qemu-e2k/hw/usb-xhci.c
Anthony Liguori 40021f0888 pci: convert to QEMU Object Model
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-01-27 10:50:50 -06:00

2757 lines
79 KiB
C

/*
* USB xHCI controller emulation
*
* Copyright (c) 2011 Securiforest
* Date: 2011-05-11 ; Author: Hector Martin <hector@marcansoft.com>
* Based on usb-ohci.c, emulates Renesas NEC USB 3.0
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "hw.h"
#include "qemu-timer.h"
#include "usb.h"
#include "pci.h"
#include "qdev-addr.h"
#include "msi.h"
//#define DEBUG_XHCI
//#define DEBUG_DATA
#ifdef DEBUG_XHCI
#define DPRINTF(...) fprintf(stderr, __VA_ARGS__)
#else
#define DPRINTF(...) do {} while (0)
#endif
#define FIXME() do { fprintf(stderr, "FIXME %s:%d\n", \
__func__, __LINE__); abort(); } while (0)
#define MAXSLOTS 8
#define MAXINTRS 1
#define USB2_PORTS 4
#define USB3_PORTS 4
#define MAXPORTS (USB2_PORTS+USB3_PORTS)
#define TD_QUEUE 24
#define BG_XFERS 8
#define BG_PKTS 8
/* Very pessimistic, let's hope it's enough for all cases */
#define EV_QUEUE (((3*TD_QUEUE)+16)*MAXSLOTS)
/* Do not deliver ER Full events. NEC's driver does some things not bound
* to the specs when it gets them */
#define ER_FULL_HACK
#define LEN_CAP 0x40
#define OFF_OPER LEN_CAP
#define LEN_OPER (0x400 + 0x10 * MAXPORTS)
#define OFF_RUNTIME ((OFF_OPER + LEN_OPER + 0x20) & ~0x1f)
#define LEN_RUNTIME (0x20 + MAXINTRS * 0x20)
#define OFF_DOORBELL (OFF_RUNTIME + LEN_RUNTIME)
#define LEN_DOORBELL ((MAXSLOTS + 1) * 0x20)
/* must be power of 2 */
#define LEN_REGS 0x2000
#if (OFF_DOORBELL + LEN_DOORBELL) > LEN_REGS
# error Increase LEN_REGS
#endif
#if MAXINTRS > 1
# error TODO: only one interrupter supported
#endif
/* bit definitions */
#define USBCMD_RS (1<<0)
#define USBCMD_HCRST (1<<1)
#define USBCMD_INTE (1<<2)
#define USBCMD_HSEE (1<<3)
#define USBCMD_LHCRST (1<<7)
#define USBCMD_CSS (1<<8)
#define USBCMD_CRS (1<<9)
#define USBCMD_EWE (1<<10)
#define USBCMD_EU3S (1<<11)
#define USBSTS_HCH (1<<0)
#define USBSTS_HSE (1<<2)
#define USBSTS_EINT (1<<3)
#define USBSTS_PCD (1<<4)
#define USBSTS_SSS (1<<8)
#define USBSTS_RSS (1<<9)
#define USBSTS_SRE (1<<10)
#define USBSTS_CNR (1<<11)
#define USBSTS_HCE (1<<12)
#define PORTSC_CCS (1<<0)
#define PORTSC_PED (1<<1)
#define PORTSC_OCA (1<<3)
#define PORTSC_PR (1<<4)
#define PORTSC_PLS_SHIFT 5
#define PORTSC_PLS_MASK 0xf
#define PORTSC_PP (1<<9)
#define PORTSC_SPEED_SHIFT 10
#define PORTSC_SPEED_MASK 0xf
#define PORTSC_SPEED_FULL (1<<10)
#define PORTSC_SPEED_LOW (2<<10)
#define PORTSC_SPEED_HIGH (3<<10)
#define PORTSC_SPEED_SUPER (4<<10)
#define PORTSC_PIC_SHIFT 14
#define PORTSC_PIC_MASK 0x3
#define PORTSC_LWS (1<<16)
#define PORTSC_CSC (1<<17)
#define PORTSC_PEC (1<<18)
#define PORTSC_WRC (1<<19)
#define PORTSC_OCC (1<<20)
#define PORTSC_PRC (1<<21)
#define PORTSC_PLC (1<<22)
#define PORTSC_CEC (1<<23)
#define PORTSC_CAS (1<<24)
#define PORTSC_WCE (1<<25)
#define PORTSC_WDE (1<<26)
#define PORTSC_WOE (1<<27)
#define PORTSC_DR (1<<30)
#define PORTSC_WPR (1<<31)
#define CRCR_RCS (1<<0)
#define CRCR_CS (1<<1)
#define CRCR_CA (1<<2)
#define CRCR_CRR (1<<3)
#define IMAN_IP (1<<0)
#define IMAN_IE (1<<1)
#define ERDP_EHB (1<<3)
#define TRB_SIZE 16
typedef struct XHCITRB {
uint64_t parameter;
uint32_t status;
uint32_t control;
target_phys_addr_t addr;
bool ccs;
} XHCITRB;
typedef enum TRBType {
TRB_RESERVED = 0,
TR_NORMAL,
TR_SETUP,
TR_DATA,
TR_STATUS,
TR_ISOCH,
TR_LINK,
TR_EVDATA,
TR_NOOP,
CR_ENABLE_SLOT,
CR_DISABLE_SLOT,
CR_ADDRESS_DEVICE,
CR_CONFIGURE_ENDPOINT,
CR_EVALUATE_CONTEXT,
CR_RESET_ENDPOINT,
CR_STOP_ENDPOINT,
CR_SET_TR_DEQUEUE,
CR_RESET_DEVICE,
CR_FORCE_EVENT,
CR_NEGOTIATE_BW,
CR_SET_LATENCY_TOLERANCE,
CR_GET_PORT_BANDWIDTH,
CR_FORCE_HEADER,
CR_NOOP,
ER_TRANSFER = 32,
ER_COMMAND_COMPLETE,
ER_PORT_STATUS_CHANGE,
ER_BANDWIDTH_REQUEST,
ER_DOORBELL,
ER_HOST_CONTROLLER,
ER_DEVICE_NOTIFICATION,
ER_MFINDEX_WRAP,
/* vendor specific bits */
CR_VENDOR_VIA_CHALLENGE_RESPONSE = 48,
CR_VENDOR_NEC_FIRMWARE_REVISION = 49,
CR_VENDOR_NEC_CHALLENGE_RESPONSE = 50,
} TRBType;
#define CR_LINK TR_LINK
typedef enum TRBCCode {
CC_INVALID = 0,
CC_SUCCESS,
CC_DATA_BUFFER_ERROR,
CC_BABBLE_DETECTED,
CC_USB_TRANSACTION_ERROR,
CC_TRB_ERROR,
CC_STALL_ERROR,
CC_RESOURCE_ERROR,
CC_BANDWIDTH_ERROR,
CC_NO_SLOTS_ERROR,
CC_INVALID_STREAM_TYPE_ERROR,
CC_SLOT_NOT_ENABLED_ERROR,
CC_EP_NOT_ENABLED_ERROR,
CC_SHORT_PACKET,
CC_RING_UNDERRUN,
CC_RING_OVERRUN,
CC_VF_ER_FULL,
CC_PARAMETER_ERROR,
CC_BANDWIDTH_OVERRUN,
CC_CONTEXT_STATE_ERROR,
CC_NO_PING_RESPONSE_ERROR,
CC_EVENT_RING_FULL_ERROR,
CC_INCOMPATIBLE_DEVICE_ERROR,
CC_MISSED_SERVICE_ERROR,
CC_COMMAND_RING_STOPPED,
CC_COMMAND_ABORTED,
CC_STOPPED,
CC_STOPPED_LENGTH_INVALID,
CC_MAX_EXIT_LATENCY_TOO_LARGE_ERROR = 29,
CC_ISOCH_BUFFER_OVERRUN = 31,
CC_EVENT_LOST_ERROR,
CC_UNDEFINED_ERROR,
CC_INVALID_STREAM_ID_ERROR,
CC_SECONDARY_BANDWIDTH_ERROR,
CC_SPLIT_TRANSACTION_ERROR
} TRBCCode;
#define TRB_C (1<<0)
#define TRB_TYPE_SHIFT 10
#define TRB_TYPE_MASK 0x3f
#define TRB_TYPE(t) (((t).control >> TRB_TYPE_SHIFT) & TRB_TYPE_MASK)
#define TRB_EV_ED (1<<2)
#define TRB_TR_ENT (1<<1)
#define TRB_TR_ISP (1<<2)
#define TRB_TR_NS (1<<3)
#define TRB_TR_CH (1<<4)
#define TRB_TR_IOC (1<<5)
#define TRB_TR_IDT (1<<6)
#define TRB_TR_TBC_SHIFT 7
#define TRB_TR_TBC_MASK 0x3
#define TRB_TR_BEI (1<<9)
#define TRB_TR_TLBPC_SHIFT 16
#define TRB_TR_TLBPC_MASK 0xf
#define TRB_TR_FRAMEID_SHIFT 20
#define TRB_TR_FRAMEID_MASK 0x7ff
#define TRB_TR_SIA (1<<31)
#define TRB_TR_DIR (1<<16)
#define TRB_CR_SLOTID_SHIFT 24
#define TRB_CR_SLOTID_MASK 0xff
#define TRB_CR_EPID_SHIFT 16
#define TRB_CR_EPID_MASK 0x1f
#define TRB_CR_BSR (1<<9)
#define TRB_CR_DC (1<<9)
#define TRB_LK_TC (1<<1)
#define EP_TYPE_MASK 0x7
#define EP_TYPE_SHIFT 3
#define EP_STATE_MASK 0x7
#define EP_DISABLED (0<<0)
#define EP_RUNNING (1<<0)
#define EP_HALTED (2<<0)
#define EP_STOPPED (3<<0)
#define EP_ERROR (4<<0)
#define SLOT_STATE_MASK 0x1f
#define SLOT_STATE_SHIFT 27
#define SLOT_STATE(s) (((s)>>SLOT_STATE_SHIFT)&SLOT_STATE_MASK)
#define SLOT_ENABLED 0
#define SLOT_DEFAULT 1
#define SLOT_ADDRESSED 2
#define SLOT_CONFIGURED 3
#define SLOT_CONTEXT_ENTRIES_MASK 0x1f
#define SLOT_CONTEXT_ENTRIES_SHIFT 27
typedef enum EPType {
ET_INVALID = 0,
ET_ISO_OUT,
ET_BULK_OUT,
ET_INTR_OUT,
ET_CONTROL,
ET_ISO_IN,
ET_BULK_IN,
ET_INTR_IN,
} EPType;
typedef struct XHCIRing {
target_phys_addr_t base;
target_phys_addr_t dequeue;
bool ccs;
} XHCIRing;
typedef struct XHCIPort {
USBPort port;
uint32_t portsc;
} XHCIPort;
struct XHCIState;
typedef struct XHCIState XHCIState;
typedef struct XHCITransfer {
XHCIState *xhci;
USBPacket packet;
bool running;
bool cancelled;
bool complete;
bool backgrounded;
unsigned int iso_pkts;
unsigned int slotid;
unsigned int epid;
bool in_xfer;
bool iso_xfer;
bool bg_xfer;
unsigned int trb_count;
unsigned int trb_alloced;
XHCITRB *trbs;
unsigned int data_length;
unsigned int data_alloced;
uint8_t *data;
TRBCCode status;
unsigned int pkts;
unsigned int pktsize;
unsigned int cur_pkt;
} XHCITransfer;
typedef struct XHCIEPContext {
XHCIRing ring;
unsigned int next_xfer;
unsigned int comp_xfer;
XHCITransfer transfers[TD_QUEUE];
bool bg_running;
bool bg_updating;
unsigned int next_bg;
XHCITransfer bg_transfers[BG_XFERS];
EPType type;
target_phys_addr_t pctx;
unsigned int max_psize;
bool has_bg;
uint32_t state;
} XHCIEPContext;
typedef struct XHCISlot {
bool enabled;
target_phys_addr_t ctx;
unsigned int port;
unsigned int devaddr;
XHCIEPContext * eps[31];
} XHCISlot;
typedef struct XHCIEvent {
TRBType type;
TRBCCode ccode;
uint64_t ptr;
uint32_t length;
uint32_t flags;
uint8_t slotid;
uint8_t epid;
} XHCIEvent;
struct XHCIState {
PCIDevice pci_dev;
USBBus bus;
qemu_irq irq;
MemoryRegion mem;
const char *name;
uint32_t msi;
unsigned int devaddr;
/* Operational Registers */
uint32_t usbcmd;
uint32_t usbsts;
uint32_t dnctrl;
uint32_t crcr_low;
uint32_t crcr_high;
uint32_t dcbaap_low;
uint32_t dcbaap_high;
uint32_t config;
XHCIPort ports[MAXPORTS];
XHCISlot slots[MAXSLOTS];
/* Runtime Registers */
uint32_t mfindex;
/* note: we only support one interrupter */
uint32_t iman;
uint32_t imod;
uint32_t erstsz;
uint32_t erstba_low;
uint32_t erstba_high;
uint32_t erdp_low;
uint32_t erdp_high;
target_phys_addr_t er_start;
uint32_t er_size;
bool er_pcs;
unsigned int er_ep_idx;
bool er_full;
XHCIEvent ev_buffer[EV_QUEUE];
unsigned int ev_buffer_put;
unsigned int ev_buffer_get;
XHCIRing cmd_ring;
};
typedef struct XHCIEvRingSeg {
uint32_t addr_low;
uint32_t addr_high;
uint32_t size;
uint32_t rsvd;
} XHCIEvRingSeg;
static void xhci_kick_ep(XHCIState *xhci, unsigned int slotid,
unsigned int epid);
static inline target_phys_addr_t xhci_addr64(uint32_t low, uint32_t high)
{
#if TARGET_PHYS_ADDR_BITS > 32
return low | ((target_phys_addr_t)high << 32);
#else
return low;
#endif
}
static inline target_phys_addr_t xhci_mask64(uint64_t addr)
{
#if TARGET_PHYS_ADDR_BITS > 32
return addr;
#else
return addr & 0xffffffff;
#endif
}
static void xhci_irq_update(XHCIState *xhci)
{
int level = 0;
if (xhci->iman & IMAN_IP && xhci->iman & IMAN_IE &&
xhci->usbcmd && USBCMD_INTE) {
level = 1;
}
DPRINTF("xhci_irq_update(): %d\n", level);
if (xhci->msi && msi_enabled(&xhci->pci_dev)) {
if (level) {
DPRINTF("xhci_irq_update(): MSI signal\n");
msi_notify(&xhci->pci_dev, 0);
}
} else {
qemu_set_irq(xhci->irq, level);
}
}
static inline int xhci_running(XHCIState *xhci)
{
return !(xhci->usbsts & USBSTS_HCH) && !xhci->er_full;
}
static void xhci_die(XHCIState *xhci)
{
xhci->usbsts |= USBSTS_HCE;
fprintf(stderr, "xhci: asserted controller error\n");
}
static void xhci_write_event(XHCIState *xhci, XHCIEvent *event)
{
XHCITRB ev_trb;
target_phys_addr_t addr;
ev_trb.parameter = cpu_to_le64(event->ptr);
ev_trb.status = cpu_to_le32(event->length | (event->ccode << 24));
ev_trb.control = (event->slotid << 24) | (event->epid << 16) |
event->flags | (event->type << TRB_TYPE_SHIFT);
if (xhci->er_pcs) {
ev_trb.control |= TRB_C;
}
ev_trb.control = cpu_to_le32(ev_trb.control);
DPRINTF("xhci_write_event(): [%d] %016"PRIx64" %08x %08x\n",
xhci->er_ep_idx, ev_trb.parameter, ev_trb.status, ev_trb.control);
addr = xhci->er_start + TRB_SIZE*xhci->er_ep_idx;
cpu_physical_memory_write(addr, (uint8_t *) &ev_trb, TRB_SIZE);
xhci->er_ep_idx++;
if (xhci->er_ep_idx >= xhci->er_size) {
xhci->er_ep_idx = 0;
xhci->er_pcs = !xhci->er_pcs;
}
}
static void xhci_events_update(XHCIState *xhci)
{
target_phys_addr_t erdp;
unsigned int dp_idx;
bool do_irq = 0;
if (xhci->usbsts & USBSTS_HCH) {
return;
}
erdp = xhci_addr64(xhci->erdp_low, xhci->erdp_high);
if (erdp < xhci->er_start ||
erdp >= (xhci->er_start + TRB_SIZE*xhci->er_size)) {
fprintf(stderr, "xhci: ERDP out of bounds: "TARGET_FMT_plx"\n", erdp);
fprintf(stderr, "xhci: ER at "TARGET_FMT_plx" len %d\n",
xhci->er_start, xhci->er_size);
xhci_die(xhci);
return;
}
dp_idx = (erdp - xhci->er_start) / TRB_SIZE;
assert(dp_idx < xhci->er_size);
/* NEC didn't read section 4.9.4 of the spec (v1.0 p139 top Note) and thus
* deadlocks when the ER is full. Hack it by holding off events until
* the driver decides to free at least half of the ring */
if (xhci->er_full) {
int er_free = dp_idx - xhci->er_ep_idx;
if (er_free <= 0) {
er_free += xhci->er_size;
}
if (er_free < (xhci->er_size/2)) {
DPRINTF("xhci_events_update(): event ring still "
"more than half full (hack)\n");
return;
}
}
while (xhci->ev_buffer_put != xhci->ev_buffer_get) {
assert(xhci->er_full);
if (((xhci->er_ep_idx+1) % xhci->er_size) == dp_idx) {
DPRINTF("xhci_events_update(): event ring full again\n");
#ifndef ER_FULL_HACK
XHCIEvent full = {ER_HOST_CONTROLLER, CC_EVENT_RING_FULL_ERROR};
xhci_write_event(xhci, &full);
#endif
do_irq = 1;
break;
}
XHCIEvent *event = &xhci->ev_buffer[xhci->ev_buffer_get];
xhci_write_event(xhci, event);
xhci->ev_buffer_get++;
do_irq = 1;
if (xhci->ev_buffer_get == EV_QUEUE) {
xhci->ev_buffer_get = 0;
}
}
if (do_irq) {
xhci->erdp_low |= ERDP_EHB;
xhci->iman |= IMAN_IP;
xhci->usbsts |= USBSTS_EINT;
xhci_irq_update(xhci);
}
if (xhci->er_full && xhci->ev_buffer_put == xhci->ev_buffer_get) {
DPRINTF("xhci_events_update(): event ring no longer full\n");
xhci->er_full = 0;
}
return;
}
static void xhci_event(XHCIState *xhci, XHCIEvent *event)
{
target_phys_addr_t erdp;
unsigned int dp_idx;
if (xhci->er_full) {
DPRINTF("xhci_event(): ER full, queueing\n");
if (((xhci->ev_buffer_put+1) % EV_QUEUE) == xhci->ev_buffer_get) {
fprintf(stderr, "xhci: event queue full, dropping event!\n");
return;
}
xhci->ev_buffer[xhci->ev_buffer_put++] = *event;
if (xhci->ev_buffer_put == EV_QUEUE) {
xhci->ev_buffer_put = 0;
}
return;
}
erdp = xhci_addr64(xhci->erdp_low, xhci->erdp_high);
if (erdp < xhci->er_start ||
erdp >= (xhci->er_start + TRB_SIZE*xhci->er_size)) {
fprintf(stderr, "xhci: ERDP out of bounds: "TARGET_FMT_plx"\n", erdp);
fprintf(stderr, "xhci: ER at "TARGET_FMT_plx" len %d\n",
xhci->er_start, xhci->er_size);
xhci_die(xhci);
return;
}
dp_idx = (erdp - xhci->er_start) / TRB_SIZE;
assert(dp_idx < xhci->er_size);
if ((xhci->er_ep_idx+1) % xhci->er_size == dp_idx) {
DPRINTF("xhci_event(): ER full, queueing\n");
#ifndef ER_FULL_HACK
XHCIEvent full = {ER_HOST_CONTROLLER, CC_EVENT_RING_FULL_ERROR};
xhci_write_event(xhci, &full);
#endif
xhci->er_full = 1;
if (((xhci->ev_buffer_put+1) % EV_QUEUE) == xhci->ev_buffer_get) {
fprintf(stderr, "xhci: event queue full, dropping event!\n");
return;
}
xhci->ev_buffer[xhci->ev_buffer_put++] = *event;
if (xhci->ev_buffer_put == EV_QUEUE) {
xhci->ev_buffer_put = 0;
}
} else {
xhci_write_event(xhci, event);
}
xhci->erdp_low |= ERDP_EHB;
xhci->iman |= IMAN_IP;
xhci->usbsts |= USBSTS_EINT;
xhci_irq_update(xhci);
}
static void xhci_ring_init(XHCIState *xhci, XHCIRing *ring,
target_phys_addr_t base)
{
ring->base = base;
ring->dequeue = base;
ring->ccs = 1;
}
static TRBType xhci_ring_fetch(XHCIState *xhci, XHCIRing *ring, XHCITRB *trb,
target_phys_addr_t *addr)
{
while (1) {
TRBType type;
cpu_physical_memory_read(ring->dequeue, (uint8_t *) trb, TRB_SIZE);
trb->addr = ring->dequeue;
trb->ccs = ring->ccs;
le64_to_cpus(&trb->parameter);
le32_to_cpus(&trb->status);
le32_to_cpus(&trb->control);
DPRINTF("xhci: TRB fetched [" TARGET_FMT_plx "]: "
"%016" PRIx64 " %08x %08x\n",
ring->dequeue, trb->parameter, trb->status, trb->control);
if ((trb->control & TRB_C) != ring->ccs) {
return 0;
}
type = TRB_TYPE(*trb);
if (type != TR_LINK) {
if (addr) {
*addr = ring->dequeue;
}
ring->dequeue += TRB_SIZE;
return type;
} else {
ring->dequeue = xhci_mask64(trb->parameter);
if (trb->control & TRB_LK_TC) {
ring->ccs = !ring->ccs;
}
}
}
}
static int xhci_ring_chain_length(XHCIState *xhci, const XHCIRing *ring)
{
XHCITRB trb;
int length = 0;
target_phys_addr_t dequeue = ring->dequeue;
bool ccs = ring->ccs;
/* hack to bundle together the two/three TDs that make a setup transfer */
bool control_td_set = 0;
while (1) {
TRBType type;
cpu_physical_memory_read(dequeue, (uint8_t *) &trb, TRB_SIZE);
le64_to_cpus(&trb.parameter);
le32_to_cpus(&trb.status);
le32_to_cpus(&trb.control);
DPRINTF("xhci: TRB peeked [" TARGET_FMT_plx "]: "
"%016" PRIx64 " %08x %08x\n",
dequeue, trb.parameter, trb.status, trb.control);
if ((trb.control & TRB_C) != ccs) {
return -length;
}
type = TRB_TYPE(trb);
if (type == TR_LINK) {
dequeue = xhci_mask64(trb.parameter);
if (trb.control & TRB_LK_TC) {
ccs = !ccs;
}
continue;
}
length += 1;
dequeue += TRB_SIZE;
if (type == TR_SETUP) {
control_td_set = 1;
} else if (type == TR_STATUS) {
control_td_set = 0;
}
if (!control_td_set && !(trb.control & TRB_TR_CH)) {
return length;
}
}
}
static void xhci_er_reset(XHCIState *xhci)
{
XHCIEvRingSeg seg;
/* cache the (sole) event ring segment location */
if (xhci->erstsz != 1) {
fprintf(stderr, "xhci: invalid value for ERSTSZ: %d\n", xhci->erstsz);
xhci_die(xhci);
return;
}
target_phys_addr_t erstba = xhci_addr64(xhci->erstba_low, xhci->erstba_high);
cpu_physical_memory_read(erstba, (uint8_t *) &seg, sizeof(seg));
le32_to_cpus(&seg.addr_low);
le32_to_cpus(&seg.addr_high);
le32_to_cpus(&seg.size);
if (seg.size < 16 || seg.size > 4096) {
fprintf(stderr, "xhci: invalid value for segment size: %d\n", seg.size);
xhci_die(xhci);
return;
}
xhci->er_start = xhci_addr64(seg.addr_low, seg.addr_high);
xhci->er_size = seg.size;
xhci->er_ep_idx = 0;
xhci->er_pcs = 1;
xhci->er_full = 0;
DPRINTF("xhci: event ring:" TARGET_FMT_plx " [%d]\n",
xhci->er_start, xhci->er_size);
}
static void xhci_run(XHCIState *xhci)
{
DPRINTF("xhci_run()\n");
xhci->usbsts &= ~USBSTS_HCH;
}
static void xhci_stop(XHCIState *xhci)
{
DPRINTF("xhci_stop()\n");
xhci->usbsts |= USBSTS_HCH;
xhci->crcr_low &= ~CRCR_CRR;
}
static void xhci_set_ep_state(XHCIState *xhci, XHCIEPContext *epctx,
uint32_t state)
{
uint32_t ctx[5];
if (epctx->state == state) {
return;
}
cpu_physical_memory_read(epctx->pctx, (uint8_t *) ctx, sizeof(ctx));
ctx[0] &= ~EP_STATE_MASK;
ctx[0] |= state;
ctx[2] = epctx->ring.dequeue | epctx->ring.ccs;
ctx[3] = (epctx->ring.dequeue >> 16) >> 16;
DPRINTF("xhci: set epctx: " TARGET_FMT_plx " state=%d dequeue=%08x%08x\n",
epctx->pctx, state, ctx[3], ctx[2]);
cpu_physical_memory_write(epctx->pctx, (uint8_t *) ctx, sizeof(ctx));
epctx->state = state;
}
static TRBCCode xhci_enable_ep(XHCIState *xhci, unsigned int slotid,
unsigned int epid, target_phys_addr_t pctx,
uint32_t *ctx)
{
XHCISlot *slot;
XHCIEPContext *epctx;
target_phys_addr_t dequeue;
int i;
assert(slotid >= 1 && slotid <= MAXSLOTS);
assert(epid >= 1 && epid <= 31);
DPRINTF("xhci_enable_ep(%d, %d)\n", slotid, epid);
slot = &xhci->slots[slotid-1];
if (slot->eps[epid-1]) {
fprintf(stderr, "xhci: slot %d ep %d already enabled!\n", slotid, epid);
return CC_TRB_ERROR;
}
epctx = g_malloc(sizeof(XHCIEPContext));
memset(epctx, 0, sizeof(XHCIEPContext));
slot->eps[epid-1] = epctx;
dequeue = xhci_addr64(ctx[2] & ~0xf, ctx[3]);
xhci_ring_init(xhci, &epctx->ring, dequeue);
epctx->ring.ccs = ctx[2] & 1;
epctx->type = (ctx[1] >> EP_TYPE_SHIFT) & EP_TYPE_MASK;
DPRINTF("xhci: endpoint %d.%d type is %d\n", epid/2, epid%2, epctx->type);
epctx->pctx = pctx;
epctx->max_psize = ctx[1]>>16;
epctx->max_psize *= 1+((ctx[1]>>8)&0xff);
epctx->has_bg = false;
if (epctx->type == ET_ISO_IN) {
epctx->has_bg = true;
}
DPRINTF("xhci: endpoint %d.%d max transaction (burst) size is %d\n",
epid/2, epid%2, epctx->max_psize);
for (i = 0; i < ARRAY_SIZE(epctx->transfers); i++) {
usb_packet_init(&epctx->transfers[i].packet);
}
epctx->state = EP_RUNNING;
ctx[0] &= ~EP_STATE_MASK;
ctx[0] |= EP_RUNNING;
return CC_SUCCESS;
}
static int xhci_ep_nuke_xfers(XHCIState *xhci, unsigned int slotid,
unsigned int epid)
{
XHCISlot *slot;
XHCIEPContext *epctx;
int i, xferi, killed = 0;
assert(slotid >= 1 && slotid <= MAXSLOTS);
assert(epid >= 1 && epid <= 31);
DPRINTF("xhci_ep_nuke_xfers(%d, %d)\n", slotid, epid);
slot = &xhci->slots[slotid-1];
if (!slot->eps[epid-1]) {
return 0;
}
epctx = slot->eps[epid-1];
xferi = epctx->next_xfer;
for (i = 0; i < TD_QUEUE; i++) {
XHCITransfer *t = &epctx->transfers[xferi];
if (t->running) {
t->cancelled = 1;
/* libusb_cancel_transfer(t->usbxfer) */
DPRINTF("xhci: cancelling transfer %d, waiting for it to complete...\n", i);
killed++;
}
if (t->backgrounded) {
t->backgrounded = 0;
}
if (t->trbs) {
g_free(t->trbs);
}
if (t->data) {
g_free(t->data);
}
t->trbs = NULL;
t->data = NULL;
t->trb_count = t->trb_alloced = 0;
t->data_length = t->data_alloced = 0;
xferi = (xferi + 1) % TD_QUEUE;
}
if (epctx->has_bg) {
xferi = epctx->next_bg;
for (i = 0; i < BG_XFERS; i++) {
XHCITransfer *t = &epctx->bg_transfers[xferi];
if (t->running) {
t->cancelled = 1;
/* libusb_cancel_transfer(t->usbxfer); */
DPRINTF("xhci: cancelling bg transfer %d, waiting for it to complete...\n", i);
killed++;
}
if (t->data) {
g_free(t->data);
}
t->data = NULL;
xferi = (xferi + 1) % BG_XFERS;
}
}
return killed;
}
static TRBCCode xhci_disable_ep(XHCIState *xhci, unsigned int slotid,
unsigned int epid)
{
XHCISlot *slot;
XHCIEPContext *epctx;
assert(slotid >= 1 && slotid <= MAXSLOTS);
assert(epid >= 1 && epid <= 31);
DPRINTF("xhci_disable_ep(%d, %d)\n", slotid, epid);
slot = &xhci->slots[slotid-1];
if (!slot->eps[epid-1]) {
DPRINTF("xhci: slot %d ep %d already disabled\n", slotid, epid);
return CC_SUCCESS;
}
xhci_ep_nuke_xfers(xhci, slotid, epid);
epctx = slot->eps[epid-1];
xhci_set_ep_state(xhci, epctx, EP_DISABLED);
g_free(epctx);
slot->eps[epid-1] = NULL;
return CC_SUCCESS;
}
static TRBCCode xhci_stop_ep(XHCIState *xhci, unsigned int slotid,
unsigned int epid)
{
XHCISlot *slot;
XHCIEPContext *epctx;
DPRINTF("xhci_stop_ep(%d, %d)\n", slotid, epid);
assert(slotid >= 1 && slotid <= MAXSLOTS);
if (epid < 1 || epid > 31) {
fprintf(stderr, "xhci: bad ep %d\n", epid);
return CC_TRB_ERROR;
}
slot = &xhci->slots[slotid-1];
if (!slot->eps[epid-1]) {
DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid);
return CC_EP_NOT_ENABLED_ERROR;
}
if (xhci_ep_nuke_xfers(xhci, slotid, epid) > 0) {
fprintf(stderr, "xhci: FIXME: endpoint stopped w/ xfers running, "
"data might be lost\n");
}
epctx = slot->eps[epid-1];
xhci_set_ep_state(xhci, epctx, EP_STOPPED);
return CC_SUCCESS;
}
static TRBCCode xhci_reset_ep(XHCIState *xhci, unsigned int slotid,
unsigned int epid)
{
XHCISlot *slot;
XHCIEPContext *epctx;
USBDevice *dev;
assert(slotid >= 1 && slotid <= MAXSLOTS);
DPRINTF("xhci_reset_ep(%d, %d)\n", slotid, epid);
if (epid < 1 || epid > 31) {
fprintf(stderr, "xhci: bad ep %d\n", epid);
return CC_TRB_ERROR;
}
slot = &xhci->slots[slotid-1];
if (!slot->eps[epid-1]) {
DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid);
return CC_EP_NOT_ENABLED_ERROR;
}
epctx = slot->eps[epid-1];
if (epctx->state != EP_HALTED) {
fprintf(stderr, "xhci: reset EP while EP %d not halted (%d)\n",
epid, epctx->state);
return CC_CONTEXT_STATE_ERROR;
}
if (xhci_ep_nuke_xfers(xhci, slotid, epid) > 0) {
fprintf(stderr, "xhci: FIXME: endpoint reset w/ xfers running, "
"data might be lost\n");
}
uint8_t ep = epid>>1;
if (epid & 1) {
ep |= 0x80;
}
dev = xhci->ports[xhci->slots[slotid-1].port-1].port.dev;
if (!dev) {
return CC_USB_TRANSACTION_ERROR;
}
xhci_set_ep_state(xhci, epctx, EP_STOPPED);
return CC_SUCCESS;
}
static TRBCCode xhci_set_ep_dequeue(XHCIState *xhci, unsigned int slotid,
unsigned int epid, uint64_t pdequeue)
{
XHCISlot *slot;
XHCIEPContext *epctx;
target_phys_addr_t dequeue;
assert(slotid >= 1 && slotid <= MAXSLOTS);
if (epid < 1 || epid > 31) {
fprintf(stderr, "xhci: bad ep %d\n", epid);
return CC_TRB_ERROR;
}
DPRINTF("xhci_set_ep_dequeue(%d, %d, %016"PRIx64")\n", slotid, epid, pdequeue);
dequeue = xhci_mask64(pdequeue);
slot = &xhci->slots[slotid-1];
if (!slot->eps[epid-1]) {
DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid);
return CC_EP_NOT_ENABLED_ERROR;
}
epctx = slot->eps[epid-1];
if (epctx->state != EP_STOPPED) {
fprintf(stderr, "xhci: set EP dequeue pointer while EP %d not stopped\n", epid);
return CC_CONTEXT_STATE_ERROR;
}
xhci_ring_init(xhci, &epctx->ring, dequeue & ~0xF);
epctx->ring.ccs = dequeue & 1;
xhci_set_ep_state(xhci, epctx, EP_STOPPED);
return CC_SUCCESS;
}
static int xhci_xfer_data(XHCITransfer *xfer, uint8_t *data,
unsigned int length, bool in_xfer, bool out_xfer,
bool report)
{
int i;
uint32_t edtla = 0;
unsigned int transferred = 0;
unsigned int left = length;
bool reported = 0;
bool shortpkt = 0;
XHCIEvent event = {ER_TRANSFER, CC_SUCCESS};
XHCIState *xhci = xfer->xhci;
DPRINTF("xhci_xfer_data(len=%d, in_xfer=%d, out_xfer=%d, report=%d)\n",
length, in_xfer, out_xfer, report);
assert(!(in_xfer && out_xfer));
for (i = 0; i < xfer->trb_count; i++) {
XHCITRB *trb = &xfer->trbs[i];
target_phys_addr_t addr;
unsigned int chunk = 0;
switch (TRB_TYPE(*trb)) {
case TR_DATA:
if ((!(trb->control & TRB_TR_DIR)) != (!in_xfer)) {
fprintf(stderr, "xhci: data direction mismatch for TR_DATA\n");
xhci_die(xhci);
return transferred;
}
/* fallthrough */
case TR_NORMAL:
case TR_ISOCH:
addr = xhci_mask64(trb->parameter);
chunk = trb->status & 0x1ffff;
if (chunk > left) {
chunk = left;
shortpkt = 1;
}
if (in_xfer || out_xfer) {
if (trb->control & TRB_TR_IDT) {
uint64_t idata;
if (chunk > 8 || in_xfer) {
fprintf(stderr, "xhci: invalid immediate data TRB\n");
xhci_die(xhci);
return transferred;
}
idata = le64_to_cpu(trb->parameter);
memcpy(data, &idata, chunk);
} else {
DPRINTF("xhci_xfer_data: r/w(%d) %d bytes at "
TARGET_FMT_plx "\n", in_xfer, chunk, addr);
if (in_xfer) {
cpu_physical_memory_write(addr, data, chunk);
} else {
cpu_physical_memory_read(addr, data, chunk);
}
#ifdef DEBUG_DATA
unsigned int count = chunk;
int i;
if (count > 16) {
count = 16;
}
DPRINTF(" ::");
for (i = 0; i < count; i++) {
DPRINTF(" %02x", data[i]);
}
DPRINTF("\n");
#endif
}
}
left -= chunk;
data += chunk;
edtla += chunk;
transferred += chunk;
break;
case TR_STATUS:
reported = 0;
shortpkt = 0;
break;
}
if (report && !reported && (trb->control & TRB_TR_IOC ||
(shortpkt && (trb->control & TRB_TR_ISP)))) {
event.slotid = xfer->slotid;
event.epid = xfer->epid;
event.length = (trb->status & 0x1ffff) - chunk;
event.flags = 0;
event.ptr = trb->addr;
if (xfer->status == CC_SUCCESS) {
event.ccode = shortpkt ? CC_SHORT_PACKET : CC_SUCCESS;
} else {
event.ccode = xfer->status;
}
if (TRB_TYPE(*trb) == TR_EVDATA) {
event.ptr = trb->parameter;
event.flags |= TRB_EV_ED;
event.length = edtla & 0xffffff;
DPRINTF("xhci_xfer_data: EDTLA=%d\n", event.length);
edtla = 0;
}
xhci_event(xhci, &event);
reported = 1;
}
}
return transferred;
}
static void xhci_stall_ep(XHCITransfer *xfer)
{
XHCIState *xhci = xfer->xhci;
XHCISlot *slot = &xhci->slots[xfer->slotid-1];
XHCIEPContext *epctx = slot->eps[xfer->epid-1];
epctx->ring.dequeue = xfer->trbs[0].addr;
epctx->ring.ccs = xfer->trbs[0].ccs;
xhci_set_ep_state(xhci, epctx, EP_HALTED);
DPRINTF("xhci: stalled slot %d ep %d\n", xfer->slotid, xfer->epid);
DPRINTF("xhci: will continue at "TARGET_FMT_plx"\n", epctx->ring.dequeue);
}
static int xhci_submit(XHCIState *xhci, XHCITransfer *xfer,
XHCIEPContext *epctx);
static void xhci_bg_update(XHCIState *xhci, XHCIEPContext *epctx)
{
if (epctx->bg_updating) {
return;
}
DPRINTF("xhci_bg_update(%p, %p)\n", xhci, epctx);
assert(epctx->has_bg);
DPRINTF("xhci: fg=%d bg=%d\n", epctx->comp_xfer, epctx->next_bg);
epctx->bg_updating = 1;
while (epctx->transfers[epctx->comp_xfer].backgrounded &&
epctx->bg_transfers[epctx->next_bg].complete) {
XHCITransfer *fg = &epctx->transfers[epctx->comp_xfer];
XHCITransfer *bg = &epctx->bg_transfers[epctx->next_bg];
#if 0
DPRINTF("xhci: completing fg %d from bg %d.%d (stat: %d)\n",
epctx->comp_xfer, epctx->next_bg, bg->cur_pkt,
bg->usbxfer->iso_packet_desc[bg->cur_pkt].status
);
#endif
assert(epctx->type == ET_ISO_IN);
assert(bg->iso_xfer);
assert(bg->in_xfer);
uint8_t *p = bg->data + bg->cur_pkt * bg->pktsize;
#if 0
int len = bg->usbxfer->iso_packet_desc[bg->cur_pkt].actual_length;
fg->status = libusb_to_ccode(bg->usbxfer->iso_packet_desc[bg->cur_pkt].status);
#else
int len = 0;
FIXME();
#endif
fg->complete = 1;
fg->backgrounded = 0;
if (fg->status == CC_STALL_ERROR) {
xhci_stall_ep(fg);
}
xhci_xfer_data(fg, p, len, 1, 0, 1);
epctx->comp_xfer++;
if (epctx->comp_xfer == TD_QUEUE) {
epctx->comp_xfer = 0;
}
DPRINTF("next fg xfer: %d\n", epctx->comp_xfer);
bg->cur_pkt++;
if (bg->cur_pkt == bg->pkts) {
bg->complete = 0;
if (xhci_submit(xhci, bg, epctx) < 0) {
fprintf(stderr, "xhci: bg resubmit failed\n");
}
epctx->next_bg++;
if (epctx->next_bg == BG_XFERS) {
epctx->next_bg = 0;
}
DPRINTF("next bg xfer: %d\n", epctx->next_bg);
xhci_kick_ep(xhci, fg->slotid, fg->epid);
}
}
epctx->bg_updating = 0;
}
#if 0
static void xhci_xfer_cb(struct libusb_transfer *transfer)
{
XHCIState *xhci;
XHCITransfer *xfer;
xfer = (XHCITransfer *)transfer->user_data;
xhci = xfer->xhci;
DPRINTF("xhci_xfer_cb(slot=%d, ep=%d, status=%d)\n", xfer->slotid,
xfer->epid, transfer->status);
assert(xfer->slotid >= 1 && xfer->slotid <= MAXSLOTS);
assert(xfer->epid >= 1 && xfer->epid <= 31);
if (xfer->cancelled) {
DPRINTF("xhci: transfer cancelled, not reporting anything\n");
xfer->running = 0;
return;
}
XHCIEPContext *epctx;
XHCISlot *slot;
slot = &xhci->slots[xfer->slotid-1];
assert(slot->eps[xfer->epid-1]);
epctx = slot->eps[xfer->epid-1];
if (xfer->bg_xfer) {
DPRINTF("xhci: background transfer, updating\n");
xfer->complete = 1;
xfer->running = 0;
xhci_bg_update(xhci, epctx);
return;
}
if (xfer->iso_xfer) {
transfer->status = transfer->iso_packet_desc[0].status;
transfer->actual_length = transfer->iso_packet_desc[0].actual_length;
}
xfer->status = libusb_to_ccode(transfer->status);
xfer->complete = 1;
xfer->running = 0;
if (transfer->status == LIBUSB_TRANSFER_STALL)
xhci_stall_ep(xhci, epctx, xfer);
DPRINTF("xhci: transfer actual length = %d\n", transfer->actual_length);
if (xfer->in_xfer) {
if (xfer->epid == 1) {
xhci_xfer_data(xhci, xfer, xfer->data + 8,
transfer->actual_length, 1, 0, 1);
} else {
xhci_xfer_data(xhci, xfer, xfer->data,
transfer->actual_length, 1, 0, 1);
}
} else {
xhci_xfer_data(xhci, xfer, NULL, transfer->actual_length, 0, 0, 1);
}
xhci_kick_ep(xhci, xfer->slotid, xfer->epid);
}
static int xhci_hle_control(XHCIState *xhci, XHCITransfer *xfer,
uint8_t bmRequestType, uint8_t bRequest,
uint16_t wValue, uint16_t wIndex, uint16_t wLength)
{
uint16_t type_req = (bmRequestType << 8) | bRequest;
switch (type_req) {
case 0x0000 | USB_REQ_SET_CONFIGURATION:
DPRINTF("xhci: HLE switch configuration\n");
return xhci_switch_config(xhci, xfer->slotid, wValue) == 0;
case 0x0100 | USB_REQ_SET_INTERFACE:
DPRINTF("xhci: HLE set interface altsetting\n");
return xhci_set_iface_alt(xhci, xfer->slotid, wIndex, wValue) == 0;
case 0x0200 | USB_REQ_CLEAR_FEATURE:
if (wValue == 0) { // endpoint halt
DPRINTF("xhci: HLE clear halt\n");
return xhci_clear_halt(xhci, xfer->slotid, wIndex);
}
case 0x0000 | USB_REQ_SET_ADDRESS:
fprintf(stderr, "xhci: warn: illegal SET_ADDRESS request\n");
return 0;
default:
return 0;
}
}
#endif
static int xhci_setup_packet(XHCITransfer *xfer, XHCIPort *port, int ep)
{
usb_packet_setup(&xfer->packet,
xfer->in_xfer ? USB_TOKEN_IN : USB_TOKEN_OUT,
xfer->xhci->slots[xfer->slotid-1].devaddr,
ep & 0x7f);
usb_packet_addbuf(&xfer->packet, xfer->data, xfer->data_length);
DPRINTF("xhci: setup packet pid 0x%x addr %d ep %d\n",
xfer->packet.pid, xfer->packet.devaddr, xfer->packet.devep);
return 0;
}
static int xhci_complete_packet(XHCITransfer *xfer, int ret)
{
if (ret == USB_RET_ASYNC) {
xfer->running = 1;
xfer->complete = 0;
xfer->cancelled = 0;
return 0;
} else {
xfer->running = 0;
xfer->complete = 1;
}
if (ret >= 0) {
xfer->status = CC_SUCCESS;
xhci_xfer_data(xfer, xfer->data, ret, xfer->in_xfer, 0, 1);
return 0;
}
/* error */
switch (ret) {
case USB_RET_NODEV:
xfer->status = CC_USB_TRANSACTION_ERROR;
xhci_xfer_data(xfer, xfer->data, 0, xfer->in_xfer, 0, 1);
xhci_stall_ep(xfer);
break;
case USB_RET_STALL:
xfer->status = CC_STALL_ERROR;
xhci_xfer_data(xfer, xfer->data, 0, xfer->in_xfer, 0, 1);
xhci_stall_ep(xfer);
break;
default:
fprintf(stderr, "%s: FIXME: ret = %d\n", __FUNCTION__, ret);
FIXME();
}
return 0;
}
static int xhci_fire_ctl_transfer(XHCIState *xhci, XHCITransfer *xfer)
{
XHCITRB *trb_setup, *trb_status;
uint8_t bmRequestType, bRequest;
uint16_t wValue, wLength, wIndex;
XHCIPort *port;
USBDevice *dev;
int ret;
DPRINTF("xhci_fire_ctl_transfer(slot=%d)\n", xfer->slotid);
trb_setup = &xfer->trbs[0];
trb_status = &xfer->trbs[xfer->trb_count-1];
/* at most one Event Data TRB allowed after STATUS */
if (TRB_TYPE(*trb_status) == TR_EVDATA && xfer->trb_count > 2) {
trb_status--;
}
/* do some sanity checks */
if (TRB_TYPE(*trb_setup) != TR_SETUP) {
fprintf(stderr, "xhci: ep0 first TD not SETUP: %d\n",
TRB_TYPE(*trb_setup));
return -1;
}
if (TRB_TYPE(*trb_status) != TR_STATUS) {
fprintf(stderr, "xhci: ep0 last TD not STATUS: %d\n",
TRB_TYPE(*trb_status));
return -1;
}
if (!(trb_setup->control & TRB_TR_IDT)) {
fprintf(stderr, "xhci: Setup TRB doesn't have IDT set\n");
return -1;
}
if ((trb_setup->status & 0x1ffff) != 8) {
fprintf(stderr, "xhci: Setup TRB has bad length (%d)\n",
(trb_setup->status & 0x1ffff));
return -1;
}
bmRequestType = trb_setup->parameter;
bRequest = trb_setup->parameter >> 8;
wValue = trb_setup->parameter >> 16;
wIndex = trb_setup->parameter >> 32;
wLength = trb_setup->parameter >> 48;
if (xfer->data && xfer->data_alloced < wLength) {
xfer->data_alloced = 0;
g_free(xfer->data);
xfer->data = NULL;
}
if (!xfer->data) {
DPRINTF("xhci: alloc %d bytes data\n", wLength);
xfer->data = g_malloc(wLength+1);
xfer->data_alloced = wLength;
}
xfer->data_length = wLength;
port = &xhci->ports[xhci->slots[xfer->slotid-1].port-1];
dev = port->port.dev;
if (!dev) {
fprintf(stderr, "xhci: slot %d port %d has no device\n", xfer->slotid,
xhci->slots[xfer->slotid-1].port);
return -1;
}
xfer->in_xfer = bmRequestType & USB_DIR_IN;
xfer->iso_xfer = false;
xhci_setup_packet(xfer, port, 0);
if (!xfer->in_xfer) {
xhci_xfer_data(xfer, xfer->data, wLength, 0, 1, 0);
}
ret = usb_device_handle_control(dev, &xfer->packet,
(bmRequestType << 8) | bRequest,
wValue, wIndex, wLength, xfer->data);
xhci_complete_packet(xfer, ret);
if (!xfer->running) {
xhci_kick_ep(xhci, xfer->slotid, xfer->epid);
}
return 0;
}
static int xhci_submit(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx)
{
XHCIPort *port;
USBDevice *dev;
int ret;
DPRINTF("xhci_submit(slotid=%d,epid=%d)\n", xfer->slotid, xfer->epid);
uint8_t ep = xfer->epid>>1;
xfer->in_xfer = epctx->type>>2;
if (xfer->in_xfer) {
ep |= 0x80;
}
if (xfer->data && xfer->data_alloced < xfer->data_length) {
xfer->data_alloced = 0;
g_free(xfer->data);
xfer->data = NULL;
}
if (!xfer->data && xfer->data_length) {
DPRINTF("xhci: alloc %d bytes data\n", xfer->data_length);
xfer->data = g_malloc(xfer->data_length);
xfer->data_alloced = xfer->data_length;
}
if (epctx->type == ET_ISO_IN || epctx->type == ET_ISO_OUT) {
if (!xfer->bg_xfer) {
xfer->pkts = 1;
}
} else {
xfer->pkts = 0;
}
port = &xhci->ports[xhci->slots[xfer->slotid-1].port-1];
dev = port->port.dev;
if (!dev) {
fprintf(stderr, "xhci: slot %d port %d has no device\n", xfer->slotid,
xhci->slots[xfer->slotid-1].port);
return -1;
}
xhci_setup_packet(xfer, port, ep);
switch(epctx->type) {
case ET_INTR_OUT:
case ET_INTR_IN:
case ET_BULK_OUT:
case ET_BULK_IN:
break;
case ET_ISO_OUT:
case ET_ISO_IN:
FIXME();
break;
default:
fprintf(stderr, "xhci: unknown or unhandled EP type %d (ep %02x)\n",
epctx->type, ep);
return -1;
}
if (!xfer->in_xfer) {
xhci_xfer_data(xfer, xfer->data, xfer->data_length, 0, 1, 0);
}
ret = usb_handle_packet(dev, &xfer->packet);
xhci_complete_packet(xfer, ret);
if (!xfer->running) {
xhci_kick_ep(xhci, xfer->slotid, xfer->epid);
}
return 0;
}
static int xhci_fire_transfer(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx)
{
int i;
unsigned int length = 0;
XHCITRB *trb;
DPRINTF("xhci_fire_transfer(slotid=%d,epid=%d)\n", xfer->slotid, xfer->epid);
for (i = 0; i < xfer->trb_count; i++) {
trb = &xfer->trbs[i];
if (TRB_TYPE(*trb) == TR_NORMAL || TRB_TYPE(*trb) == TR_ISOCH) {
length += trb->status & 0x1ffff;
}
}
DPRINTF("xhci: total TD length=%d\n", length);
if (!epctx->has_bg) {
xfer->data_length = length;
xfer->backgrounded = 0;
return xhci_submit(xhci, xfer, epctx);
} else {
if (!epctx->bg_running) {
for (i = 0; i < BG_XFERS; i++) {
XHCITransfer *t = &epctx->bg_transfers[i];
t->xhci = xhci;
t->epid = xfer->epid;
t->slotid = xfer->slotid;
t->pkts = BG_PKTS;
t->pktsize = epctx->max_psize;
t->data_length = t->pkts * t->pktsize;
t->bg_xfer = 1;
if (xhci_submit(xhci, t, epctx) < 0) {
fprintf(stderr, "xhci: bg submit failed\n");
return -1;
}
}
epctx->bg_running = 1;
}
xfer->backgrounded = 1;
xhci_bg_update(xhci, epctx);
return 0;
}
}
static void xhci_kick_ep(XHCIState *xhci, unsigned int slotid, unsigned int epid)
{
XHCIEPContext *epctx;
int length;
int i;
assert(slotid >= 1 && slotid <= MAXSLOTS);
assert(epid >= 1 && epid <= 31);
DPRINTF("xhci_kick_ep(%d, %d)\n", slotid, epid);
if (!xhci->slots[slotid-1].enabled) {
fprintf(stderr, "xhci: xhci_kick_ep for disabled slot %d\n", slotid);
return;
}
epctx = xhci->slots[slotid-1].eps[epid-1];
if (!epctx) {
fprintf(stderr, "xhci: xhci_kick_ep for disabled endpoint %d,%d\n",
epid, slotid);
return;
}
if (epctx->state == EP_HALTED) {
DPRINTF("xhci: ep halted, not running schedule\n");
return;
}
xhci_set_ep_state(xhci, epctx, EP_RUNNING);
while (1) {
XHCITransfer *xfer = &epctx->transfers[epctx->next_xfer];
if (xfer->running || xfer->backgrounded) {
DPRINTF("xhci: ep is busy\n");
break;
}
length = xhci_ring_chain_length(xhci, &epctx->ring);
if (length < 0) {
DPRINTF("xhci: incomplete TD (%d TRBs)\n", -length);
break;
} else if (length == 0) {
break;
}
DPRINTF("xhci: fetching %d-TRB TD\n", length);
if (xfer->trbs && xfer->trb_alloced < length) {
xfer->trb_count = 0;
xfer->trb_alloced = 0;
g_free(xfer->trbs);
xfer->trbs = NULL;
}
if (!xfer->trbs) {
xfer->trbs = g_malloc(sizeof(XHCITRB) * length);
xfer->trb_alloced = length;
}
xfer->trb_count = length;
for (i = 0; i < length; i++) {
assert(xhci_ring_fetch(xhci, &epctx->ring, &xfer->trbs[i], NULL));
}
xfer->xhci = xhci;
xfer->epid = epid;
xfer->slotid = slotid;
if (epid == 1) {
if (xhci_fire_ctl_transfer(xhci, xfer) >= 0) {
epctx->next_xfer = (epctx->next_xfer + 1) % TD_QUEUE;
} else {
fprintf(stderr, "xhci: error firing CTL transfer\n");
}
} else {
if (xhci_fire_transfer(xhci, xfer, epctx) >= 0) {
epctx->next_xfer = (epctx->next_xfer + 1) % TD_QUEUE;
} else {
fprintf(stderr, "xhci: error firing data transfer\n");
}
}
/*
* Qemu usb can't handle multiple in-flight xfers.
* Also xfers might be finished here already,
* possibly with an error. Stop here for now.
*/
break;
}
}
static TRBCCode xhci_enable_slot(XHCIState *xhci, unsigned int slotid)
{
assert(slotid >= 1 && slotid <= MAXSLOTS);
DPRINTF("xhci_enable_slot(%d)\n", slotid);
xhci->slots[slotid-1].enabled = 1;
xhci->slots[slotid-1].port = 0;
memset(xhci->slots[slotid-1].eps, 0, sizeof(XHCIEPContext*)*31);
return CC_SUCCESS;
}
static TRBCCode xhci_disable_slot(XHCIState *xhci, unsigned int slotid)
{
int i;
assert(slotid >= 1 && slotid <= MAXSLOTS);
DPRINTF("xhci_disable_slot(%d)\n", slotid);
for (i = 1; i <= 31; i++) {
if (xhci->slots[slotid-1].eps[i-1]) {
xhci_disable_ep(xhci, slotid, i);
}
}
xhci->slots[slotid-1].enabled = 0;
return CC_SUCCESS;
}
static TRBCCode xhci_address_slot(XHCIState *xhci, unsigned int slotid,
uint64_t pictx, bool bsr)
{
XHCISlot *slot;
USBDevice *dev;
target_phys_addr_t ictx, octx, dcbaap;
uint64_t poctx;
uint32_t ictl_ctx[2];
uint32_t slot_ctx[4];
uint32_t ep0_ctx[5];
unsigned int port;
int i;
TRBCCode res;
assert(slotid >= 1 && slotid <= MAXSLOTS);
DPRINTF("xhci_address_slot(%d)\n", slotid);
dcbaap = xhci_addr64(xhci->dcbaap_low, xhci->dcbaap_high);
cpu_physical_memory_read(dcbaap + 8*slotid,
(uint8_t *) &poctx, sizeof(poctx));
ictx = xhci_mask64(pictx);
octx = xhci_mask64(le64_to_cpu(poctx));
DPRINTF("xhci: input context at "TARGET_FMT_plx"\n", ictx);
DPRINTF("xhci: output context at "TARGET_FMT_plx"\n", octx);
cpu_physical_memory_read(ictx, (uint8_t *) ictl_ctx, sizeof(ictl_ctx));
if (ictl_ctx[0] != 0x0 || ictl_ctx[1] != 0x3) {
fprintf(stderr, "xhci: invalid input context control %08x %08x\n",
ictl_ctx[0], ictl_ctx[1]);
return CC_TRB_ERROR;
}
cpu_physical_memory_read(ictx+32, (uint8_t *) slot_ctx, sizeof(slot_ctx));
cpu_physical_memory_read(ictx+64, (uint8_t *) ep0_ctx, sizeof(ep0_ctx));
DPRINTF("xhci: input slot context: %08x %08x %08x %08x\n",
slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
DPRINTF("xhci: input ep0 context: %08x %08x %08x %08x %08x\n",
ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]);
port = (slot_ctx[1]>>16) & 0xFF;
dev = xhci->ports[port-1].port.dev;
if (port < 1 || port > MAXPORTS) {
fprintf(stderr, "xhci: bad port %d\n", port);
return CC_TRB_ERROR;
} else if (!dev) {
fprintf(stderr, "xhci: port %d not connected\n", port);
return CC_USB_TRANSACTION_ERROR;
}
for (i = 0; i < MAXSLOTS; i++) {
if (xhci->slots[i].port == port) {
fprintf(stderr, "xhci: port %d already assigned to slot %d\n",
port, i+1);
return CC_TRB_ERROR;
}
}
slot = &xhci->slots[slotid-1];
slot->port = port;
slot->ctx = octx;
if (bsr) {
slot_ctx[3] = SLOT_DEFAULT << SLOT_STATE_SHIFT;
} else {
slot->devaddr = xhci->devaddr++;
slot_ctx[3] = (SLOT_ADDRESSED << SLOT_STATE_SHIFT) | slot->devaddr;
DPRINTF("xhci: device address is %d\n", slot->devaddr);
usb_device_handle_control(dev, NULL,
DeviceOutRequest | USB_REQ_SET_ADDRESS,
slot->devaddr, 0, 0, NULL);
}
res = xhci_enable_ep(xhci, slotid, 1, octx+32, ep0_ctx);
DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
DPRINTF("xhci: output ep0 context: %08x %08x %08x %08x %08x\n",
ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]);
cpu_physical_memory_write(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
cpu_physical_memory_write(octx+32, (uint8_t *) ep0_ctx, sizeof(ep0_ctx));
return res;
}
static TRBCCode xhci_configure_slot(XHCIState *xhci, unsigned int slotid,
uint64_t pictx, bool dc)
{
target_phys_addr_t ictx, octx;
uint32_t ictl_ctx[2];
uint32_t slot_ctx[4];
uint32_t islot_ctx[4];
uint32_t ep_ctx[5];
int i;
TRBCCode res;
assert(slotid >= 1 && slotid <= MAXSLOTS);
DPRINTF("xhci_configure_slot(%d)\n", slotid);
ictx = xhci_mask64(pictx);
octx = xhci->slots[slotid-1].ctx;
DPRINTF("xhci: input context at "TARGET_FMT_plx"\n", ictx);
DPRINTF("xhci: output context at "TARGET_FMT_plx"\n", octx);
if (dc) {
for (i = 2; i <= 31; i++) {
if (xhci->slots[slotid-1].eps[i-1]) {
xhci_disable_ep(xhci, slotid, i);
}
}
cpu_physical_memory_read(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT);
slot_ctx[3] |= SLOT_ADDRESSED << SLOT_STATE_SHIFT;
DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
cpu_physical_memory_write(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
return CC_SUCCESS;
}
cpu_physical_memory_read(ictx, (uint8_t *) ictl_ctx, sizeof(ictl_ctx));
if ((ictl_ctx[0] & 0x3) != 0x0 || (ictl_ctx[1] & 0x3) != 0x1) {
fprintf(stderr, "xhci: invalid input context control %08x %08x\n",
ictl_ctx[0], ictl_ctx[1]);
return CC_TRB_ERROR;
}
cpu_physical_memory_read(ictx+32, (uint8_t *) islot_ctx, sizeof(islot_ctx));
cpu_physical_memory_read(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
if (SLOT_STATE(slot_ctx[3]) < SLOT_ADDRESSED) {
fprintf(stderr, "xhci: invalid slot state %08x\n", slot_ctx[3]);
return CC_CONTEXT_STATE_ERROR;
}
for (i = 2; i <= 31; i++) {
if (ictl_ctx[0] & (1<<i)) {
xhci_disable_ep(xhci, slotid, i);
}
if (ictl_ctx[1] & (1<<i)) {
cpu_physical_memory_read(ictx+32+(32*i),
(uint8_t *) ep_ctx, sizeof(ep_ctx));
DPRINTF("xhci: input ep%d.%d context: %08x %08x %08x %08x %08x\n",
i/2, i%2, ep_ctx[0], ep_ctx[1], ep_ctx[2],
ep_ctx[3], ep_ctx[4]);
xhci_disable_ep(xhci, slotid, i);
res = xhci_enable_ep(xhci, slotid, i, octx+(32*i), ep_ctx);
if (res != CC_SUCCESS) {
return res;
}
DPRINTF("xhci: output ep%d.%d context: %08x %08x %08x %08x %08x\n",
i/2, i%2, ep_ctx[0], ep_ctx[1], ep_ctx[2],
ep_ctx[3], ep_ctx[4]);
cpu_physical_memory_write(octx+(32*i),
(uint8_t *) ep_ctx, sizeof(ep_ctx));
}
}
slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT);
slot_ctx[3] |= SLOT_CONFIGURED << SLOT_STATE_SHIFT;
slot_ctx[0] &= ~(SLOT_CONTEXT_ENTRIES_MASK << SLOT_CONTEXT_ENTRIES_SHIFT);
slot_ctx[0] |= islot_ctx[0] & (SLOT_CONTEXT_ENTRIES_MASK <<
SLOT_CONTEXT_ENTRIES_SHIFT);
DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
cpu_physical_memory_write(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
return CC_SUCCESS;
}
static TRBCCode xhci_evaluate_slot(XHCIState *xhci, unsigned int slotid,
uint64_t pictx)
{
target_phys_addr_t ictx, octx;
uint32_t ictl_ctx[2];
uint32_t iep0_ctx[5];
uint32_t ep0_ctx[5];
uint32_t islot_ctx[4];
uint32_t slot_ctx[4];
assert(slotid >= 1 && slotid <= MAXSLOTS);
DPRINTF("xhci_evaluate_slot(%d)\n", slotid);
ictx = xhci_mask64(pictx);
octx = xhci->slots[slotid-1].ctx;
DPRINTF("xhci: input context at "TARGET_FMT_plx"\n", ictx);
DPRINTF("xhci: output context at "TARGET_FMT_plx"\n", octx);
cpu_physical_memory_read(ictx, (uint8_t *) ictl_ctx, sizeof(ictl_ctx));
if (ictl_ctx[0] != 0x0 || ictl_ctx[1] & ~0x3) {
fprintf(stderr, "xhci: invalid input context control %08x %08x\n",
ictl_ctx[0], ictl_ctx[1]);
return CC_TRB_ERROR;
}
if (ictl_ctx[1] & 0x1) {
cpu_physical_memory_read(ictx+32,
(uint8_t *) islot_ctx, sizeof(islot_ctx));
DPRINTF("xhci: input slot context: %08x %08x %08x %08x\n",
islot_ctx[0], islot_ctx[1], islot_ctx[2], islot_ctx[3]);
cpu_physical_memory_read(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
slot_ctx[1] &= ~0xFFFF; /* max exit latency */
slot_ctx[1] |= islot_ctx[1] & 0xFFFF;
slot_ctx[2] &= ~0xFF00000; /* interrupter target */
slot_ctx[2] |= islot_ctx[2] & 0xFF000000;
DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
cpu_physical_memory_write(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
}
if (ictl_ctx[1] & 0x2) {
cpu_physical_memory_read(ictx+64,
(uint8_t *) iep0_ctx, sizeof(iep0_ctx));
DPRINTF("xhci: input ep0 context: %08x %08x %08x %08x %08x\n",
iep0_ctx[0], iep0_ctx[1], iep0_ctx[2],
iep0_ctx[3], iep0_ctx[4]);
cpu_physical_memory_read(octx+32, (uint8_t *) ep0_ctx, sizeof(ep0_ctx));
ep0_ctx[1] &= ~0xFFFF0000; /* max packet size*/
ep0_ctx[1] |= iep0_ctx[1] & 0xFFFF0000;
DPRINTF("xhci: output ep0 context: %08x %08x %08x %08x %08x\n",
ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]);
cpu_physical_memory_write(octx+32,
(uint8_t *) ep0_ctx, sizeof(ep0_ctx));
}
return CC_SUCCESS;
}
static TRBCCode xhci_reset_slot(XHCIState *xhci, unsigned int slotid)
{
uint32_t slot_ctx[4];
target_phys_addr_t octx;
int i;
assert(slotid >= 1 && slotid <= MAXSLOTS);
DPRINTF("xhci_reset_slot(%d)\n", slotid);
octx = xhci->slots[slotid-1].ctx;
DPRINTF("xhci: output context at "TARGET_FMT_plx"\n", octx);
for (i = 2; i <= 31; i++) {
if (xhci->slots[slotid-1].eps[i-1]) {
xhci_disable_ep(xhci, slotid, i);
}
}
cpu_physical_memory_read(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT);
slot_ctx[3] |= SLOT_DEFAULT << SLOT_STATE_SHIFT;
DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
cpu_physical_memory_write(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
return CC_SUCCESS;
}
static unsigned int xhci_get_slot(XHCIState *xhci, XHCIEvent *event, XHCITRB *trb)
{
unsigned int slotid;
slotid = (trb->control >> TRB_CR_SLOTID_SHIFT) & TRB_CR_SLOTID_MASK;
if (slotid < 1 || slotid > MAXSLOTS) {
fprintf(stderr, "xhci: bad slot id %d\n", slotid);
event->ccode = CC_TRB_ERROR;
return 0;
} else if (!xhci->slots[slotid-1].enabled) {
fprintf(stderr, "xhci: slot id %d not enabled\n", slotid);
event->ccode = CC_SLOT_NOT_ENABLED_ERROR;
return 0;
}
return slotid;
}
static TRBCCode xhci_get_port_bandwidth(XHCIState *xhci, uint64_t pctx)
{
target_phys_addr_t ctx;
uint8_t bw_ctx[MAXPORTS+1];
DPRINTF("xhci_get_port_bandwidth()\n");
ctx = xhci_mask64(pctx);
DPRINTF("xhci: bandwidth context at "TARGET_FMT_plx"\n", ctx);
/* TODO: actually implement real values here */
bw_ctx[0] = 0;
memset(&bw_ctx[1], 80, MAXPORTS); /* 80% */
cpu_physical_memory_write(ctx, bw_ctx, sizeof(bw_ctx));
return CC_SUCCESS;
}
static uint32_t rotl(uint32_t v, unsigned count)
{
count &= 31;
return (v << count) | (v >> (32 - count));
}
static uint32_t xhci_nec_challenge(uint32_t hi, uint32_t lo)
{
uint32_t val;
val = rotl(lo - 0x49434878, 32 - ((hi>>8) & 0x1F));
val += rotl(lo + 0x49434878, hi & 0x1F);
val -= rotl(hi ^ 0x49434878, (lo >> 16) & 0x1F);
return ~val;
}
static void xhci_via_challenge(uint64_t addr)
{
uint32_t buf[8];
uint32_t obuf[8];
target_phys_addr_t paddr = xhci_mask64(addr);
cpu_physical_memory_read(paddr, (uint8_t *) &buf, 32);
memcpy(obuf, buf, sizeof(obuf));
if ((buf[0] & 0xff) == 2) {
obuf[0] = 0x49932000 + 0x54dc200 * buf[2] + 0x7429b578 * buf[3];
obuf[0] |= (buf[2] * buf[3]) & 0xff;
obuf[1] = 0x0132bb37 + 0xe89 * buf[2] + 0xf09 * buf[3];
obuf[2] = 0x0066c2e9 + 0x2091 * buf[2] + 0x19bd * buf[3];
obuf[3] = 0xd5281342 + 0x2cc9691 * buf[2] + 0x2367662 * buf[3];
obuf[4] = 0x0123c75c + 0x1595 * buf[2] + 0x19ec * buf[3];
obuf[5] = 0x00f695de + 0x26fd * buf[2] + 0x3e9 * buf[3];
obuf[6] = obuf[2] ^ obuf[3] ^ 0x29472956;
obuf[7] = obuf[2] ^ obuf[3] ^ 0x65866593;
}
cpu_physical_memory_write(paddr, (uint8_t *) &obuf, 32);
}
static void xhci_process_commands(XHCIState *xhci)
{
XHCITRB trb;
TRBType type;
XHCIEvent event = {ER_COMMAND_COMPLETE, CC_SUCCESS};
target_phys_addr_t addr;
unsigned int i, slotid = 0;
DPRINTF("xhci_process_commands()\n");
if (!xhci_running(xhci)) {
DPRINTF("xhci_process_commands() called while xHC stopped or paused\n");
return;
}
xhci->crcr_low |= CRCR_CRR;
while ((type = xhci_ring_fetch(xhci, &xhci->cmd_ring, &trb, &addr))) {
event.ptr = addr;
switch (type) {
case CR_ENABLE_SLOT:
for (i = 0; i < MAXSLOTS; i++) {
if (!xhci->slots[i].enabled) {
break;
}
}
if (i >= MAXSLOTS) {
fprintf(stderr, "xhci: no device slots available\n");
event.ccode = CC_NO_SLOTS_ERROR;
} else {
slotid = i+1;
event.ccode = xhci_enable_slot(xhci, slotid);
}
break;
case CR_DISABLE_SLOT:
slotid = xhci_get_slot(xhci, &event, &trb);
if (slotid) {
event.ccode = xhci_disable_slot(xhci, slotid);
}
break;
case CR_ADDRESS_DEVICE:
slotid = xhci_get_slot(xhci, &event, &trb);
if (slotid) {
event.ccode = xhci_address_slot(xhci, slotid, trb.parameter,
trb.control & TRB_CR_BSR);
}
break;
case CR_CONFIGURE_ENDPOINT:
slotid = xhci_get_slot(xhci, &event, &trb);
if (slotid) {
event.ccode = xhci_configure_slot(xhci, slotid, trb.parameter,
trb.control & TRB_CR_DC);
}
break;
case CR_EVALUATE_CONTEXT:
slotid = xhci_get_slot(xhci, &event, &trb);
if (slotid) {
event.ccode = xhci_evaluate_slot(xhci, slotid, trb.parameter);
}
break;
case CR_STOP_ENDPOINT:
slotid = xhci_get_slot(xhci, &event, &trb);
if (slotid) {
unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT)
& TRB_CR_EPID_MASK;
event.ccode = xhci_stop_ep(xhci, slotid, epid);
}
break;
case CR_RESET_ENDPOINT:
slotid = xhci_get_slot(xhci, &event, &trb);
if (slotid) {
unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT)
& TRB_CR_EPID_MASK;
event.ccode = xhci_reset_ep(xhci, slotid, epid);
}
break;
case CR_SET_TR_DEQUEUE:
slotid = xhci_get_slot(xhci, &event, &trb);
if (slotid) {
unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT)
& TRB_CR_EPID_MASK;
event.ccode = xhci_set_ep_dequeue(xhci, slotid, epid,
trb.parameter);
}
break;
case CR_RESET_DEVICE:
slotid = xhci_get_slot(xhci, &event, &trb);
if (slotid) {
event.ccode = xhci_reset_slot(xhci, slotid);
}
break;
case CR_GET_PORT_BANDWIDTH:
event.ccode = xhci_get_port_bandwidth(xhci, trb.parameter);
break;
case CR_VENDOR_VIA_CHALLENGE_RESPONSE:
xhci_via_challenge(trb.parameter);
break;
case CR_VENDOR_NEC_FIRMWARE_REVISION:
event.type = 48; /* NEC reply */
event.length = 0x3025;
break;
case CR_VENDOR_NEC_CHALLENGE_RESPONSE:
{
uint32_t chi = trb.parameter >> 32;
uint32_t clo = trb.parameter;
uint32_t val = xhci_nec_challenge(chi, clo);
event.length = val & 0xFFFF;
event.epid = val >> 16;
slotid = val >> 24;
event.type = 48; /* NEC reply */
}
break;
default:
fprintf(stderr, "xhci: unimplemented command %d\n", type);
event.ccode = CC_TRB_ERROR;
break;
}
event.slotid = slotid;
xhci_event(xhci, &event);
}
}
static void xhci_update_port(XHCIState *xhci, XHCIPort *port, int is_detach)
{
int nr = port->port.index + 1;
port->portsc = PORTSC_PP;
if (port->port.dev && !is_detach) {
port->portsc |= PORTSC_CCS;
switch (port->port.dev->speed) {
case USB_SPEED_LOW:
port->portsc |= PORTSC_SPEED_LOW;
break;
case USB_SPEED_FULL:
port->portsc |= PORTSC_SPEED_FULL;
break;
case USB_SPEED_HIGH:
port->portsc |= PORTSC_SPEED_HIGH;
break;
}
}
if (xhci_running(xhci)) {
port->portsc |= PORTSC_CSC;
XHCIEvent ev = { ER_PORT_STATUS_CHANGE, CC_SUCCESS, nr << 24};
xhci_event(xhci, &ev);
DPRINTF("xhci: port change event for port %d\n", nr);
}
}
static void xhci_reset(void *opaque)
{
XHCIState *xhci = opaque;
int i;
DPRINTF("xhci: full reset\n");
if (!(xhci->usbsts & USBSTS_HCH)) {
fprintf(stderr, "xhci: reset while running!\n");
}
xhci->usbcmd = 0;
xhci->usbsts = USBSTS_HCH;
xhci->dnctrl = 0;
xhci->crcr_low = 0;
xhci->crcr_high = 0;
xhci->dcbaap_low = 0;
xhci->dcbaap_high = 0;
xhci->config = 0;
xhci->devaddr = 2;
for (i = 0; i < MAXSLOTS; i++) {
xhci_disable_slot(xhci, i+1);
}
for (i = 0; i < MAXPORTS; i++) {
xhci_update_port(xhci, xhci->ports + i, 0);
}
xhci->mfindex = 0;
xhci->iman = 0;
xhci->imod = 0;
xhci->erstsz = 0;
xhci->erstba_low = 0;
xhci->erstba_high = 0;
xhci->erdp_low = 0;
xhci->erdp_high = 0;
xhci->er_ep_idx = 0;
xhci->er_pcs = 1;
xhci->er_full = 0;
xhci->ev_buffer_put = 0;
xhci->ev_buffer_get = 0;
}
static uint32_t xhci_cap_read(XHCIState *xhci, uint32_t reg)
{
DPRINTF("xhci_cap_read(0x%x)\n", reg);
switch (reg) {
case 0x00: /* HCIVERSION, CAPLENGTH */
return 0x01000000 | LEN_CAP;
case 0x04: /* HCSPARAMS 1 */
return (MAXPORTS<<24) | (MAXINTRS<<8) | MAXSLOTS;
case 0x08: /* HCSPARAMS 2 */
return 0x0000000f;
case 0x0c: /* HCSPARAMS 3 */
return 0x00000000;
case 0x10: /* HCCPARAMS */
#if TARGET_PHYS_ADDR_BITS > 32
return 0x00081001;
#else
return 0x00081000;
#endif
case 0x14: /* DBOFF */
return OFF_DOORBELL;
case 0x18: /* RTSOFF */
return OFF_RUNTIME;
/* extended capabilities */
case 0x20: /* Supported Protocol:00 */
#if USB3_PORTS > 0
return 0x02000402; /* USB 2.0 */
#else
return 0x02000002; /* USB 2.0 */
#endif
case 0x24: /* Supported Protocol:04 */
return 0x20425455; /* "USB " */
case 0x28: /* Supported Protocol:08 */
return 0x00000001 | (USB2_PORTS<<8);
case 0x2c: /* Supported Protocol:0c */
return 0x00000000; /* reserved */
#if USB3_PORTS > 0
case 0x30: /* Supported Protocol:00 */
return 0x03000002; /* USB 3.0 */
case 0x34: /* Supported Protocol:04 */
return 0x20425455; /* "USB " */
case 0x38: /* Supported Protocol:08 */
return 0x00000000 | (USB2_PORTS+1) | (USB3_PORTS<<8);
case 0x3c: /* Supported Protocol:0c */
return 0x00000000; /* reserved */
#endif
default:
fprintf(stderr, "xhci_cap_read: reg %d unimplemented\n", reg);
}
return 0;
}
static uint32_t xhci_port_read(XHCIState *xhci, uint32_t reg)
{
uint32_t port = reg >> 4;
if (port >= MAXPORTS) {
fprintf(stderr, "xhci_port_read: port %d out of bounds\n", port);
return 0;
}
switch (reg & 0xf) {
case 0x00: /* PORTSC */
return xhci->ports[port].portsc;
case 0x04: /* PORTPMSC */
case 0x08: /* PORTLI */
return 0;
case 0x0c: /* reserved */
default:
fprintf(stderr, "xhci_port_read (port %d): reg 0x%x unimplemented\n",
port, reg);
return 0;
}
}
static void xhci_port_write(XHCIState *xhci, uint32_t reg, uint32_t val)
{
uint32_t port = reg >> 4;
uint32_t portsc;
if (port >= MAXPORTS) {
fprintf(stderr, "xhci_port_read: port %d out of bounds\n", port);
return;
}
switch (reg & 0xf) {
case 0x00: /* PORTSC */
portsc = xhci->ports[port].portsc;
/* write-1-to-clear bits*/
portsc &= ~(val & (PORTSC_CSC|PORTSC_PEC|PORTSC_WRC|PORTSC_OCC|
PORTSC_PRC|PORTSC_PLC|PORTSC_CEC));
if (val & PORTSC_LWS) {
/* overwrite PLS only when LWS=1 */
portsc &= ~(PORTSC_PLS_MASK << PORTSC_PLS_SHIFT);
portsc |= val & (PORTSC_PLS_MASK << PORTSC_PLS_SHIFT);
}
/* read/write bits */
portsc &= ~(PORTSC_PP|PORTSC_WCE|PORTSC_WDE|PORTSC_WOE);
portsc |= (val & (PORTSC_PP|PORTSC_WCE|PORTSC_WDE|PORTSC_WOE));
/* write-1-to-start bits */
if (val & PORTSC_PR) {
DPRINTF("xhci: port %d reset\n", port);
if (xhci->ports[port].port.dev) {
usb_send_msg(xhci->ports[port].port.dev, USB_MSG_RESET);
}
portsc |= PORTSC_PRC | PORTSC_PED;
}
xhci->ports[port].portsc = portsc;
break;
case 0x04: /* PORTPMSC */
case 0x08: /* PORTLI */
default:
fprintf(stderr, "xhci_port_write (port %d): reg 0x%x unimplemented\n",
port, reg);
}
}
static uint32_t xhci_oper_read(XHCIState *xhci, uint32_t reg)
{
DPRINTF("xhci_oper_read(0x%x)\n", reg);
if (reg >= 0x400) {
return xhci_port_read(xhci, reg - 0x400);
}
switch (reg) {
case 0x00: /* USBCMD */
return xhci->usbcmd;
case 0x04: /* USBSTS */
return xhci->usbsts;
case 0x08: /* PAGESIZE */
return 1; /* 4KiB */
case 0x14: /* DNCTRL */
return xhci->dnctrl;
case 0x18: /* CRCR low */
return xhci->crcr_low & ~0xe;
case 0x1c: /* CRCR high */
return xhci->crcr_high;
case 0x30: /* DCBAAP low */
return xhci->dcbaap_low;
case 0x34: /* DCBAAP high */
return xhci->dcbaap_high;
case 0x38: /* CONFIG */
return xhci->config;
default:
fprintf(stderr, "xhci_oper_read: reg 0x%x unimplemented\n", reg);
}
return 0;
}
static void xhci_oper_write(XHCIState *xhci, uint32_t reg, uint32_t val)
{
DPRINTF("xhci_oper_write(0x%x, 0x%08x)\n", reg, val);
if (reg >= 0x400) {
xhci_port_write(xhci, reg - 0x400, val);
return;
}
switch (reg) {
case 0x00: /* USBCMD */
if ((val & USBCMD_RS) && !(xhci->usbcmd & USBCMD_RS)) {
xhci_run(xhci);
} else if (!(val & USBCMD_RS) && (xhci->usbcmd & USBCMD_RS)) {
xhci_stop(xhci);
}
xhci->usbcmd = val & 0xc0f;
if (val & USBCMD_HCRST) {
xhci_reset(xhci);
}
xhci_irq_update(xhci);
break;
case 0x04: /* USBSTS */
/* these bits are write-1-to-clear */
xhci->usbsts &= ~(val & (USBSTS_HSE|USBSTS_EINT|USBSTS_PCD|USBSTS_SRE));
xhci_irq_update(xhci);
break;
case 0x14: /* DNCTRL */
xhci->dnctrl = val & 0xffff;
break;
case 0x18: /* CRCR low */
xhci->crcr_low = (val & 0xffffffcf) | (xhci->crcr_low & CRCR_CRR);
break;
case 0x1c: /* CRCR high */
xhci->crcr_high = val;
if (xhci->crcr_low & (CRCR_CA|CRCR_CS) && (xhci->crcr_low & CRCR_CRR)) {
XHCIEvent event = {ER_COMMAND_COMPLETE, CC_COMMAND_RING_STOPPED};
xhci->crcr_low &= ~CRCR_CRR;
xhci_event(xhci, &event);
DPRINTF("xhci: command ring stopped (CRCR=%08x)\n", xhci->crcr_low);
} else {
target_phys_addr_t base = xhci_addr64(xhci->crcr_low & ~0x3f, val);
xhci_ring_init(xhci, &xhci->cmd_ring, base);
}
xhci->crcr_low &= ~(CRCR_CA | CRCR_CS);
break;
case 0x30: /* DCBAAP low */
xhci->dcbaap_low = val & 0xffffffc0;
break;
case 0x34: /* DCBAAP high */
xhci->dcbaap_high = val;
break;
case 0x38: /* CONFIG */
xhci->config = val & 0xff;
break;
default:
fprintf(stderr, "xhci_oper_write: reg 0x%x unimplemented\n", reg);
}
}
static uint32_t xhci_runtime_read(XHCIState *xhci, uint32_t reg)
{
DPRINTF("xhci_runtime_read(0x%x)\n", reg);
switch (reg) {
case 0x00: /* MFINDEX */
fprintf(stderr, "xhci_runtime_read: MFINDEX not yet implemented\n");
return xhci->mfindex;
case 0x20: /* IMAN */
return xhci->iman;
case 0x24: /* IMOD */
return xhci->imod;
case 0x28: /* ERSTSZ */
return xhci->erstsz;
case 0x30: /* ERSTBA low */
return xhci->erstba_low;
case 0x34: /* ERSTBA high */
return xhci->erstba_high;
case 0x38: /* ERDP low */
return xhci->erdp_low;
case 0x3c: /* ERDP high */
return xhci->erdp_high;
default:
fprintf(stderr, "xhci_runtime_read: reg 0x%x unimplemented\n", reg);
}
return 0;
}
static void xhci_runtime_write(XHCIState *xhci, uint32_t reg, uint32_t val)
{
DPRINTF("xhci_runtime_write(0x%x, 0x%08x)\n", reg, val);
switch (reg) {
case 0x20: /* IMAN */
if (val & IMAN_IP) {
xhci->iman &= ~IMAN_IP;
}
xhci->iman &= ~IMAN_IE;
xhci->iman |= val & IMAN_IE;
xhci_irq_update(xhci);
break;
case 0x24: /* IMOD */
xhci->imod = val;
break;
case 0x28: /* ERSTSZ */
xhci->erstsz = val & 0xffff;
break;
case 0x30: /* ERSTBA low */
/* XXX NEC driver bug: it doesn't align this to 64 bytes
xhci->erstba_low = val & 0xffffffc0; */
xhci->erstba_low = val & 0xfffffff0;
break;
case 0x34: /* ERSTBA high */
xhci->erstba_high = val;
xhci_er_reset(xhci);
break;
case 0x38: /* ERDP low */
if (val & ERDP_EHB) {
xhci->erdp_low &= ~ERDP_EHB;
}
xhci->erdp_low = (val & ~ERDP_EHB) | (xhci->erdp_low & ERDP_EHB);
break;
case 0x3c: /* ERDP high */
xhci->erdp_high = val;
xhci_events_update(xhci);
break;
default:
fprintf(stderr, "xhci_oper_write: reg 0x%x unimplemented\n", reg);
}
}
static uint32_t xhci_doorbell_read(XHCIState *xhci, uint32_t reg)
{
DPRINTF("xhci_doorbell_read(0x%x)\n", reg);
/* doorbells always read as 0 */
return 0;
}
static void xhci_doorbell_write(XHCIState *xhci, uint32_t reg, uint32_t val)
{
DPRINTF("xhci_doorbell_write(0x%x, 0x%08x)\n", reg, val);
if (!xhci_running(xhci)) {
fprintf(stderr, "xhci: wrote doorbell while xHC stopped or paused\n");
return;
}
reg >>= 2;
if (reg == 0) {
if (val == 0) {
xhci_process_commands(xhci);
} else {
fprintf(stderr, "xhci: bad doorbell 0 write: 0x%x\n", val);
}
} else {
if (reg > MAXSLOTS) {
fprintf(stderr, "xhci: bad doorbell %d\n", reg);
} else if (val > 31) {
fprintf(stderr, "xhci: bad doorbell %d write: 0x%x\n", reg, val);
} else {
xhci_kick_ep(xhci, reg, val);
}
}
}
static uint64_t xhci_mem_read(void *ptr, target_phys_addr_t addr,
unsigned size)
{
XHCIState *xhci = ptr;
/* Only aligned reads are allowed on xHCI */
if (addr & 3) {
fprintf(stderr, "xhci_mem_read: Mis-aligned read\n");
return 0;
}
if (addr < LEN_CAP) {
return xhci_cap_read(xhci, addr);
} else if (addr >= OFF_OPER && addr < (OFF_OPER + LEN_OPER)) {
return xhci_oper_read(xhci, addr - OFF_OPER);
} else if (addr >= OFF_RUNTIME && addr < (OFF_RUNTIME + LEN_RUNTIME)) {
return xhci_runtime_read(xhci, addr - OFF_RUNTIME);
} else if (addr >= OFF_DOORBELL && addr < (OFF_DOORBELL + LEN_DOORBELL)) {
return xhci_doorbell_read(xhci, addr - OFF_DOORBELL);
} else {
fprintf(stderr, "xhci_mem_read: Bad offset %x\n", (int)addr);
return 0;
}
}
static void xhci_mem_write(void *ptr, target_phys_addr_t addr,
uint64_t val, unsigned size)
{
XHCIState *xhci = ptr;
/* Only aligned writes are allowed on xHCI */
if (addr & 3) {
fprintf(stderr, "xhci_mem_write: Mis-aligned write\n");
return;
}
if (addr >= OFF_OPER && addr < (OFF_OPER + LEN_OPER)) {
xhci_oper_write(xhci, addr - OFF_OPER, val);
} else if (addr >= OFF_RUNTIME && addr < (OFF_RUNTIME + LEN_RUNTIME)) {
xhci_runtime_write(xhci, addr - OFF_RUNTIME, val);
} else if (addr >= OFF_DOORBELL && addr < (OFF_DOORBELL + LEN_DOORBELL)) {
xhci_doorbell_write(xhci, addr - OFF_DOORBELL, val);
} else {
fprintf(stderr, "xhci_mem_write: Bad offset %x\n", (int)addr);
}
}
static const MemoryRegionOps xhci_mem_ops = {
.read = xhci_mem_read,
.write = xhci_mem_write,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void xhci_attach(USBPort *usbport)
{
XHCIState *xhci = usbport->opaque;
XHCIPort *port = &xhci->ports[usbport->index];
xhci_update_port(xhci, port, 0);
}
static void xhci_detach(USBPort *usbport)
{
XHCIState *xhci = usbport->opaque;
XHCIPort *port = &xhci->ports[usbport->index];
xhci_update_port(xhci, port, 1);
}
static void xhci_complete(USBPort *port, USBPacket *packet)
{
XHCITransfer *xfer = container_of(packet, XHCITransfer, packet);
xhci_complete_packet(xfer, packet->result);
xhci_kick_ep(xfer->xhci, xfer->slotid, xfer->epid);
}
static void xhci_child_detach(USBPort *port, USBDevice *child)
{
FIXME();
}
static USBPortOps xhci_port_ops = {
.attach = xhci_attach,
.detach = xhci_detach,
.complete = xhci_complete,
.child_detach = xhci_child_detach,
};
static USBBusOps xhci_bus_ops = {
};
static void usb_xhci_init(XHCIState *xhci, DeviceState *dev)
{
int i;
xhci->usbsts = USBSTS_HCH;
usb_bus_new(&xhci->bus, &xhci_bus_ops, &xhci->pci_dev.qdev);
for (i = 0; i < MAXPORTS; i++) {
memset(&xhci->ports[i], 0, sizeof(xhci->ports[i]));
usb_register_port(&xhci->bus, &xhci->ports[i].port, xhci, i,
&xhci_port_ops, USB_SPEED_MASK_HIGH);
}
for (i = 0; i < MAXSLOTS; i++) {
xhci->slots[i].enabled = 0;
}
qemu_register_reset(xhci_reset, xhci);
}
static int usb_xhci_initfn(struct PCIDevice *dev)
{
int ret;
XHCIState *xhci = DO_UPCAST(XHCIState, pci_dev, dev);
xhci->pci_dev.config[PCI_CLASS_PROG] = 0x30; /* xHCI */
xhci->pci_dev.config[PCI_INTERRUPT_PIN] = 0x01; /* interrupt pin 1 */
xhci->pci_dev.config[PCI_CACHE_LINE_SIZE] = 0x10;
xhci->pci_dev.config[0x60] = 0x30; /* release number */
usb_xhci_init(xhci, &dev->qdev);
xhci->irq = xhci->pci_dev.irq[0];
memory_region_init_io(&xhci->mem, &xhci_mem_ops, xhci,
"xhci", LEN_REGS);
pci_register_bar(&xhci->pci_dev, 0,
PCI_BASE_ADDRESS_SPACE_MEMORY|PCI_BASE_ADDRESS_MEM_TYPE_64,
&xhci->mem);
ret = pcie_cap_init(&xhci->pci_dev, 0xa0, PCI_EXP_TYPE_ENDPOINT, 0);
assert(ret >= 0);
if (xhci->msi) {
ret = msi_init(&xhci->pci_dev, 0x70, 1, true, false);
assert(ret >= 0);
}
return 0;
}
static void xhci_write_config(PCIDevice *dev, uint32_t addr, uint32_t val,
int len)
{
XHCIState *xhci = DO_UPCAST(XHCIState, pci_dev, dev);
pci_default_write_config(dev, addr, val, len);
if (xhci->msi) {
msi_write_config(dev, addr, val, len);
}
}
static const VMStateDescription vmstate_xhci = {
.name = "xhci",
.unmigratable = 1,
};
static void xhci_class_init(ObjectClass *klass, void *data)
{
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->init = usb_xhci_initfn;
k->vendor_id = PCI_VENDOR_ID_NEC;
k->device_id = PCI_DEVICE_ID_NEC_UPD720200;
k->class_id = PCI_CLASS_SERIAL_USB;
k->revision = 0x03;
k->is_express = 1;
k->config_write = xhci_write_config;
}
static DeviceInfo xhci_info = {
.name = "nec-usb-xhci",
.alias = "xhci",
.size = sizeof(XHCIState),
.vmsd = &vmstate_xhci,
.class_init = xhci_class_init,
.props = (Property[]) {
DEFINE_PROP_UINT32("msi", XHCIState, msi, 0),
DEFINE_PROP_END_OF_LIST(),
}
};
static void xhci_register(void)
{
pci_qdev_register(&xhci_info);
}
device_init(xhci_register);