener *listener,
MemoryRegionSection *section)
{
struct vhost_vdpa *v = container_of(listener, struct vhost_vdpa, listener);
hwaddr iova;
Int128 llend, llsize;
int ret;
if (vhost_vdpa_listener_skipped_section(section, v->iova_range.first,
v->iova_range.last)) {
return;
}
if (unlikely((section->offset_within_address_space & ~TARGET_PAGE_MASK) !=
(section->offset_within_region & ~TARGET_PAGE_MASK))) {
error_report("%s received unaligned region", __func__);
return;
}
iova = TARGET_PAGE_ALIGN(section->offset_within_address_space);
llend = vhost_vdpa_section_end(section);
trace_vhost_vdpa_listener_region_del(v, iova, int128_get64(llend));
if (int128_ge(int128_make64(iova), llend)) {
return;
}
llsize = int128_sub(llend, int128_make64(iova));
if (v->shadow_vqs_enabled) {
const DMAMap *result;
const void *vaddr = memory_region_get_ram_ptr(section->mr) +
section->offset_within_region +
(iova - section->offset_within_address_space);
DMAMap mem_region = {
.translated_addr = (hwaddr)(uintptr_t)vaddr,
.size = int128_get64(llsize) - 1,
};
result = vhost_iova_tree_find_iova(v->iova_tree, &mem_region);
iova = result->iova;
vhost_iova_tree_remove(v->iova_tree, &mem_region);
}
vhost_vdpa_iotlb_batch_begin_once(v);
ret = vhost_vdpa_dma_unmap(v, iova, int128_get64(llsize));
if (ret) {
error_report("vhost_vdpa dma unmap error!");
}
memory_region_unref(section->mr);
}
/*
* IOTLB API is used by vhost-vdpa which requires incremental updating
* of the mapping. So we can not use generic vhost memory listener which
* depends on the addnop().
*/
static const MemoryListener vhost_vdpa_memory_listener = {
.name = "vhost-vdpa",
.commit = vhost_vdpa_listener_commit,
.region_add = vhost_vdpa_listener_region_add,
.region_del = vhost_vdpa_listener_region_del,
};
static int vhost_vdpa_call(struct vhost_dev *dev, unsigned long int request,
void *arg)
{
struct vhost_vdpa *v = dev->opaque;
int fd = v->device_fd;
int ret;
assert(dev->vhost_ops->backend_type == VHOST_BACKEND_TYPE_VDPA);
ret = ioctl(fd, request, arg);
return ret < 0 ? -errno : ret;
}
static int vhost_vdpa_add_status(struct vhost_dev *dev, uint8_t status)
{
uint8_t s;
int ret;
trace_vhost_vdpa_add_status(dev, status);
ret = vhost_vdpa_call(dev, VHOST_VDPA_GET_STATUS, &s);
if (ret < 0) {
return ret;
}
s |= status;
ret = vhost_vdpa_call(dev, VHOST_VDPA_SET_STATUS, &s);
if (ret < 0) {
return ret;
}
ret = vhost_vdpa_call(dev, VHOST_VDPA_GET_STATUS, &s);
if (ret < 0) {
return ret;
}
if (!(s & status)) {
return -EIO;
}
return 0;
}
static void vhost_vdpa_get_iova_range(struct vhost_vdpa *v)
{
int ret = vhost_vdpa_call(v->dev, VHOST_VDPA_GET_IOVA_RANGE,
&v->iova_range);
if (ret != 0) {
v->iova_range.first = 0;
v->iova_range.last = UINT64_MAX;
}
trace_vhost_vdpa_get_iova_range(v->dev, v->iova_range.first,
v->iova_range.last);
}
/*
* The use of this function is for requests that only need to be
* applied once. Typically such request occurs at the beginning
* of operation, and before setting up queues. It should not be
* used for request that performs operation until all queues are
* set, which would need to check dev->vq_index_end instead.
*/
static bool vhost_vdpa_first_dev(struct vhost_dev *dev)
{
struct vhost_vdpa *v = dev->opaque;
return v->index == 0;
}
static int vhost_vdpa_get_dev_features(struct vhost_dev *dev,
uint64_t *features)
{
int ret;
ret = vhost_vdpa_call(dev, VHOST_GET_FEATURES, features);
trace_vhost_vdpa_get_features(dev, *features);
return ret;
}
static int vhost_vdpa_init_svq(struct vhost_dev *hdev, struct vhost_vdpa *v,
Error **errp)
{
g_autoptr(GPtrArray) shadow_vqs = NULL;
uint64_t dev_features, svq_features;
int r;
bool ok;
if (!v->shadow_vqs_enabled) {
return 0;
}
r = vhost_vdpa_get_dev_features(hdev, &dev_features);
if (r != 0) {
error_setg_errno(errp, -r, "Can't get vdpa device features");
return r;
}
svq_features = dev_features;
ok = vhost_svq_valid_features(svq_features, errp);
if (unlikely(!ok)) {
return -1;
}
shadow_vqs = g_ptr_array_new_full(hdev->nvqs, vhost_svq_free);
for (unsigned n = 0; n < hdev->nvqs; ++n) {
g_autoptr(VhostShadowVirtqueue) svq = vhost_svq_new(v->iova_tree);
if (unlikely(!svq)) {
error_setg(errp, "Cannot create svq %u", n);
return -1;
}
g_ptr_array_add(shadow_vqs, g_steal_pointer(&svq));
}
v->shadow_vqs = g_steal_pointer(&shadow_vqs);
return 0;
}
static int vhost_vdpa_init(struct vhost_dev *dev, void *opaque, Error **errp)
{
struct vhost_vdpa *v;
assert(dev->vhost_ops->backend_type == VHOST_BACKEND_TYPE_VDPA);
trace_vhost_vdpa_init(dev, opaque);
int ret;
/*
* Similar to VFIO, we end up pinning all guest memory and have to
* disable discarding of RAM.
*/
ret = ram_block_discard_disable(true);
if (ret) {
error_report("Cannot set discarding of RAM broken");
return ret;
}
v = opaque;
v->dev = dev;
dev->opaque = opaque ;
v->listener = vhost_vdpa_memory_listener;
v->msg_type = VHOST_IOTLB_MSG_V2;
ret = vhost_vdpa_init_svq(dev, v, errp);
if (ret) {
goto err;
}
vhost_vdpa_get_iova_range(v);
if (!vhost_vdpa_first_dev(dev)) {
return 0;
}
vhost_vdpa_add_status(dev, VIRTIO_CONFIG_S_ACKNOWLEDGE |
VIRTIO_CONFIG_S_DRIVER);
return 0;
err:
ram_block_discard_disable(false);
return ret;
}
static void vhost_vdpa_host_notifier_uninit(struct vhost_dev *dev,
int queue_index)
{
size_t page_size = qemu_real_host_page_size();
struct vhost_vdpa *v = dev->opaque;
VirtIODevice *vdev = dev->vdev;
VhostVDPAHostNotifier *n;
n = &v->notifier[queue_index];
if (n->addr) {
virtio_queue_set_host_notifier_mr(vdev, queue_index, &n->mr, false);
object_unparent(OBJECT(&n->mr));
munmap(n->addr, page_size);
n->addr = NULL;
}
}
static int vhost_vdpa_host_notifier_init(struct vhost_dev *dev, int queue_index)
{
size_t page_size = qemu_real_host_page_size();
struct vhost_vdpa *v = dev->opaque;
VirtIODevice *vdev = dev->vdev;
VhostVDPAHostNotifier *n;
int fd = v->device_fd;
void *addr;
char *name;
vhost_vdpa_host_notifier_uninit(dev, queue_index);
n = &v->notifier[queue_index];
addr = mmap(NULL, page_size, PROT_WRITE, MAP_SHARED, fd,
queue_index * page_size);
if (addr == MAP_FAILED) {
goto err;
}
name = g_strdup_printf("vhost-vdpa/host-notifier@%p mmaps[%d]",
v, queue_index);
memory_region_init_ram_device_ptr(&n->mr, OBJECT(vdev), name,
page_size, addr);
g_free(name);
if (virtio_queue_set_host_notifier_mr(vdev, queue_index, &n->mr, true)) {
object_unparent(OBJECT(&n->mr));
munmap(addr, page_size);
goto err;
}
n->addr = addr;
return 0;
err:
return -1;
}
static void vhost_vdpa_host_notifiers_uninit(struct vhost_dev *dev, int n)
{
int i;
for (i = dev->vq_index; i < dev->vq_index + n; i++) {
vhost_vdpa_host_notifier_uninit(dev, i);
}
}
static void vhost_vdpa_host_notifiers_init(struct vhost_dev *dev)
{
struct vhost_vdpa *v = dev->opaque;
int i;
if (v->shadow_vqs_enabled) {
/* FIXME SVQ is not compatible with host notifiers mr */
return;
}
for (i = dev->vq_index; i < dev->vq_index + dev->nvqs; i++) {
if (vhost_vdpa_host_notifier_init(dev, i)) {
goto err;
}
}
return;
err:
vhost_vdpa_host_notifiers_uninit(dev, i - dev->vq_index);
return;
}
static void vhost_vdpa_svq_cleanup(struct vhost_dev *dev)
{
struct vhost_vdpa *v = dev->opaque;
size_t idx;
if (!v->shadow_vqs) {
return;
}
for (idx = 0; idx < v->shadow_vqs->len; ++idx) {
vhost_svq_stop(g_ptr_array_index(v->shadow_vqs, idx));
}
g_ptr_array_free(v->shadow_vqs, true);
}
static int vhost_vdpa_cleanup(struct vhost_dev *dev)
{
struct vhost_vdpa *v;
assert(dev->vhost_ops->backend_type == VHOST_BACKEND_TYPE_VDPA);
v = dev->opaque;
trace_vhost_vdpa_cleanup(dev, v);
vhost_vdpa_host_notifiers_uninit(dev, dev->nvqs);
memory_listener_unregister(&v->listener);
vhost_vdpa_svq_cleanup(dev);
dev->opaque = NULL;
ram_block_discard_disable(false);
return 0;
}
static int vhost_vdpa_memslots_limit(struct vhost_dev *dev)
{
trace_vhost_vdpa_memslots_limit(dev, INT_MAX);
return INT_MAX;
}
static int vhost_vdpa_set_mem_table(struct vhost_dev *dev,
struct vhost_memory *mem)
{
if (!vhost_vdpa_first_dev(dev)) {
return 0;
}
trace_vhost_vdpa_set_mem_table(dev, mem->nregions, mem->padding);
if (trace_event_get_state_backends(TRACE_VHOST_VDPA_SET_MEM_TABLE) &&
trace_event_get_state_backends(TRACE_VHOST_VDPA_DUMP_REGIONS)) {
int i;
for (i = 0; i < mem->nregions; i++) {
trace_vhost_vdpa_dump_regions(dev, i,
mem->regions[i].guest_phys_addr,
mem->regions[i].memory_size,
mem->regions[i].userspace_addr,
mem->regions[i].flags_padding);
}
}
if (mem->padding) {
return -EINVAL;
}
return 0;
}
static int vhost_vdpa_set_features(struct vhost_dev *dev,
uint64_t features)
{
struct vhost_vdpa *v = dev->opaque;
int ret;
if (!vhost_vdpa_first_dev(dev)) {
return 0;
}
if (v->shadow_vqs_enabled) {
if ((v->acked_features ^ features) == BIT_ULL(VHOST_F_LOG_ALL)) {
/*
* QEMU is just trying to enable or disable logging. SVQ handles
* this sepparately, so no need to forward this.
*/
v->acked_features = features;
return 0;
}
v->acked_features = features;
/* We must not ack _F_LOG if SVQ is enabled */
features &= ~BIT_ULL(VHOST_F_LOG_ALL);
}
trace_vhost_vdpa_set_features(dev, features);
ret = vhost_vdpa_call(dev, VHOST_SET_FEATURES, &features);
if (ret) {
return ret;
}
return vhost_vdpa_add_status(dev, VIRTIO_CONFIG_S_FEATURES_OK);
}
static int vhost_vdpa_set_backend_cap(struct vhost_dev *dev)
{
uint64_t features;
uint64_t f = 0x1ULL << VHOST_BACKEND_F_IOTLB_MSG_V2 |
0x1ULL << VHOST_BACKEND_F_IOTLB_BATCH;
int r;
if (vhost_vdpa_call(dev, VHOST_GET_BACKEND_FEATURES, &features)) {
return -EFAULT;
}
features &= f;
if (vhost_vdpa_first_dev(dev)) {
r = vhost_vdpa_call(dev, VHOST_SET_BACKEND_FEATURES, &features);
if (r) {
return -EFAULT;
}
}
dev->backend_cap = features;
return 0;
}
static int vhost_vdpa_get_device_id(struct vhost_dev *dev,
uint32_t *device_id)
{
int ret;
ret = vhost_vdpa_call(dev, VHOST_VDPA_GET_DEVICE_ID, device_id);
trace_vhost_vdpa_get_device_id(dev, *device_id);
return ret;
}
static void vhost_vdpa_reset_svq(struct vhost_vdpa *v)
{
if (!v->shadow_vqs_enabled) {
return;
}
for (unsigned i = 0; i < v->shadow_vqs->len; ++i) {
VhostShadowVirtqueue *svq = g_ptr_array_index(v->shadow_vqs, i);
vhost_svq_stop(svq);
}
}
static int vhost_vdpa_reset_device(struct vhost_dev *dev)
{
struct vhost_vdpa *v = dev->opaque;
int ret;
uint8_t status = 0;
vhost_vdpa_reset_svq(v);
ret = vhost_vdpa_call(dev, VHOST_VDPA_SET_STATUS, &status);
trace_vhost_vdpa_reset_device(dev, status);
return ret;
}
static int vhost_vdpa_get_vq_index(struct vhost_dev *dev, int idx)
{
assert(idx >= dev->vq_index && idx < dev->vq_index + dev->nvqs);
trace_vhost_vdpa_get_vq_index(dev, idx, idx);
return idx;
}
static int vhost_vdpa_set_vring_ready(struct vhost_dev *dev)
{
int i;
trace_vhost_vdpa_set_vring_ready(dev);
for (i = 0; i < dev->nvqs; ++i) {
struct vhost_vring_state state = {
.index = dev->vq_index + i,
.num = 1,
};
vhost_vdpa_call(dev, VHOST_VDPA_SET_VRING_ENABLE, &state);
}
return 0;
}
static void vhost_vdpa_dump_config(struct vhost_dev *dev, const uint8_t *config,
uint32_t config_len)
{
int b, len;
char line[QEMU_HEXDUMP_LINE_LEN];
for (b = 0; b < config_len; b += 16) {
len = config_len - b;
qemu_hexdump_line(line, b, config, len, false);
trace_vhost_vdpa_dump_config(dev, line);
}
}
static int vhost_vdpa_set_config(struct vhost_dev *dev, const uint8_t *data,
uint32_t offset, uint32_t size,
uint32_t flags)
{
struct vhost_vdpa_config *config;
int ret;
unsigned long config_size = offsetof(struct vhost_vdpa_config, buf);
trace_vhost_vdpa_set_config(dev, offset, size, flags);
config = g_malloc(size + config_size);
config->off = offset;
config->len = size;
memcpy(config->buf, data, size);
if (trace_event_get_state_backends(TRACE_VHOST_VDPA_SET_CONFIG) &&
trace_event_get_state_backends(TRACE_VHOST_VDPA_DUMP_CONFIG)) {
vhost_vdpa_dump_config(dev, data, size);
}
ret = vhost_vdpa_call(dev, VHOST_VDPA_SET_CONFIG, config);
g_free(config);
return ret;
}
static int vhost_vdpa_get_config(struct vhost_dev *dev, uint8_t *config,
uint32_t config_len, Error **errp)
{
struct vhost_vdpa_config *v_config;
unsigned long config_size = offsetof(struct vhost_vdpa_config, buf);
int ret;
trace_vhost_vdpa_get_config(dev, config, config_len);
v_config = g_malloc(config_len + config_size);
v_config->len = config_len;
v_config->off = 0;
ret = vhost_vdpa_call(dev, VHOST_VDPA_GET_CONFIG, v_config);
memcpy(config, v_config->buf, config_len);
g_free(v_config);
if (trace_event_get_state_backends(TRACE_VHOST_VDPA_GET_CONFIG) &&
trace_event_get_state_backends(TRACE_VHOST_VDPA_DUMP_CONFIG)) {
vhost_vdpa_dump_config(dev, config, config_len);
}
return ret;
}
static int vhost_vdpa_set_dev_vring_base(struct vhost_dev *dev,
struct vhost_vring_state *ring)
{
trace_vhost_vdpa_set_vring_base(dev, ring->index, ring->num);
return vhost_vdpa_call(dev, VHOST_SET_VRING_BASE, ring);
}
static int vhost_vdpa_set_vring_dev_kick(struct vhost_dev *dev,
struct vhost_vring_file *file)
{
trace_vhost_vdpa_set_vring_kick(dev, file->index, file->fd);
return vhost_vdpa_call(dev, VHOST_SET_VRING_KICK, file);
}
static int vhost_vdpa_set_vring_dev_call(struct vhost_dev *dev,
struct vhost_vring_file *file)
{
trace_vhost_vdpa_set_vring_call(dev, file->index, file->fd);
return vhost_vdpa_call(dev, VHOST_SET_VRING_CALL, file);
}
static int vhost_vdpa_set_vring_dev_addr(struct vhost_dev *dev,
struct vhost_vring_addr *addr)
{
trace_vhost_vdpa_set_vring_addr(dev, addr->index, addr->flags,
addr->desc_user_addr, addr->used_user_addr,
addr->avail_user_addr,
addr->log_guest_addr);
return vhost_vdpa_call(dev, VHOST_SET_VRING_ADDR, addr);
}
/**
* Set the shadow virtqueue descriptors to the device
*
* @dev: The vhost device model
* @svq: The shadow virtqueue
* @idx: The index of the virtqueue in the vhost device
* @errp: Error
*
* Note that this function does not rewind kick file descriptor if cannot set
* call one.
*/
static int vhost_vdpa_svq_set_fds(struct vhost_dev *dev,
VhostShadowVirtqueue *svq, unsigned idx,
Error **errp)
{
struct vhost_vring_file file = {
.index = dev->vq_index + idx,
};
const EventNotifier *event_notifier = &svq->hdev_kick;
int r;
file.fd = event_notifier_get_fd(event_notifier);
r = vhost_vdpa_set_vring_dev_kick(dev, &file);
if (unlikely(r != 0)) {
error_setg_errno(errp, -r, "Can't set device kick fd");
return r;
}
event_notifier = &svq->hdev_call;
file.fd = event_notifier_get_fd(event_notifier);
r = vhost_vdpa_set_vring_dev_call(dev, &file);
if (unlikely(r != 0)) {
error_setg_errno(errp, -r, "Can't set device call fd");
}
return r;
}
/**
* Unmap a SVQ area in the device
*/
static bool vhost_vdpa_svq_unmap_ring(struct vhost_vdpa *v,
const DMAMap *needle)
{
const DMAMap *result = vhost_iova_tree_find_iova(v->iova_tree, needle);
hwaddr size;
int r;
if (unlikely(!result)) {
error_report("Unable to find SVQ address to unmap");
return false;
}
size = ROUND_UP(result->size, qemu_real_host_page_size());
r = vhost_vdpa_dma_unmap(v, result->iova, size);
return r == 0;
}
static bool vhost_vdpa_svq_unmap_rings(struct vhost_dev *dev,
const VhostShadowVirtqueue *svq)
{
DMAMap needle = {};
struct vhost_vdpa *v = dev->opaque;
struct vhost_vring_addr svq_addr;
bool ok;
vhost_svq_get_vring_addr(svq, &svq_addr);
needle.translated_addr = svq_addr.desc_user_addr;
ok = vhost_vdpa_svq_unmap_ring(v, &needle);
if (unlikely(!ok)) {
return false;
}
needle.translated_addr = svq_addr.used_user_addr;
return vhost_vdpa_svq_unmap_ring(v, &needle);
}
/**
* Map the SVQ area in the device
*
* @v: Vhost-vdpa device
* @needle: The area to search iova
* @errorp: Error pointer
*/
static bool vhost_vdpa_svq_map_ring(struct vhost_vdpa *v, DMAMap *needle,
Error **errp)
{
int r;
r = vhost_iova_tree_map_alloc(v->iova_tree, needle);
if (unlikely(r != IOVA_OK)) {
error_setg(errp, "Cannot allocate iova (%d)", r);
return false;
}
r = vhost_vdpa_dma_map(v, needle->iova, needle->size + 1,
(void *)(uintptr_t)needle->translated_addr,
needle->perm == IOMMU_RO);
if (unlikely(r != 0)) {
error_setg_errno(errp, -r, "Cannot map region to device");
vhost_iova_tree_remove(v->iova_tree, needle);
}
return r == 0;
}
/**
* Map the shadow virtqueue rings in the device
*
* @dev: The vhost device
* @svq: The shadow virtqueue
* @addr: Assigned IOVA addresses
* @errp: Error pointer
*/
static bool vhost_vdpa_svq_map_rings(struct vhost_dev *dev,
const VhostShadowVirtqueue *svq,
struct vhost_vring_addr *addr,
Error **errp)
{
DMAMap device_region, driver_region;
struct vhost_vring_addr svq_addr;
struct vhost_vdpa *v = dev->opaque;
size_t device_size = vhost_svq_device_area_size(svq);
size_t driver_size = vhost_svq_driver_area_size(svq);
size_t avail_offset;
bool ok;
ERRP_GUARD();
vhost_svq_get_vring_addr(svq, &svq_addr);
driver_region = (DMAMap) {
.translated_addr = svq_addr.desc_user_addr,
.size = driver_size - 1,
.perm = IOMMU_RO,
};
ok = vhost_vdpa_svq_map_ring(v, &driver_region, errp);
if (unlikely(!ok)) {
error_prepend(errp, "Cannot create vq driver region: ");
return false;
}
addr->desc_user_addr = driver_region.iova;
avail_offset = svq_addr.avail_user_addr - svq_addr.desc_user_addr;
addr->avail_user_addr = driver_region.iova + avail_offset;
device_region = (DMAMap) {
.translated_addr = svq_addr.used_user_addr,
.size = device_size - 1,
.perm = IOMMU_RW,
};
ok = vhost_vdpa_svq_map_ring(v, &device_region, errp);
if (unlikely(!ok)) {
error_prepend(errp, "Cannot create vq device region: ");
vhost_vdpa_svq_unmap_ring(v, &driver_region);
}
addr->used_user_addr = device_region.iova;
return ok;
}
static bool vhost_vdpa_svq_setup(struct vhost_dev *dev,
VhostShadowVirtqueue *svq, unsigned idx,
Error **errp)
{
uint16_t vq_index = dev->vq_index + idx;
struct vhost_vring_state s = {
.index = vq_index,
};
int r;
r = vhost_vdpa_set_dev_vring_base(dev, &s);
if (unlikely(r)) {
error_setg_errno(errp, -r, "Cannot set vring base");
return false;
}
r = vhost_vdpa_svq_set_fds(dev, svq, idx, errp);
return r == 0;
}
static bool vhost_vdpa_svqs_start(struct vhost_dev *dev)
{
struct vhost_vdpa *v = dev->opaque;
Error *err = NULL;
unsigned i;
if (!v->shadow_vqs) {
return true;
}
for (i = 0; i < v->shadow_vqs->len; ++i) {
VirtQueue *vq = virtio_get_queue(dev->vdev, dev->vq_index + i);
VhostShadowVirtqueue *svq = g_ptr_array_index(v->shadow_vqs, i);
struct vhost_vring_addr addr = {
.index = dev->vq_index + i,
};
int r;
bool ok = vhost_vdpa_svq_setup(dev, svq, i, &err);
if (unlikely(!ok)) {
goto err;
}
vhost_svq_start(svq, dev->vdev, vq);
ok = vhost_vdpa_svq_map_rings(dev, svq, &addr, &err);
if (unlikely(!ok)) {
goto err_map;
}
/* Override vring GPA set by vhost subsystem */
r = vhost_vdpa_set_vring_dev_addr(dev, &addr);
if (unlikely(r != 0)) {
error_setg_errno(&err, -r, "Cannot set device address");
goto err_set_addr;
}
}
return true;
err_set_addr:
vhost_vdpa_svq_unmap_rings(dev, g_ptr_array_index(v->shadow_vqs, i));
err_map:
vhost_svq_stop(g_ptr_array_index(v->shadow_vqs, i));
err:
error_reportf_err(err, "Cannot setup SVQ %u: ", i);
for (unsigned j = 0; j < i; ++j) {
VhostShadowVirtqueue *svq = g_ptr_array_index(v->shadow_vqs, j);
vhost_vdpa_svq_unmap_rings(dev, svq);
vhost_svq_stop(svq);
}
return false;
}
static bool vhost_vdpa_svqs_stop(struct vhost_dev *dev)
{
struct vhost_vdpa *v = dev->opaque;
if (!v->shadow_vqs) {
return true;
}
for (unsigned i = 0; i < v->shadow_vqs->len; ++i) {
VhostShadowVirtqueue *svq = g_ptr_array_index(v->shadow_vqs, i);
bool ok = vhost_vdpa_svq_unmap_rings(dev, svq);
if (unlikely(!ok)) {
return false;
}
}
return true;
}
static int vhost_vdpa_dev_start(struct vhost_dev *dev, bool started)
{
struct vhost_vdpa *v = dev->opaque;
bool ok;
trace_vhost_vdpa_dev_start(dev, started);
if (started) {
vhost_vdpa_host_notifiers_init(dev);
ok = vhost_vdpa_svqs_start(dev);
if (unlikely(!ok)) {
return -1;
}
vhost_vdpa_set_vring_ready(dev);
} else {
ok = vhost_vdpa_svqs_stop(dev);
if (unlikely(!ok)) {
return -1;
}
vhost_vdpa_host_notifiers_uninit(dev, dev->nvqs);
}
if (dev->vq_index + dev->nvqs != dev->vq_index_end) {
return 0;
}
if (started) {
memory_listener_register(&v->listener, &address_space_memory);
return vhost_vdpa_add_status(dev, VIRTIO_CONFIG_S_DRIVER_OK);
} else {
vhost_vdpa_reset_device(dev);
vhost_vdpa_add_status(dev, VIRTIO_CONFIG_S_ACKNOWLEDGE |
VIRTIO_CONFIG_S_DRIVER);
memory_listener_unregister(&v->listener);
return 0;
}
}
static int vhost_vdpa_set_log_base(struct vhost_dev *dev, uint64_t base,
struct vhost_log *log)
{
struct vhost_vdpa *v = dev->opaque;
if (v->shadow_vqs_enabled || !vhost_vdpa_first_dev(dev)) {
return 0;
}
trace_vhost_vdpa_set_log_base(dev, base, log->size, log->refcnt, log->fd,
log->log);
return vhost_vdpa_call(dev, VHOST_SET_LOG_BASE, &base);
}
static int vhost_vdpa_set_vring_addr(struct vhost_dev *dev,
struct vhost_vring_addr *addr)
{
struct vhost_vdpa *v = dev->opaque;
if (v->shadow_vqs_enabled) {
/*
* Device vring addr was set at device start. SVQ base is handled by
* VirtQueue code.
*/
return 0;
}
return vhost_vdpa_set_vring_dev_addr(dev, addr);
}
static int vhost_vdpa_set_vring_num(struct vhost_dev *dev,
struct vhost_vring_state *ring)
{
trace_vhost_vdpa_set_vring_num(dev, ring->index, ring->num);
return vhost_vdpa_call(dev, VHOST_SET_VRING_NUM, ring);
}
static int vhost_vdpa_set_vring_base(struct vhost_dev *dev,
struct vhost_vring_state *ring)
{
struct vhost_vdpa *v = dev->opaque;
if (v->shadow_vqs_enabled) {
/*
* Device vring base was set at device start. SVQ base is handled by
* VirtQueue code.
*/
return 0;
}
return vhost_vdpa_set_dev_vring_base(dev, ring);
}
static int vhost_vdpa_get_vring_base(struct vhost_dev *dev,
struct vhost_vring_state *ring)
{
struct vhost_vdpa *v = dev->opaque;
int vdpa_idx = ring->index - dev->vq_index;
int ret;
if (v->shadow_vqs_enabled) {
VhostShadowVirtqueue *svq = g_ptr_array_index(v->shadow_vqs, vdpa_idx);
/*
* Setting base as last used idx, so destination will see as available
* all the entries that the device did not use, including the in-flight
* processing ones.
*
* TODO: This is ok for networking, but other kinds of devices might
* have problems with these retransmissions.
*/
ring->num = svq->last_used_idx;
return 0;
}
ret = vhost_vdpa_call(dev, VHOST_GET_VRING_BASE, ring);
trace_vhost_vdpa_get_vring_base(dev, ring->index, ring->num);
return ret;
}
static int vhost_vdpa_set_vring_kick(struct vhost_dev *dev,
struct vhost_vring_file *file)
{
struct vhost_vdpa *v = dev->opaque;
int vdpa_idx = file->index - dev->vq_index;
if (v->shadow_vqs_enabled) {
VhostShadowVirtqueue *svq = g_ptr_array_index(v->shadow_vqs, vdpa_idx);
vhost_svq_set_svq_kick_fd(svq, file->fd);
return 0;
} else {
return vhost_vdpa_set_vring_dev_kick(dev, file);
}
}
static int vhost_vdpa_set_vring_call(struct vhost_dev *dev,
struct vhost_vring_file *file)
{
struct vhost_vdpa *v = dev->opaque;
if (v->shadow_vqs_enabled) {
int vdpa_idx = file->index - dev->vq_index;
VhostShadowVirtqueue *svq = g_ptr_array_index(v->shadow_vqs, vdpa_idx);
vhost_svq_set_svq_call_fd(svq, file->fd);
return 0;
} else {
return vhost_vdpa_set_vring_dev_call(dev, file);
}
}
static int vhost_vdpa_get_features(struct vhost_dev *dev,
uint64_t *features)
{
struct vhost_vdpa *v = dev->opaque;
int ret = vhost_vdpa_get_dev_features(dev, features);
if (ret == 0 && v->shadow_vqs_enabled) {
/* Add SVQ logging capabilities */
*features |= BIT_ULL(VHOST_F_LOG_ALL);
}
return ret;
}
static int vhost_vdpa_set_owner(struct vhost_dev *dev)
{
if (!vhost_vdpa_first_dev(dev)) {
return 0;
}
trace_vhost_vdpa_set_owner(dev);
return vhost_vdpa_call(dev, VHOST_SET_OWNER, NULL);
}
static int vhost_vdpa_vq_get_addr(struct vhost_dev *dev,
struct vhost_vring_addr *addr, struct vhost_virtqueue *vq)
{
assert(dev->vhost_ops->backend_type == VHOST_BACKEND_TYPE_VDPA);
addr->desc_user_addr = (uint64_t)(unsigned long)vq->desc_phys;
addr->avail_user_addr = (uint64_t)(unsigned long)vq->avail_phys;
addr->used_user_addr = (uint64_t)(unsigned long)vq->used_phys;
trace_vhost_vdpa_vq_get_addr(dev, vq, addr->desc_user_addr,
addr->avail_user_addr, addr->used_user_addr);
return 0;
}
static bool vhost_vdpa_force_iommu(struct vhost_dev *dev)
{
return true;
}
const VhostOps vdpa_ops = {
.backend_type = VHOST_BACKEND_TYPE_VDPA,
.vhost_backend_init = vhost_vdpa_init,
.vhost_backend_cleanup = vhost_vdpa_cleanup,
.vhost_set_log_base = vhost_vdpa_set_log_base,
.vhost_set_vring_addr = vhost_vdpa_set_vring_addr,
.vhost_set_vring_num = vhost_vdpa_set_vring_num,
.vhost_set_vring_base = vhost_vdpa_set_vring_base,
.vhost_get_vring_base = vhost_vdpa_get_vring_base,
.vhost_set_vring_kick = vhost_vdpa_set_vring_kick,
.vhost_set_vring_call = vhost_vdpa_set_vring_call,
.vhost_get_features = vhost_vdpa_get_features,
.vhost_set_backend_cap = vhost_vdpa_set_backend_cap,
.vhost_set_owner = vhost_vdpa_set_owner,
.vhost_set_vring_endian = NULL,
.vhost_backend_memslots_limit = vhost_vdpa_memslots_limit,
.vhost_set_mem_table = vhost_vdpa_set_mem_table,
.vhost_set_features = vhost_vdpa_set_features,
.vhost_reset_device = vhost_vdpa_reset_device,
.vhost_get_vq_index = vhost_vdpa_get_vq_index,
.vhost_get_config = vhost_vdpa_get_config,
.vhost_set_config = vhost_vdpa_set_config,
.vhost_requires_shm_log = NULL,
.vhost_migration_done = NULL,
.vhost_backend_can_merge = NULL,
.vhost_net_set_mtu = NULL,
.vhost_set_iotlb_callback = NULL,
.vhost_send_device_iotlb_msg = NULL,
.vhost_dev_start = vhost_vdpa_dev_start,
.vhost_get_device_id = vhost_vdpa_get_device_id,
.vhost_vq_get_addr = vhost_vdpa_vq_get_addr,
.vhost_force_iommu = vhost_vdpa_force_iommu,
};