qemu-e2k/hw/arm/aspeed_soc_common.c
Jamin Lin 944128ee8e aspeed: introduce a new UART0 device name
The Aspeed datasheet refers to the UART controllers
as UART1 - UART13 for the ast10x0, ast2600, ast2500
and ast2400 SoCs and the Aspeed ast2700 introduces an UART0
and the UART controllers as UART0 - UART12.

To keep the naming in the QEMU models
in sync with the datasheet, let's introduce a new  UART0 device name
and do the required adjustements.

Signed-off-by: Troy Lee <troy_lee@aspeedtech.com>
Signed-off-by: Jamin Lin <jamin_lin@aspeedtech.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
[ clg: - Kept original assert() in aspeed_soc_uart_set_chr()
       - Fixed 'i' range in connect_serial_hds_to_uarts() loop ]
Signed-off-by: Cédric Le Goater <clg@kaod.org>
2024-02-27 13:47:05 +01:00

165 lines
5.0 KiB
C

/*
* ASPEED SoC family
*
* Andrew Jeffery <andrew@aj.id.au>
* Jeremy Kerr <jk@ozlabs.org>
*
* Copyright 2016 IBM Corp.
*
* This code is licensed under the GPL version 2 or later. See
* the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "hw/qdev-properties.h"
#include "hw/misc/unimp.h"
#include "hw/arm/aspeed_soc.h"
#include "hw/char/serial.h"
const char *aspeed_soc_cpu_type(AspeedSoCClass *sc)
{
assert(sc->valid_cpu_types);
assert(sc->valid_cpu_types[0]);
assert(!sc->valid_cpu_types[1]);
return sc->valid_cpu_types[0];
}
qemu_irq aspeed_soc_get_irq(AspeedSoCState *s, int dev)
{
return ASPEED_SOC_GET_CLASS(s)->get_irq(s, dev);
}
bool aspeed_soc_uart_realize(AspeedSoCState *s, Error **errp)
{
AspeedSoCClass *sc = ASPEED_SOC_GET_CLASS(s);
SerialMM *smm;
for (int i = 0, uart = sc->uarts_base; i < sc->uarts_num; i++, uart++) {
smm = &s->uart[i];
/* Chardev property is set by the machine. */
qdev_prop_set_uint8(DEVICE(smm), "regshift", 2);
qdev_prop_set_uint32(DEVICE(smm), "baudbase", 38400);
qdev_set_legacy_instance_id(DEVICE(smm), sc->memmap[uart], 2);
qdev_prop_set_uint8(DEVICE(smm), "endianness", DEVICE_LITTLE_ENDIAN);
if (!sysbus_realize(SYS_BUS_DEVICE(smm), errp)) {
return false;
}
sysbus_connect_irq(SYS_BUS_DEVICE(smm), 0, aspeed_soc_get_irq(s, uart));
aspeed_mmio_map(s, SYS_BUS_DEVICE(smm), 0, sc->memmap[uart]);
}
return true;
}
void aspeed_soc_uart_set_chr(AspeedSoCState *s, int dev, Chardev *chr)
{
AspeedSoCClass *sc = ASPEED_SOC_GET_CLASS(s);
int uart_first = aspeed_uart_first(sc);
int uart_index = aspeed_uart_index(dev);
int i = uart_index - uart_first;
g_assert(0 <= i && i < ARRAY_SIZE(s->uart) && i < sc->uarts_num);
qdev_prop_set_chr(DEVICE(&s->uart[i]), "chardev", chr);
}
/*
* SDMC should be realized first to get correct RAM size and max size
* values
*/
bool aspeed_soc_dram_init(AspeedSoCState *s, Error **errp)
{
AspeedSoCClass *sc = ASPEED_SOC_GET_CLASS(s);
ram_addr_t ram_size, max_ram_size;
ram_size = object_property_get_uint(OBJECT(&s->sdmc), "ram-size",
&error_abort);
max_ram_size = object_property_get_uint(OBJECT(&s->sdmc), "max-ram-size",
&error_abort);
memory_region_init(&s->dram_container, OBJECT(s), "ram-container",
max_ram_size);
memory_region_add_subregion(&s->dram_container, 0, s->dram_mr);
/*
* Add a memory region beyond the RAM region to let firmwares scan
* the address space with load/store and guess how much RAM the
* SoC has.
*/
if (ram_size < max_ram_size) {
DeviceState *dev = qdev_new(TYPE_UNIMPLEMENTED_DEVICE);
qdev_prop_set_string(dev, "name", "ram-empty");
qdev_prop_set_uint64(dev, "size", max_ram_size - ram_size);
if (!sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), errp)) {
return false;
}
memory_region_add_subregion_overlap(&s->dram_container, ram_size,
sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0), -1000);
}
memory_region_add_subregion(s->memory,
sc->memmap[ASPEED_DEV_SDRAM], &s->dram_container);
return true;
}
void aspeed_mmio_map(AspeedSoCState *s, SysBusDevice *dev, int n, hwaddr addr)
{
memory_region_add_subregion(s->memory, addr,
sysbus_mmio_get_region(dev, n));
}
void aspeed_mmio_map_unimplemented(AspeedSoCState *s, SysBusDevice *dev,
const char *name, hwaddr addr, uint64_t size)
{
qdev_prop_set_string(DEVICE(dev), "name", name);
qdev_prop_set_uint64(DEVICE(dev), "size", size);
sysbus_realize(dev, &error_abort);
memory_region_add_subregion_overlap(s->memory, addr,
sysbus_mmio_get_region(dev, 0), -1000);
}
static void aspeed_soc_realize(DeviceState *dev, Error **errp)
{
AspeedSoCState *s = ASPEED_SOC(dev);
if (!s->memory) {
error_setg(errp, "'memory' link is not set");
return;
}
}
static Property aspeed_soc_properties[] = {
DEFINE_PROP_LINK("dram", AspeedSoCState, dram_mr, TYPE_MEMORY_REGION,
MemoryRegion *),
DEFINE_PROP_LINK("memory", AspeedSoCState, memory, TYPE_MEMORY_REGION,
MemoryRegion *),
DEFINE_PROP_END_OF_LIST(),
};
static void aspeed_soc_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = aspeed_soc_realize;
device_class_set_props(dc, aspeed_soc_properties);
}
static const TypeInfo aspeed_soc_types[] = {
{
.name = TYPE_ASPEED_SOC,
.parent = TYPE_DEVICE,
.instance_size = sizeof(AspeedSoCState),
.class_size = sizeof(AspeedSoCClass),
.class_init = aspeed_soc_class_init,
.abstract = true,
},
};
DEFINE_TYPES(aspeed_soc_types)