qemu-e2k/hw/arm/smmuv3.c
Mostafa Saleh 8cefcc3b71 hw/arm/smmuv3: Add knob to choose translation stage and enable stage-2
As everything is in place, we can use a new system property to
advertise which stage is supported and remove bad_ste from STE
stage2 config.

The property added arm-smmuv3.stage can have 3 values:
- "1": Stage-1 only is advertised.
- "2": Stage-2 only is advertised.

If not passed or an unsupported value is passed, it will default to
stage-1.

Advertise VMID16.

Don't try to decode CD, if stage-2 is configured.

Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Mostafa Saleh <smostafa@google.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Tested-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Message-id: 20230516203327.2051088-11-smostafa@google.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2023-05-30 15:50:16 +01:00

1902 lines
57 KiB
C

/*
* Copyright (C) 2014-2016 Broadcom Corporation
* Copyright (c) 2017 Red Hat, Inc.
* Written by Prem Mallappa, Eric Auger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/bitops.h"
#include "hw/irq.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "hw/qdev-properties.h"
#include "hw/qdev-core.h"
#include "hw/pci/pci.h"
#include "cpu.h"
#include "trace.h"
#include "qemu/log.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "hw/arm/smmuv3.h"
#include "smmuv3-internal.h"
#include "smmu-internal.h"
#define PTW_RECORD_FAULT(cfg) (((cfg)->stage == 1) ? (cfg)->record_faults : \
(cfg)->s2cfg.record_faults)
/**
* smmuv3_trigger_irq - pulse @irq if enabled and update
* GERROR register in case of GERROR interrupt
*
* @irq: irq type
* @gerror_mask: mask of gerrors to toggle (relevant if @irq is GERROR)
*/
static void smmuv3_trigger_irq(SMMUv3State *s, SMMUIrq irq,
uint32_t gerror_mask)
{
bool pulse = false;
switch (irq) {
case SMMU_IRQ_EVTQ:
pulse = smmuv3_eventq_irq_enabled(s);
break;
case SMMU_IRQ_PRIQ:
qemu_log_mask(LOG_UNIMP, "PRI not yet supported\n");
break;
case SMMU_IRQ_CMD_SYNC:
pulse = true;
break;
case SMMU_IRQ_GERROR:
{
uint32_t pending = s->gerror ^ s->gerrorn;
uint32_t new_gerrors = ~pending & gerror_mask;
if (!new_gerrors) {
/* only toggle non pending errors */
return;
}
s->gerror ^= new_gerrors;
trace_smmuv3_write_gerror(new_gerrors, s->gerror);
pulse = smmuv3_gerror_irq_enabled(s);
break;
}
}
if (pulse) {
trace_smmuv3_trigger_irq(irq);
qemu_irq_pulse(s->irq[irq]);
}
}
static void smmuv3_write_gerrorn(SMMUv3State *s, uint32_t new_gerrorn)
{
uint32_t pending = s->gerror ^ s->gerrorn;
uint32_t toggled = s->gerrorn ^ new_gerrorn;
if (toggled & ~pending) {
qemu_log_mask(LOG_GUEST_ERROR,
"guest toggles non pending errors = 0x%x\n",
toggled & ~pending);
}
/*
* We do not raise any error in case guest toggles bits corresponding
* to not active IRQs (CONSTRAINED UNPREDICTABLE)
*/
s->gerrorn = new_gerrorn;
trace_smmuv3_write_gerrorn(toggled & pending, s->gerrorn);
}
static inline MemTxResult queue_read(SMMUQueue *q, void *data)
{
dma_addr_t addr = Q_CONS_ENTRY(q);
return dma_memory_read(&address_space_memory, addr, data, q->entry_size,
MEMTXATTRS_UNSPECIFIED);
}
static MemTxResult queue_write(SMMUQueue *q, void *data)
{
dma_addr_t addr = Q_PROD_ENTRY(q);
MemTxResult ret;
ret = dma_memory_write(&address_space_memory, addr, data, q->entry_size,
MEMTXATTRS_UNSPECIFIED);
if (ret != MEMTX_OK) {
return ret;
}
queue_prod_incr(q);
return MEMTX_OK;
}
static MemTxResult smmuv3_write_eventq(SMMUv3State *s, Evt *evt)
{
SMMUQueue *q = &s->eventq;
MemTxResult r;
if (!smmuv3_eventq_enabled(s)) {
return MEMTX_ERROR;
}
if (smmuv3_q_full(q)) {
return MEMTX_ERROR;
}
r = queue_write(q, evt);
if (r != MEMTX_OK) {
return r;
}
if (!smmuv3_q_empty(q)) {
smmuv3_trigger_irq(s, SMMU_IRQ_EVTQ, 0);
}
return MEMTX_OK;
}
void smmuv3_record_event(SMMUv3State *s, SMMUEventInfo *info)
{
Evt evt = {};
MemTxResult r;
if (!smmuv3_eventq_enabled(s)) {
return;
}
EVT_SET_TYPE(&evt, info->type);
EVT_SET_SID(&evt, info->sid);
switch (info->type) {
case SMMU_EVT_NONE:
return;
case SMMU_EVT_F_UUT:
EVT_SET_SSID(&evt, info->u.f_uut.ssid);
EVT_SET_SSV(&evt, info->u.f_uut.ssv);
EVT_SET_ADDR(&evt, info->u.f_uut.addr);
EVT_SET_RNW(&evt, info->u.f_uut.rnw);
EVT_SET_PNU(&evt, info->u.f_uut.pnu);
EVT_SET_IND(&evt, info->u.f_uut.ind);
break;
case SMMU_EVT_C_BAD_STREAMID:
EVT_SET_SSID(&evt, info->u.c_bad_streamid.ssid);
EVT_SET_SSV(&evt, info->u.c_bad_streamid.ssv);
break;
case SMMU_EVT_F_STE_FETCH:
EVT_SET_SSID(&evt, info->u.f_ste_fetch.ssid);
EVT_SET_SSV(&evt, info->u.f_ste_fetch.ssv);
EVT_SET_ADDR2(&evt, info->u.f_ste_fetch.addr);
break;
case SMMU_EVT_C_BAD_STE:
EVT_SET_SSID(&evt, info->u.c_bad_ste.ssid);
EVT_SET_SSV(&evt, info->u.c_bad_ste.ssv);
break;
case SMMU_EVT_F_STREAM_DISABLED:
break;
case SMMU_EVT_F_TRANS_FORBIDDEN:
EVT_SET_ADDR(&evt, info->u.f_transl_forbidden.addr);
EVT_SET_RNW(&evt, info->u.f_transl_forbidden.rnw);
break;
case SMMU_EVT_C_BAD_SUBSTREAMID:
EVT_SET_SSID(&evt, info->u.c_bad_substream.ssid);
break;
case SMMU_EVT_F_CD_FETCH:
EVT_SET_SSID(&evt, info->u.f_cd_fetch.ssid);
EVT_SET_SSV(&evt, info->u.f_cd_fetch.ssv);
EVT_SET_ADDR(&evt, info->u.f_cd_fetch.addr);
break;
case SMMU_EVT_C_BAD_CD:
EVT_SET_SSID(&evt, info->u.c_bad_cd.ssid);
EVT_SET_SSV(&evt, info->u.c_bad_cd.ssv);
break;
case SMMU_EVT_F_WALK_EABT:
case SMMU_EVT_F_TRANSLATION:
case SMMU_EVT_F_ADDR_SIZE:
case SMMU_EVT_F_ACCESS:
case SMMU_EVT_F_PERMISSION:
EVT_SET_STALL(&evt, info->u.f_walk_eabt.stall);
EVT_SET_STAG(&evt, info->u.f_walk_eabt.stag);
EVT_SET_SSID(&evt, info->u.f_walk_eabt.ssid);
EVT_SET_SSV(&evt, info->u.f_walk_eabt.ssv);
EVT_SET_S2(&evt, info->u.f_walk_eabt.s2);
EVT_SET_ADDR(&evt, info->u.f_walk_eabt.addr);
EVT_SET_RNW(&evt, info->u.f_walk_eabt.rnw);
EVT_SET_PNU(&evt, info->u.f_walk_eabt.pnu);
EVT_SET_IND(&evt, info->u.f_walk_eabt.ind);
EVT_SET_CLASS(&evt, info->u.f_walk_eabt.class);
EVT_SET_ADDR2(&evt, info->u.f_walk_eabt.addr2);
break;
case SMMU_EVT_F_CFG_CONFLICT:
EVT_SET_SSID(&evt, info->u.f_cfg_conflict.ssid);
EVT_SET_SSV(&evt, info->u.f_cfg_conflict.ssv);
break;
/* rest is not implemented */
case SMMU_EVT_F_BAD_ATS_TREQ:
case SMMU_EVT_F_TLB_CONFLICT:
case SMMU_EVT_E_PAGE_REQ:
default:
g_assert_not_reached();
}
trace_smmuv3_record_event(smmu_event_string(info->type), info->sid);
r = smmuv3_write_eventq(s, &evt);
if (r != MEMTX_OK) {
smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_EVENTQ_ABT_ERR_MASK);
}
info->recorded = true;
}
static void smmuv3_init_regs(SMMUv3State *s)
{
/* Based on sys property, the stages supported in smmu will be advertised.*/
if (s->stage && !strcmp("2", s->stage)) {
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S2P, 1);
} else {
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S1P, 1);
}
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTF, 2); /* AArch64 PTW only */
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, COHACC, 1); /* IO coherent */
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, ASID16, 1); /* 16-bit ASID */
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, VMID16, 1); /* 16-bit VMID */
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTENDIAN, 2); /* little endian */
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STALL_MODEL, 1); /* No stall */
/* terminated transaction will always be aborted/error returned */
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TERM_MODEL, 1);
/* 2-level stream table supported */
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STLEVEL, 1);
s->idr[1] = FIELD_DP32(s->idr[1], IDR1, SIDSIZE, SMMU_IDR1_SIDSIZE);
s->idr[1] = FIELD_DP32(s->idr[1], IDR1, EVENTQS, SMMU_EVENTQS);
s->idr[1] = FIELD_DP32(s->idr[1], IDR1, CMDQS, SMMU_CMDQS);
s->idr[3] = FIELD_DP32(s->idr[3], IDR3, RIL, 1);
s->idr[3] = FIELD_DP32(s->idr[3], IDR3, HAD, 1);
s->idr[3] = FIELD_DP32(s->idr[3], IDR3, BBML, 2);
/* 4K, 16K and 64K granule support */
s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN4K, 1);
s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN16K, 1);
s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN64K, 1);
s->idr[5] = FIELD_DP32(s->idr[5], IDR5, OAS, SMMU_IDR5_OAS); /* 44 bits */
s->cmdq.base = deposit64(s->cmdq.base, 0, 5, SMMU_CMDQS);
s->cmdq.prod = 0;
s->cmdq.cons = 0;
s->cmdq.entry_size = sizeof(struct Cmd);
s->eventq.base = deposit64(s->eventq.base, 0, 5, SMMU_EVENTQS);
s->eventq.prod = 0;
s->eventq.cons = 0;
s->eventq.entry_size = sizeof(struct Evt);
s->features = 0;
s->sid_split = 0;
s->aidr = 0x1;
s->cr[0] = 0;
s->cr0ack = 0;
s->irq_ctrl = 0;
s->gerror = 0;
s->gerrorn = 0;
s->statusr = 0;
s->gbpa = SMMU_GBPA_RESET_VAL;
}
static int smmu_get_ste(SMMUv3State *s, dma_addr_t addr, STE *buf,
SMMUEventInfo *event)
{
int ret;
trace_smmuv3_get_ste(addr);
/* TODO: guarantee 64-bit single-copy atomicity */
ret = dma_memory_read(&address_space_memory, addr, buf, sizeof(*buf),
MEMTXATTRS_UNSPECIFIED);
if (ret != MEMTX_OK) {
qemu_log_mask(LOG_GUEST_ERROR,
"Cannot fetch pte at address=0x%"PRIx64"\n", addr);
event->type = SMMU_EVT_F_STE_FETCH;
event->u.f_ste_fetch.addr = addr;
return -EINVAL;
}
return 0;
}
/* @ssid > 0 not supported yet */
static int smmu_get_cd(SMMUv3State *s, STE *ste, uint32_t ssid,
CD *buf, SMMUEventInfo *event)
{
dma_addr_t addr = STE_CTXPTR(ste);
int ret;
trace_smmuv3_get_cd(addr);
/* TODO: guarantee 64-bit single-copy atomicity */
ret = dma_memory_read(&address_space_memory, addr, buf, sizeof(*buf),
MEMTXATTRS_UNSPECIFIED);
if (ret != MEMTX_OK) {
qemu_log_mask(LOG_GUEST_ERROR,
"Cannot fetch pte at address=0x%"PRIx64"\n", addr);
event->type = SMMU_EVT_F_CD_FETCH;
event->u.f_ste_fetch.addr = addr;
return -EINVAL;
}
return 0;
}
/*
* Max valid value is 39 when SMMU_IDR3.STT == 0.
* In architectures after SMMUv3.0:
* - If STE.S2TG selects a 4KB or 16KB granule, the minimum valid value for this
* field is MAX(16, 64-IAS)
* - If STE.S2TG selects a 64KB granule, the minimum valid value for this field
* is (64-IAS).
* As we only support AA64, IAS = OAS.
*/
static bool s2t0sz_valid(SMMUTransCfg *cfg)
{
if (cfg->s2cfg.tsz > 39) {
return false;
}
if (cfg->s2cfg.granule_sz == 16) {
return (cfg->s2cfg.tsz >= 64 - oas2bits(SMMU_IDR5_OAS));
}
return (cfg->s2cfg.tsz >= MAX(64 - oas2bits(SMMU_IDR5_OAS), 16));
}
/*
* Return true if s2 page table config is valid.
* This checks with the configured start level, ias_bits and granularity we can
* have a valid page table as described in ARM ARM D8.2 Translation process.
* The idea here is to see for the highest possible number of IPA bits, how
* many concatenated tables we would need, if it is more than 16, then this is
* not possible.
*/
static bool s2_pgtable_config_valid(uint8_t sl0, uint8_t t0sz, uint8_t gran)
{
int level = get_start_level(sl0, gran);
uint64_t ipa_bits = 64 - t0sz;
uint64_t max_ipa = (1ULL << ipa_bits) - 1;
int nr_concat = pgd_concat_idx(level, gran, max_ipa) + 1;
return nr_concat <= VMSA_MAX_S2_CONCAT;
}
static int decode_ste_s2_cfg(SMMUTransCfg *cfg, STE *ste)
{
cfg->stage = 2;
if (STE_S2AA64(ste) == 0x0) {
qemu_log_mask(LOG_UNIMP,
"SMMUv3 AArch32 tables not supported\n");
g_assert_not_reached();
}
switch (STE_S2TG(ste)) {
case 0x0: /* 4KB */
cfg->s2cfg.granule_sz = 12;
break;
case 0x1: /* 64KB */
cfg->s2cfg.granule_sz = 16;
break;
case 0x2: /* 16KB */
cfg->s2cfg.granule_sz = 14;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"SMMUv3 bad STE S2TG: %x\n", STE_S2TG(ste));
goto bad_ste;
}
cfg->s2cfg.vttb = STE_S2TTB(ste);
cfg->s2cfg.sl0 = STE_S2SL0(ste);
/* FEAT_TTST not supported. */
if (cfg->s2cfg.sl0 == 0x3) {
qemu_log_mask(LOG_UNIMP, "SMMUv3 S2SL0 = 0x3 has no meaning!\n");
goto bad_ste;
}
/* For AA64, The effective S2PS size is capped to the OAS. */
cfg->s2cfg.eff_ps = oas2bits(MIN(STE_S2PS(ste), SMMU_IDR5_OAS));
/*
* It is ILLEGAL for the address in S2TTB to be outside the range
* described by the effective S2PS value.
*/
if (cfg->s2cfg.vttb & ~(MAKE_64BIT_MASK(0, cfg->s2cfg.eff_ps))) {
qemu_log_mask(LOG_GUEST_ERROR,
"SMMUv3 S2TTB too large 0x%" PRIx64
", effective PS %d bits\n",
cfg->s2cfg.vttb, cfg->s2cfg.eff_ps);
goto bad_ste;
}
cfg->s2cfg.tsz = STE_S2T0SZ(ste);
if (!s2t0sz_valid(cfg)) {
qemu_log_mask(LOG_GUEST_ERROR, "SMMUv3 bad STE S2T0SZ = %d\n",
cfg->s2cfg.tsz);
goto bad_ste;
}
if (!s2_pgtable_config_valid(cfg->s2cfg.sl0, cfg->s2cfg.tsz,
cfg->s2cfg.granule_sz)) {
qemu_log_mask(LOG_GUEST_ERROR,
"SMMUv3 STE stage 2 config not valid!\n");
goto bad_ste;
}
/* Only LE supported(IDR0.TTENDIAN). */
if (STE_S2ENDI(ste)) {
qemu_log_mask(LOG_GUEST_ERROR,
"SMMUv3 STE_S2ENDI only supports LE!\n");
goto bad_ste;
}
cfg->s2cfg.affd = STE_S2AFFD(ste);
cfg->s2cfg.record_faults = STE_S2R(ste);
/* As stall is not supported. */
if (STE_S2S(ste)) {
qemu_log_mask(LOG_UNIMP, "SMMUv3 Stall not implemented!\n");
goto bad_ste;
}
return 0;
bad_ste:
return -EINVAL;
}
/* Returns < 0 in case of invalid STE, 0 otherwise */
static int decode_ste(SMMUv3State *s, SMMUTransCfg *cfg,
STE *ste, SMMUEventInfo *event)
{
uint32_t config;
int ret;
if (!STE_VALID(ste)) {
if (!event->inval_ste_allowed) {
qemu_log_mask(LOG_GUEST_ERROR, "invalid STE\n");
}
goto bad_ste;
}
config = STE_CONFIG(ste);
if (STE_CFG_ABORT(config)) {
cfg->aborted = true;
return 0;
}
if (STE_CFG_BYPASS(config)) {
cfg->bypassed = true;
return 0;
}
/*
* If a stage is enabled in SW while not advertised, throw bad ste
* according to user manual(IHI0070E) "5.2 Stream Table Entry".
*/
if (!STAGE1_SUPPORTED(s) && STE_CFG_S1_ENABLED(config)) {
qemu_log_mask(LOG_GUEST_ERROR, "SMMUv3 S1 used but not supported.\n");
goto bad_ste;
}
if (!STAGE2_SUPPORTED(s) && STE_CFG_S2_ENABLED(config)) {
qemu_log_mask(LOG_GUEST_ERROR, "SMMUv3 S2 used but not supported.\n");
goto bad_ste;
}
if (STAGE2_SUPPORTED(s)) {
/* VMID is considered even if s2 is disabled. */
cfg->s2cfg.vmid = STE_S2VMID(ste);
} else {
/* Default to -1 */
cfg->s2cfg.vmid = -1;
}
if (STE_CFG_S2_ENABLED(config)) {
/*
* Stage-1 OAS defaults to OAS even if not enabled as it would be used
* in input address check for stage-2.
*/
cfg->oas = oas2bits(SMMU_IDR5_OAS);
ret = decode_ste_s2_cfg(cfg, ste);
if (ret) {
goto bad_ste;
}
}
if (STE_S1CDMAX(ste) != 0) {
qemu_log_mask(LOG_UNIMP,
"SMMUv3 does not support multiple context descriptors yet\n");
goto bad_ste;
}
if (STE_S1STALLD(ste)) {
qemu_log_mask(LOG_UNIMP,
"SMMUv3 S1 stalling fault model not allowed yet\n");
goto bad_ste;
}
return 0;
bad_ste:
event->type = SMMU_EVT_C_BAD_STE;
return -EINVAL;
}
/**
* smmu_find_ste - Return the stream table entry associated
* to the sid
*
* @s: smmuv3 handle
* @sid: stream ID
* @ste: returned stream table entry
* @event: handle to an event info
*
* Supports linear and 2-level stream table
* Return 0 on success, -EINVAL otherwise
*/
static int smmu_find_ste(SMMUv3State *s, uint32_t sid, STE *ste,
SMMUEventInfo *event)
{
dma_addr_t addr, strtab_base;
uint32_t log2size;
int strtab_size_shift;
int ret;
trace_smmuv3_find_ste(sid, s->features, s->sid_split);
log2size = FIELD_EX32(s->strtab_base_cfg, STRTAB_BASE_CFG, LOG2SIZE);
/*
* Check SID range against both guest-configured and implementation limits
*/
if (sid >= (1 << MIN(log2size, SMMU_IDR1_SIDSIZE))) {
event->type = SMMU_EVT_C_BAD_STREAMID;
return -EINVAL;
}
if (s->features & SMMU_FEATURE_2LVL_STE) {
int l1_ste_offset, l2_ste_offset, max_l2_ste, span;
dma_addr_t l1ptr, l2ptr;
STEDesc l1std;
/*
* Align strtab base address to table size. For this purpose, assume it
* is not bounded by SMMU_IDR1_SIDSIZE.
*/
strtab_size_shift = MAX(5, (int)log2size - s->sid_split - 1 + 3);
strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK &
~MAKE_64BIT_MASK(0, strtab_size_shift);
l1_ste_offset = sid >> s->sid_split;
l2_ste_offset = sid & ((1 << s->sid_split) - 1);
l1ptr = (dma_addr_t)(strtab_base + l1_ste_offset * sizeof(l1std));
/* TODO: guarantee 64-bit single-copy atomicity */
ret = dma_memory_read(&address_space_memory, l1ptr, &l1std,
sizeof(l1std), MEMTXATTRS_UNSPECIFIED);
if (ret != MEMTX_OK) {
qemu_log_mask(LOG_GUEST_ERROR,
"Could not read L1PTR at 0X%"PRIx64"\n", l1ptr);
event->type = SMMU_EVT_F_STE_FETCH;
event->u.f_ste_fetch.addr = l1ptr;
return -EINVAL;
}
span = L1STD_SPAN(&l1std);
if (!span) {
/* l2ptr is not valid */
if (!event->inval_ste_allowed) {
qemu_log_mask(LOG_GUEST_ERROR,
"invalid sid=%d (L1STD span=0)\n", sid);
}
event->type = SMMU_EVT_C_BAD_STREAMID;
return -EINVAL;
}
max_l2_ste = (1 << span) - 1;
l2ptr = l1std_l2ptr(&l1std);
trace_smmuv3_find_ste_2lvl(s->strtab_base, l1ptr, l1_ste_offset,
l2ptr, l2_ste_offset, max_l2_ste);
if (l2_ste_offset > max_l2_ste) {
qemu_log_mask(LOG_GUEST_ERROR,
"l2_ste_offset=%d > max_l2_ste=%d\n",
l2_ste_offset, max_l2_ste);
event->type = SMMU_EVT_C_BAD_STE;
return -EINVAL;
}
addr = l2ptr + l2_ste_offset * sizeof(*ste);
} else {
strtab_size_shift = log2size + 5;
strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK &
~MAKE_64BIT_MASK(0, strtab_size_shift);
addr = strtab_base + sid * sizeof(*ste);
}
if (smmu_get_ste(s, addr, ste, event)) {
return -EINVAL;
}
return 0;
}
static int decode_cd(SMMUTransCfg *cfg, CD *cd, SMMUEventInfo *event)
{
int ret = -EINVAL;
int i;
if (!CD_VALID(cd) || !CD_AARCH64(cd)) {
goto bad_cd;
}
if (!CD_A(cd)) {
goto bad_cd; /* SMMU_IDR0.TERM_MODEL == 1 */
}
if (CD_S(cd)) {
goto bad_cd; /* !STE_SECURE && SMMU_IDR0.STALL_MODEL == 1 */
}
if (CD_HA(cd) || CD_HD(cd)) {
goto bad_cd; /* HTTU = 0 */
}
/* we support only those at the moment */
cfg->aa64 = true;
cfg->stage = 1;
cfg->oas = oas2bits(CD_IPS(cd));
cfg->oas = MIN(oas2bits(SMMU_IDR5_OAS), cfg->oas);
cfg->tbi = CD_TBI(cd);
cfg->asid = CD_ASID(cd);
trace_smmuv3_decode_cd(cfg->oas);
/* decode data dependent on TT */
for (i = 0; i <= 1; i++) {
int tg, tsz;
SMMUTransTableInfo *tt = &cfg->tt[i];
cfg->tt[i].disabled = CD_EPD(cd, i);
if (cfg->tt[i].disabled) {
continue;
}
tsz = CD_TSZ(cd, i);
if (tsz < 16 || tsz > 39) {
goto bad_cd;
}
tg = CD_TG(cd, i);
tt->granule_sz = tg2granule(tg, i);
if ((tt->granule_sz != 12 && tt->granule_sz != 14 &&
tt->granule_sz != 16) || CD_ENDI(cd)) {
goto bad_cd;
}
tt->tsz = tsz;
tt->ttb = CD_TTB(cd, i);
if (tt->ttb & ~(MAKE_64BIT_MASK(0, cfg->oas))) {
goto bad_cd;
}
tt->had = CD_HAD(cd, i);
trace_smmuv3_decode_cd_tt(i, tt->tsz, tt->ttb, tt->granule_sz, tt->had);
}
cfg->record_faults = CD_R(cd);
return 0;
bad_cd:
event->type = SMMU_EVT_C_BAD_CD;
return ret;
}
/**
* smmuv3_decode_config - Prepare the translation configuration
* for the @mr iommu region
* @mr: iommu memory region the translation config must be prepared for
* @cfg: output translation configuration which is populated through
* the different configuration decoding steps
* @event: must be zero'ed by the caller
*
* return < 0 in case of config decoding error (@event is filled
* accordingly). Return 0 otherwise.
*/
static int smmuv3_decode_config(IOMMUMemoryRegion *mr, SMMUTransCfg *cfg,
SMMUEventInfo *event)
{
SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
uint32_t sid = smmu_get_sid(sdev);
SMMUv3State *s = sdev->smmu;
int ret;
STE ste;
CD cd;
/* ASID defaults to -1 (if s1 is not supported). */
cfg->asid = -1;
ret = smmu_find_ste(s, sid, &ste, event);
if (ret) {
return ret;
}
ret = decode_ste(s, cfg, &ste, event);
if (ret) {
return ret;
}
if (cfg->aborted || cfg->bypassed || (cfg->stage == 2)) {
return 0;
}
ret = smmu_get_cd(s, &ste, 0 /* ssid */, &cd, event);
if (ret) {
return ret;
}
return decode_cd(cfg, &cd, event);
}
/**
* smmuv3_get_config - Look up for a cached copy of configuration data for
* @sdev and on cache miss performs a configuration structure decoding from
* guest RAM.
*
* @sdev: SMMUDevice handle
* @event: output event info
*
* The configuration cache contains data resulting from both STE and CD
* decoding under the form of an SMMUTransCfg struct. The hash table is indexed
* by the SMMUDevice handle.
*/
static SMMUTransCfg *smmuv3_get_config(SMMUDevice *sdev, SMMUEventInfo *event)
{
SMMUv3State *s = sdev->smmu;
SMMUState *bc = &s->smmu_state;
SMMUTransCfg *cfg;
cfg = g_hash_table_lookup(bc->configs, sdev);
if (cfg) {
sdev->cfg_cache_hits++;
trace_smmuv3_config_cache_hit(smmu_get_sid(sdev),
sdev->cfg_cache_hits, sdev->cfg_cache_misses,
100 * sdev->cfg_cache_hits /
(sdev->cfg_cache_hits + sdev->cfg_cache_misses));
} else {
sdev->cfg_cache_misses++;
trace_smmuv3_config_cache_miss(smmu_get_sid(sdev),
sdev->cfg_cache_hits, sdev->cfg_cache_misses,
100 * sdev->cfg_cache_hits /
(sdev->cfg_cache_hits + sdev->cfg_cache_misses));
cfg = g_new0(SMMUTransCfg, 1);
if (!smmuv3_decode_config(&sdev->iommu, cfg, event)) {
g_hash_table_insert(bc->configs, sdev, cfg);
} else {
g_free(cfg);
cfg = NULL;
}
}
return cfg;
}
static void smmuv3_flush_config(SMMUDevice *sdev)
{
SMMUv3State *s = sdev->smmu;
SMMUState *bc = &s->smmu_state;
trace_smmuv3_config_cache_inv(smmu_get_sid(sdev));
g_hash_table_remove(bc->configs, sdev);
}
static IOMMUTLBEntry smmuv3_translate(IOMMUMemoryRegion *mr, hwaddr addr,
IOMMUAccessFlags flag, int iommu_idx)
{
SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
SMMUv3State *s = sdev->smmu;
uint32_t sid = smmu_get_sid(sdev);
SMMUEventInfo event = {.type = SMMU_EVT_NONE,
.sid = sid,
.inval_ste_allowed = false};
SMMUPTWEventInfo ptw_info = {};
SMMUTranslationStatus status;
SMMUState *bs = ARM_SMMU(s);
uint64_t page_mask, aligned_addr;
SMMUTLBEntry *cached_entry = NULL;
SMMUTransTableInfo *tt;
SMMUTransCfg *cfg = NULL;
IOMMUTLBEntry entry = {
.target_as = &address_space_memory,
.iova = addr,
.translated_addr = addr,
.addr_mask = ~(hwaddr)0,
.perm = IOMMU_NONE,
};
/*
* Combined attributes used for TLB lookup, as only one stage is supported,
* it will hold attributes based on the enabled stage.
*/
SMMUTransTableInfo tt_combined;
qemu_mutex_lock(&s->mutex);
if (!smmu_enabled(s)) {
if (FIELD_EX32(s->gbpa, GBPA, ABORT)) {
status = SMMU_TRANS_ABORT;
} else {
status = SMMU_TRANS_DISABLE;
}
goto epilogue;
}
cfg = smmuv3_get_config(sdev, &event);
if (!cfg) {
status = SMMU_TRANS_ERROR;
goto epilogue;
}
if (cfg->aborted) {
status = SMMU_TRANS_ABORT;
goto epilogue;
}
if (cfg->bypassed) {
status = SMMU_TRANS_BYPASS;
goto epilogue;
}
if (cfg->stage == 1) {
/* Select stage1 translation table. */
tt = select_tt(cfg, addr);
if (!tt) {
if (cfg->record_faults) {
event.type = SMMU_EVT_F_TRANSLATION;
event.u.f_translation.addr = addr;
event.u.f_translation.rnw = flag & 0x1;
}
status = SMMU_TRANS_ERROR;
goto epilogue;
}
tt_combined.granule_sz = tt->granule_sz;
tt_combined.tsz = tt->tsz;
} else {
/* Stage2. */
tt_combined.granule_sz = cfg->s2cfg.granule_sz;
tt_combined.tsz = cfg->s2cfg.tsz;
}
/*
* TLB lookup looks for granule and input size for a translation stage,
* as only one stage is supported right now, choose the right values
* from the configuration.
*/
page_mask = (1ULL << tt_combined.granule_sz) - 1;
aligned_addr = addr & ~page_mask;
cached_entry = smmu_iotlb_lookup(bs, cfg, &tt_combined, aligned_addr);
if (cached_entry) {
if ((flag & IOMMU_WO) && !(cached_entry->entry.perm & IOMMU_WO)) {
status = SMMU_TRANS_ERROR;
/*
* We know that the TLB only contains either stage-1 or stage-2 as
* nesting is not supported. So it is sufficient to check the
* translation stage to know the TLB stage for now.
*/
event.u.f_walk_eabt.s2 = (cfg->stage == 2);
if (PTW_RECORD_FAULT(cfg)) {
event.type = SMMU_EVT_F_PERMISSION;
event.u.f_permission.addr = addr;
event.u.f_permission.rnw = flag & 0x1;
}
} else {
status = SMMU_TRANS_SUCCESS;
}
goto epilogue;
}
cached_entry = g_new0(SMMUTLBEntry, 1);
if (smmu_ptw(cfg, aligned_addr, flag, cached_entry, &ptw_info)) {
/* All faults from PTW has S2 field. */
event.u.f_walk_eabt.s2 = (ptw_info.stage == 2);
g_free(cached_entry);
switch (ptw_info.type) {
case SMMU_PTW_ERR_WALK_EABT:
event.type = SMMU_EVT_F_WALK_EABT;
event.u.f_walk_eabt.addr = addr;
event.u.f_walk_eabt.rnw = flag & 0x1;
event.u.f_walk_eabt.class = 0x1;
event.u.f_walk_eabt.addr2 = ptw_info.addr;
break;
case SMMU_PTW_ERR_TRANSLATION:
if (PTW_RECORD_FAULT(cfg)) {
event.type = SMMU_EVT_F_TRANSLATION;
event.u.f_translation.addr = addr;
event.u.f_translation.rnw = flag & 0x1;
}
break;
case SMMU_PTW_ERR_ADDR_SIZE:
if (PTW_RECORD_FAULT(cfg)) {
event.type = SMMU_EVT_F_ADDR_SIZE;
event.u.f_addr_size.addr = addr;
event.u.f_addr_size.rnw = flag & 0x1;
}
break;
case SMMU_PTW_ERR_ACCESS:
if (PTW_RECORD_FAULT(cfg)) {
event.type = SMMU_EVT_F_ACCESS;
event.u.f_access.addr = addr;
event.u.f_access.rnw = flag & 0x1;
}
break;
case SMMU_PTW_ERR_PERMISSION:
if (PTW_RECORD_FAULT(cfg)) {
event.type = SMMU_EVT_F_PERMISSION;
event.u.f_permission.addr = addr;
event.u.f_permission.rnw = flag & 0x1;
}
break;
default:
g_assert_not_reached();
}
status = SMMU_TRANS_ERROR;
} else {
smmu_iotlb_insert(bs, cfg, cached_entry);
status = SMMU_TRANS_SUCCESS;
}
epilogue:
qemu_mutex_unlock(&s->mutex);
switch (status) {
case SMMU_TRANS_SUCCESS:
entry.perm = cached_entry->entry.perm;
entry.translated_addr = cached_entry->entry.translated_addr +
(addr & cached_entry->entry.addr_mask);
entry.addr_mask = cached_entry->entry.addr_mask;
trace_smmuv3_translate_success(mr->parent_obj.name, sid, addr,
entry.translated_addr, entry.perm);
break;
case SMMU_TRANS_DISABLE:
entry.perm = flag;
entry.addr_mask = ~TARGET_PAGE_MASK;
trace_smmuv3_translate_disable(mr->parent_obj.name, sid, addr,
entry.perm);
break;
case SMMU_TRANS_BYPASS:
entry.perm = flag;
entry.addr_mask = ~TARGET_PAGE_MASK;
trace_smmuv3_translate_bypass(mr->parent_obj.name, sid, addr,
entry.perm);
break;
case SMMU_TRANS_ABORT:
/* no event is recorded on abort */
trace_smmuv3_translate_abort(mr->parent_obj.name, sid, addr,
entry.perm);
break;
case SMMU_TRANS_ERROR:
qemu_log_mask(LOG_GUEST_ERROR,
"%s translation failed for iova=0x%"PRIx64" (%s)\n",
mr->parent_obj.name, addr, smmu_event_string(event.type));
smmuv3_record_event(s, &event);
break;
}
return entry;
}
/**
* smmuv3_notify_iova - call the notifier @n for a given
* @asid and @iova tuple.
*
* @mr: IOMMU mr region handle
* @n: notifier to be called
* @asid: address space ID or negative value if we don't care
* @vmid: virtual machine ID or negative value if we don't care
* @iova: iova
* @tg: translation granule (if communicated through range invalidation)
* @num_pages: number of @granule sized pages (if tg != 0), otherwise 1
*/
static void smmuv3_notify_iova(IOMMUMemoryRegion *mr,
IOMMUNotifier *n,
int asid, int vmid,
dma_addr_t iova, uint8_t tg,
uint64_t num_pages)
{
SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
IOMMUTLBEvent event;
uint8_t granule;
SMMUv3State *s = sdev->smmu;
if (!tg) {
SMMUEventInfo event = {.inval_ste_allowed = true};
SMMUTransCfg *cfg = smmuv3_get_config(sdev, &event);
SMMUTransTableInfo *tt;
if (!cfg) {
return;
}
if (asid >= 0 && cfg->asid != asid) {
return;
}
if (vmid >= 0 && cfg->s2cfg.vmid != vmid) {
return;
}
if (STAGE1_SUPPORTED(s)) {
tt = select_tt(cfg, iova);
if (!tt) {
return;
}
granule = tt->granule_sz;
} else {
granule = cfg->s2cfg.granule_sz;
}
} else {
granule = tg * 2 + 10;
}
event.type = IOMMU_NOTIFIER_UNMAP;
event.entry.target_as = &address_space_memory;
event.entry.iova = iova;
event.entry.addr_mask = num_pages * (1 << granule) - 1;
event.entry.perm = IOMMU_NONE;
memory_region_notify_iommu_one(n, &event);
}
/* invalidate an asid/vmid/iova range tuple in all mr's */
static void smmuv3_inv_notifiers_iova(SMMUState *s, int asid, int vmid,
dma_addr_t iova, uint8_t tg,
uint64_t num_pages)
{
SMMUDevice *sdev;
QLIST_FOREACH(sdev, &s->devices_with_notifiers, next) {
IOMMUMemoryRegion *mr = &sdev->iommu;
IOMMUNotifier *n;
trace_smmuv3_inv_notifiers_iova(mr->parent_obj.name, asid, vmid,
iova, tg, num_pages);
IOMMU_NOTIFIER_FOREACH(n, mr) {
smmuv3_notify_iova(mr, n, asid, vmid, iova, tg, num_pages);
}
}
}
static void smmuv3_range_inval(SMMUState *s, Cmd *cmd)
{
dma_addr_t end, addr = CMD_ADDR(cmd);
uint8_t type = CMD_TYPE(cmd);
int vmid = -1;
uint8_t scale = CMD_SCALE(cmd);
uint8_t num = CMD_NUM(cmd);
uint8_t ttl = CMD_TTL(cmd);
bool leaf = CMD_LEAF(cmd);
uint8_t tg = CMD_TG(cmd);
uint64_t num_pages;
uint8_t granule;
int asid = -1;
SMMUv3State *smmuv3 = ARM_SMMUV3(s);
/* Only consider VMID if stage-2 is supported. */
if (STAGE2_SUPPORTED(smmuv3)) {
vmid = CMD_VMID(cmd);
}
if (type == SMMU_CMD_TLBI_NH_VA) {
asid = CMD_ASID(cmd);
}
if (!tg) {
trace_smmuv3_range_inval(vmid, asid, addr, tg, 1, ttl, leaf);
smmuv3_inv_notifiers_iova(s, asid, vmid, addr, tg, 1);
smmu_iotlb_inv_iova(s, asid, vmid, addr, tg, 1, ttl);
return;
}
/* RIL in use */
num_pages = (num + 1) * BIT_ULL(scale);
granule = tg * 2 + 10;
/* Split invalidations into ^2 range invalidations */
end = addr + (num_pages << granule) - 1;
while (addr != end + 1) {
uint64_t mask = dma_aligned_pow2_mask(addr, end, 64);
num_pages = (mask + 1) >> granule;
trace_smmuv3_range_inval(vmid, asid, addr, tg, num_pages, ttl, leaf);
smmuv3_inv_notifiers_iova(s, asid, vmid, addr, tg, num_pages);
smmu_iotlb_inv_iova(s, asid, vmid, addr, tg, num_pages, ttl);
addr += mask + 1;
}
}
static gboolean
smmuv3_invalidate_ste(gpointer key, gpointer value, gpointer user_data)
{
SMMUDevice *sdev = (SMMUDevice *)key;
uint32_t sid = smmu_get_sid(sdev);
SMMUSIDRange *sid_range = (SMMUSIDRange *)user_data;
if (sid < sid_range->start || sid > sid_range->end) {
return false;
}
trace_smmuv3_config_cache_inv(sid);
return true;
}
static int smmuv3_cmdq_consume(SMMUv3State *s)
{
SMMUState *bs = ARM_SMMU(s);
SMMUCmdError cmd_error = SMMU_CERROR_NONE;
SMMUQueue *q = &s->cmdq;
SMMUCommandType type = 0;
if (!smmuv3_cmdq_enabled(s)) {
return 0;
}
/*
* some commands depend on register values, typically CR0. In case those
* register values change while handling the command, spec says it
* is UNPREDICTABLE whether the command is interpreted under the new
* or old value.
*/
while (!smmuv3_q_empty(q)) {
uint32_t pending = s->gerror ^ s->gerrorn;
Cmd cmd;
trace_smmuv3_cmdq_consume(Q_PROD(q), Q_CONS(q),
Q_PROD_WRAP(q), Q_CONS_WRAP(q));
if (FIELD_EX32(pending, GERROR, CMDQ_ERR)) {
break;
}
if (queue_read(q, &cmd) != MEMTX_OK) {
cmd_error = SMMU_CERROR_ABT;
break;
}
type = CMD_TYPE(&cmd);
trace_smmuv3_cmdq_opcode(smmu_cmd_string(type));
qemu_mutex_lock(&s->mutex);
switch (type) {
case SMMU_CMD_SYNC:
if (CMD_SYNC_CS(&cmd) & CMD_SYNC_SIG_IRQ) {
smmuv3_trigger_irq(s, SMMU_IRQ_CMD_SYNC, 0);
}
break;
case SMMU_CMD_PREFETCH_CONFIG:
case SMMU_CMD_PREFETCH_ADDR:
break;
case SMMU_CMD_CFGI_STE:
{
uint32_t sid = CMD_SID(&cmd);
IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid);
SMMUDevice *sdev;
if (CMD_SSEC(&cmd)) {
cmd_error = SMMU_CERROR_ILL;
break;
}
if (!mr) {
break;
}
trace_smmuv3_cmdq_cfgi_ste(sid);
sdev = container_of(mr, SMMUDevice, iommu);
smmuv3_flush_config(sdev);
break;
}
case SMMU_CMD_CFGI_STE_RANGE: /* same as SMMU_CMD_CFGI_ALL */
{
uint32_t sid = CMD_SID(&cmd), mask;
uint8_t range = CMD_STE_RANGE(&cmd);
SMMUSIDRange sid_range;
if (CMD_SSEC(&cmd)) {
cmd_error = SMMU_CERROR_ILL;
break;
}
mask = (1ULL << (range + 1)) - 1;
sid_range.start = sid & ~mask;
sid_range.end = sid_range.start + mask;
trace_smmuv3_cmdq_cfgi_ste_range(sid_range.start, sid_range.end);
g_hash_table_foreach_remove(bs->configs, smmuv3_invalidate_ste,
&sid_range);
break;
}
case SMMU_CMD_CFGI_CD:
case SMMU_CMD_CFGI_CD_ALL:
{
uint32_t sid = CMD_SID(&cmd);
IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid);
SMMUDevice *sdev;
if (CMD_SSEC(&cmd)) {
cmd_error = SMMU_CERROR_ILL;
break;
}
if (!mr) {
break;
}
trace_smmuv3_cmdq_cfgi_cd(sid);
sdev = container_of(mr, SMMUDevice, iommu);
smmuv3_flush_config(sdev);
break;
}
case SMMU_CMD_TLBI_NH_ASID:
{
uint16_t asid = CMD_ASID(&cmd);
if (!STAGE1_SUPPORTED(s)) {
cmd_error = SMMU_CERROR_ILL;
break;
}
trace_smmuv3_cmdq_tlbi_nh_asid(asid);
smmu_inv_notifiers_all(&s->smmu_state);
smmu_iotlb_inv_asid(bs, asid);
break;
}
case SMMU_CMD_TLBI_NH_ALL:
if (!STAGE1_SUPPORTED(s)) {
cmd_error = SMMU_CERROR_ILL;
break;
}
QEMU_FALLTHROUGH;
case SMMU_CMD_TLBI_NSNH_ALL:
trace_smmuv3_cmdq_tlbi_nh();
smmu_inv_notifiers_all(&s->smmu_state);
smmu_iotlb_inv_all(bs);
break;
case SMMU_CMD_TLBI_NH_VAA:
case SMMU_CMD_TLBI_NH_VA:
if (!STAGE1_SUPPORTED(s)) {
cmd_error = SMMU_CERROR_ILL;
break;
}
smmuv3_range_inval(bs, &cmd);
break;
case SMMU_CMD_TLBI_S12_VMALL:
{
uint16_t vmid = CMD_VMID(&cmd);
if (!STAGE2_SUPPORTED(s)) {
cmd_error = SMMU_CERROR_ILL;
break;
}
trace_smmuv3_cmdq_tlbi_s12_vmid(vmid);
smmu_inv_notifiers_all(&s->smmu_state);
smmu_iotlb_inv_vmid(bs, vmid);
break;
}
case SMMU_CMD_TLBI_S2_IPA:
if (!STAGE2_SUPPORTED(s)) {
cmd_error = SMMU_CERROR_ILL;
break;
}
/*
* As currently only either s1 or s2 are supported
* we can reuse same function for s2.
*/
smmuv3_range_inval(bs, &cmd);
break;
case SMMU_CMD_TLBI_EL3_ALL:
case SMMU_CMD_TLBI_EL3_VA:
case SMMU_CMD_TLBI_EL2_ALL:
case SMMU_CMD_TLBI_EL2_ASID:
case SMMU_CMD_TLBI_EL2_VA:
case SMMU_CMD_TLBI_EL2_VAA:
case SMMU_CMD_ATC_INV:
case SMMU_CMD_PRI_RESP:
case SMMU_CMD_RESUME:
case SMMU_CMD_STALL_TERM:
trace_smmuv3_unhandled_cmd(type);
break;
default:
cmd_error = SMMU_CERROR_ILL;
break;
}
qemu_mutex_unlock(&s->mutex);
if (cmd_error) {
if (cmd_error == SMMU_CERROR_ILL) {
qemu_log_mask(LOG_GUEST_ERROR,
"Illegal command type: %d\n", CMD_TYPE(&cmd));
}
break;
}
/*
* We only increment the cons index after the completion of
* the command. We do that because the SYNC returns immediately
* and does not check the completion of previous commands
*/
queue_cons_incr(q);
}
if (cmd_error) {
trace_smmuv3_cmdq_consume_error(smmu_cmd_string(type), cmd_error);
smmu_write_cmdq_err(s, cmd_error);
smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_CMDQ_ERR_MASK);
}
trace_smmuv3_cmdq_consume_out(Q_PROD(q), Q_CONS(q),
Q_PROD_WRAP(q), Q_CONS_WRAP(q));
return 0;
}
static MemTxResult smmu_writell(SMMUv3State *s, hwaddr offset,
uint64_t data, MemTxAttrs attrs)
{
switch (offset) {
case A_GERROR_IRQ_CFG0:
s->gerror_irq_cfg0 = data;
return MEMTX_OK;
case A_STRTAB_BASE:
s->strtab_base = data;
return MEMTX_OK;
case A_CMDQ_BASE:
s->cmdq.base = data;
s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
if (s->cmdq.log2size > SMMU_CMDQS) {
s->cmdq.log2size = SMMU_CMDQS;
}
return MEMTX_OK;
case A_EVENTQ_BASE:
s->eventq.base = data;
s->eventq.log2size = extract64(s->eventq.base, 0, 5);
if (s->eventq.log2size > SMMU_EVENTQS) {
s->eventq.log2size = SMMU_EVENTQS;
}
return MEMTX_OK;
case A_EVENTQ_IRQ_CFG0:
s->eventq_irq_cfg0 = data;
return MEMTX_OK;
default:
qemu_log_mask(LOG_UNIMP,
"%s Unexpected 64-bit access to 0x%"PRIx64" (WI)\n",
__func__, offset);
return MEMTX_OK;
}
}
static MemTxResult smmu_writel(SMMUv3State *s, hwaddr offset,
uint64_t data, MemTxAttrs attrs)
{
switch (offset) {
case A_CR0:
s->cr[0] = data;
s->cr0ack = data & ~SMMU_CR0_RESERVED;
/* in case the command queue has been enabled */
smmuv3_cmdq_consume(s);
return MEMTX_OK;
case A_CR1:
s->cr[1] = data;
return MEMTX_OK;
case A_CR2:
s->cr[2] = data;
return MEMTX_OK;
case A_IRQ_CTRL:
s->irq_ctrl = data;
return MEMTX_OK;
case A_GERRORN:
smmuv3_write_gerrorn(s, data);
/*
* By acknowledging the CMDQ_ERR, SW may notify cmds can
* be processed again
*/
smmuv3_cmdq_consume(s);
return MEMTX_OK;
case A_GERROR_IRQ_CFG0: /* 64b */
s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 0, 32, data);
return MEMTX_OK;
case A_GERROR_IRQ_CFG0 + 4:
s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 32, 32, data);
return MEMTX_OK;
case A_GERROR_IRQ_CFG1:
s->gerror_irq_cfg1 = data;
return MEMTX_OK;
case A_GERROR_IRQ_CFG2:
s->gerror_irq_cfg2 = data;
return MEMTX_OK;
case A_GBPA:
/*
* If UPDATE is not set, the write is ignored. This is the only
* permitted behavior in SMMUv3.2 and later.
*/
if (data & R_GBPA_UPDATE_MASK) {
/* Ignore update bit as write is synchronous. */
s->gbpa = data & ~R_GBPA_UPDATE_MASK;
}
return MEMTX_OK;
case A_STRTAB_BASE: /* 64b */
s->strtab_base = deposit64(s->strtab_base, 0, 32, data);
return MEMTX_OK;
case A_STRTAB_BASE + 4:
s->strtab_base = deposit64(s->strtab_base, 32, 32, data);
return MEMTX_OK;
case A_STRTAB_BASE_CFG:
s->strtab_base_cfg = data;
if (FIELD_EX32(data, STRTAB_BASE_CFG, FMT) == 1) {
s->sid_split = FIELD_EX32(data, STRTAB_BASE_CFG, SPLIT);
s->features |= SMMU_FEATURE_2LVL_STE;
}
return MEMTX_OK;
case A_CMDQ_BASE: /* 64b */
s->cmdq.base = deposit64(s->cmdq.base, 0, 32, data);
s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
if (s->cmdq.log2size > SMMU_CMDQS) {
s->cmdq.log2size = SMMU_CMDQS;
}
return MEMTX_OK;
case A_CMDQ_BASE + 4: /* 64b */
s->cmdq.base = deposit64(s->cmdq.base, 32, 32, data);
return MEMTX_OK;
case A_CMDQ_PROD:
s->cmdq.prod = data;
smmuv3_cmdq_consume(s);
return MEMTX_OK;
case A_CMDQ_CONS:
s->cmdq.cons = data;
return MEMTX_OK;
case A_EVENTQ_BASE: /* 64b */
s->eventq.base = deposit64(s->eventq.base, 0, 32, data);
s->eventq.log2size = extract64(s->eventq.base, 0, 5);
if (s->eventq.log2size > SMMU_EVENTQS) {
s->eventq.log2size = SMMU_EVENTQS;
}
return MEMTX_OK;
case A_EVENTQ_BASE + 4:
s->eventq.base = deposit64(s->eventq.base, 32, 32, data);
return MEMTX_OK;
case A_EVENTQ_PROD:
s->eventq.prod = data;
return MEMTX_OK;
case A_EVENTQ_CONS:
s->eventq.cons = data;
return MEMTX_OK;
case A_EVENTQ_IRQ_CFG0: /* 64b */
s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 0, 32, data);
return MEMTX_OK;
case A_EVENTQ_IRQ_CFG0 + 4:
s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 32, 32, data);
return MEMTX_OK;
case A_EVENTQ_IRQ_CFG1:
s->eventq_irq_cfg1 = data;
return MEMTX_OK;
case A_EVENTQ_IRQ_CFG2:
s->eventq_irq_cfg2 = data;
return MEMTX_OK;
default:
qemu_log_mask(LOG_UNIMP,
"%s Unexpected 32-bit access to 0x%"PRIx64" (WI)\n",
__func__, offset);
return MEMTX_OK;
}
}
static MemTxResult smmu_write_mmio(void *opaque, hwaddr offset, uint64_t data,
unsigned size, MemTxAttrs attrs)
{
SMMUState *sys = opaque;
SMMUv3State *s = ARM_SMMUV3(sys);
MemTxResult r;
/* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
offset &= ~0x10000;
switch (size) {
case 8:
r = smmu_writell(s, offset, data, attrs);
break;
case 4:
r = smmu_writel(s, offset, data, attrs);
break;
default:
r = MEMTX_ERROR;
break;
}
trace_smmuv3_write_mmio(offset, data, size, r);
return r;
}
static MemTxResult smmu_readll(SMMUv3State *s, hwaddr offset,
uint64_t *data, MemTxAttrs attrs)
{
switch (offset) {
case A_GERROR_IRQ_CFG0:
*data = s->gerror_irq_cfg0;
return MEMTX_OK;
case A_STRTAB_BASE:
*data = s->strtab_base;
return MEMTX_OK;
case A_CMDQ_BASE:
*data = s->cmdq.base;
return MEMTX_OK;
case A_EVENTQ_BASE:
*data = s->eventq.base;
return MEMTX_OK;
default:
*data = 0;
qemu_log_mask(LOG_UNIMP,
"%s Unexpected 64-bit access to 0x%"PRIx64" (RAZ)\n",
__func__, offset);
return MEMTX_OK;
}
}
static MemTxResult smmu_readl(SMMUv3State *s, hwaddr offset,
uint64_t *data, MemTxAttrs attrs)
{
switch (offset) {
case A_IDREGS ... A_IDREGS + 0x2f:
*data = smmuv3_idreg(offset - A_IDREGS);
return MEMTX_OK;
case A_IDR0 ... A_IDR5:
*data = s->idr[(offset - A_IDR0) / 4];
return MEMTX_OK;
case A_IIDR:
*data = s->iidr;
return MEMTX_OK;
case A_AIDR:
*data = s->aidr;
return MEMTX_OK;
case A_CR0:
*data = s->cr[0];
return MEMTX_OK;
case A_CR0ACK:
*data = s->cr0ack;
return MEMTX_OK;
case A_CR1:
*data = s->cr[1];
return MEMTX_OK;
case A_CR2:
*data = s->cr[2];
return MEMTX_OK;
case A_STATUSR:
*data = s->statusr;
return MEMTX_OK;
case A_GBPA:
*data = s->gbpa;
return MEMTX_OK;
case A_IRQ_CTRL:
case A_IRQ_CTRL_ACK:
*data = s->irq_ctrl;
return MEMTX_OK;
case A_GERROR:
*data = s->gerror;
return MEMTX_OK;
case A_GERRORN:
*data = s->gerrorn;
return MEMTX_OK;
case A_GERROR_IRQ_CFG0: /* 64b */
*data = extract64(s->gerror_irq_cfg0, 0, 32);
return MEMTX_OK;
case A_GERROR_IRQ_CFG0 + 4:
*data = extract64(s->gerror_irq_cfg0, 32, 32);
return MEMTX_OK;
case A_GERROR_IRQ_CFG1:
*data = s->gerror_irq_cfg1;
return MEMTX_OK;
case A_GERROR_IRQ_CFG2:
*data = s->gerror_irq_cfg2;
return MEMTX_OK;
case A_STRTAB_BASE: /* 64b */
*data = extract64(s->strtab_base, 0, 32);
return MEMTX_OK;
case A_STRTAB_BASE + 4: /* 64b */
*data = extract64(s->strtab_base, 32, 32);
return MEMTX_OK;
case A_STRTAB_BASE_CFG:
*data = s->strtab_base_cfg;
return MEMTX_OK;
case A_CMDQ_BASE: /* 64b */
*data = extract64(s->cmdq.base, 0, 32);
return MEMTX_OK;
case A_CMDQ_BASE + 4:
*data = extract64(s->cmdq.base, 32, 32);
return MEMTX_OK;
case A_CMDQ_PROD:
*data = s->cmdq.prod;
return MEMTX_OK;
case A_CMDQ_CONS:
*data = s->cmdq.cons;
return MEMTX_OK;
case A_EVENTQ_BASE: /* 64b */
*data = extract64(s->eventq.base, 0, 32);
return MEMTX_OK;
case A_EVENTQ_BASE + 4: /* 64b */
*data = extract64(s->eventq.base, 32, 32);
return MEMTX_OK;
case A_EVENTQ_PROD:
*data = s->eventq.prod;
return MEMTX_OK;
case A_EVENTQ_CONS:
*data = s->eventq.cons;
return MEMTX_OK;
default:
*data = 0;
qemu_log_mask(LOG_UNIMP,
"%s unhandled 32-bit access at 0x%"PRIx64" (RAZ)\n",
__func__, offset);
return MEMTX_OK;
}
}
static MemTxResult smmu_read_mmio(void *opaque, hwaddr offset, uint64_t *data,
unsigned size, MemTxAttrs attrs)
{
SMMUState *sys = opaque;
SMMUv3State *s = ARM_SMMUV3(sys);
MemTxResult r;
/* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
offset &= ~0x10000;
switch (size) {
case 8:
r = smmu_readll(s, offset, data, attrs);
break;
case 4:
r = smmu_readl(s, offset, data, attrs);
break;
default:
r = MEMTX_ERROR;
break;
}
trace_smmuv3_read_mmio(offset, *data, size, r);
return r;
}
static const MemoryRegionOps smmu_mem_ops = {
.read_with_attrs = smmu_read_mmio,
.write_with_attrs = smmu_write_mmio,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 8,
},
.impl = {
.min_access_size = 4,
.max_access_size = 8,
},
};
static void smmu_init_irq(SMMUv3State *s, SysBusDevice *dev)
{
int i;
for (i = 0; i < ARRAY_SIZE(s->irq); i++) {
sysbus_init_irq(dev, &s->irq[i]);
}
}
static void smmu_reset_hold(Object *obj)
{
SMMUv3State *s = ARM_SMMUV3(obj);
SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
if (c->parent_phases.hold) {
c->parent_phases.hold(obj);
}
smmuv3_init_regs(s);
}
static void smmu_realize(DeviceState *d, Error **errp)
{
SMMUState *sys = ARM_SMMU(d);
SMMUv3State *s = ARM_SMMUV3(sys);
SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
SysBusDevice *dev = SYS_BUS_DEVICE(d);
Error *local_err = NULL;
c->parent_realize(d, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
qemu_mutex_init(&s->mutex);
memory_region_init_io(&sys->iomem, OBJECT(s),
&smmu_mem_ops, sys, TYPE_ARM_SMMUV3, 0x20000);
sys->mrtypename = TYPE_SMMUV3_IOMMU_MEMORY_REGION;
sysbus_init_mmio(dev, &sys->iomem);
smmu_init_irq(s, dev);
}
static const VMStateDescription vmstate_smmuv3_queue = {
.name = "smmuv3_queue",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT64(base, SMMUQueue),
VMSTATE_UINT32(prod, SMMUQueue),
VMSTATE_UINT32(cons, SMMUQueue),
VMSTATE_UINT8(log2size, SMMUQueue),
VMSTATE_END_OF_LIST(),
},
};
static bool smmuv3_gbpa_needed(void *opaque)
{
SMMUv3State *s = opaque;
/* Only migrate GBPA if it has different reset value. */
return s->gbpa != SMMU_GBPA_RESET_VAL;
}
static const VMStateDescription vmstate_gbpa = {
.name = "smmuv3/gbpa",
.version_id = 1,
.minimum_version_id = 1,
.needed = smmuv3_gbpa_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(gbpa, SMMUv3State),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_smmuv3 = {
.name = "smmuv3",
.version_id = 1,
.minimum_version_id = 1,
.priority = MIG_PRI_IOMMU,
.fields = (VMStateField[]) {
VMSTATE_UINT32(features, SMMUv3State),
VMSTATE_UINT8(sid_size, SMMUv3State),
VMSTATE_UINT8(sid_split, SMMUv3State),
VMSTATE_UINT32_ARRAY(cr, SMMUv3State, 3),
VMSTATE_UINT32(cr0ack, SMMUv3State),
VMSTATE_UINT32(statusr, SMMUv3State),
VMSTATE_UINT32(irq_ctrl, SMMUv3State),
VMSTATE_UINT32(gerror, SMMUv3State),
VMSTATE_UINT32(gerrorn, SMMUv3State),
VMSTATE_UINT64(gerror_irq_cfg0, SMMUv3State),
VMSTATE_UINT32(gerror_irq_cfg1, SMMUv3State),
VMSTATE_UINT32(gerror_irq_cfg2, SMMUv3State),
VMSTATE_UINT64(strtab_base, SMMUv3State),
VMSTATE_UINT32(strtab_base_cfg, SMMUv3State),
VMSTATE_UINT64(eventq_irq_cfg0, SMMUv3State),
VMSTATE_UINT32(eventq_irq_cfg1, SMMUv3State),
VMSTATE_UINT32(eventq_irq_cfg2, SMMUv3State),
VMSTATE_STRUCT(cmdq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
VMSTATE_STRUCT(eventq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
VMSTATE_END_OF_LIST(),
},
.subsections = (const VMStateDescription * []) {
&vmstate_gbpa,
NULL
}
};
static Property smmuv3_properties[] = {
/*
* Stages of translation advertised.
* "1": Stage 1
* "2": Stage 2
* Defaults to stage 1
*/
DEFINE_PROP_STRING("stage", SMMUv3State, stage),
DEFINE_PROP_END_OF_LIST()
};
static void smmuv3_instance_init(Object *obj)
{
/* Nothing much to do here as of now */
}
static void smmuv3_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
SMMUv3Class *c = ARM_SMMUV3_CLASS(klass);
dc->vmsd = &vmstate_smmuv3;
resettable_class_set_parent_phases(rc, NULL, smmu_reset_hold, NULL,
&c->parent_phases);
c->parent_realize = dc->realize;
dc->realize = smmu_realize;
device_class_set_props(dc, smmuv3_properties);
}
static int smmuv3_notify_flag_changed(IOMMUMemoryRegion *iommu,
IOMMUNotifierFlag old,
IOMMUNotifierFlag new,
Error **errp)
{
SMMUDevice *sdev = container_of(iommu, SMMUDevice, iommu);
SMMUv3State *s3 = sdev->smmu;
SMMUState *s = &(s3->smmu_state);
if (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
error_setg(errp, "SMMUv3 does not support dev-iotlb yet");
return -EINVAL;
}
if (new & IOMMU_NOTIFIER_MAP) {
error_setg(errp,
"device %02x.%02x.%x requires iommu MAP notifier which is "
"not currently supported", pci_bus_num(sdev->bus),
PCI_SLOT(sdev->devfn), PCI_FUNC(sdev->devfn));
return -EINVAL;
}
if (old == IOMMU_NOTIFIER_NONE) {
trace_smmuv3_notify_flag_add(iommu->parent_obj.name);
QLIST_INSERT_HEAD(&s->devices_with_notifiers, sdev, next);
} else if (new == IOMMU_NOTIFIER_NONE) {
trace_smmuv3_notify_flag_del(iommu->parent_obj.name);
QLIST_REMOVE(sdev, next);
}
return 0;
}
static void smmuv3_iommu_memory_region_class_init(ObjectClass *klass,
void *data)
{
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
imrc->translate = smmuv3_translate;
imrc->notify_flag_changed = smmuv3_notify_flag_changed;
}
static const TypeInfo smmuv3_type_info = {
.name = TYPE_ARM_SMMUV3,
.parent = TYPE_ARM_SMMU,
.instance_size = sizeof(SMMUv3State),
.instance_init = smmuv3_instance_init,
.class_size = sizeof(SMMUv3Class),
.class_init = smmuv3_class_init,
};
static const TypeInfo smmuv3_iommu_memory_region_info = {
.parent = TYPE_IOMMU_MEMORY_REGION,
.name = TYPE_SMMUV3_IOMMU_MEMORY_REGION,
.class_init = smmuv3_iommu_memory_region_class_init,
};
static void smmuv3_register_types(void)
{
type_register(&smmuv3_type_info);
type_register(&smmuv3_iommu_memory_region_info);
}
type_init(smmuv3_register_types)