qemu-e2k/hw/intc/xics.c
Markus Armbruster b69c3c21a5 qdev: Unrealize must not fail
Devices may have component devices and buses.

Device realization may fail.  Realization is recursive: a device's
realize() method realizes its components, and device_set_realized()
realizes its buses (which should in turn realize the devices on that
bus, except bus_set_realized() doesn't implement that, yet).

When realization of a component or bus fails, we need to roll back:
unrealize everything we realized so far.  If any of these unrealizes
failed, the device would be left in an inconsistent state.  Must not
happen.

device_set_realized() lets it happen: it ignores errors in the roll
back code starting at label child_realize_fail.

Since realization is recursive, unrealization must be recursive, too.
But how could a partly failed unrealize be rolled back?  We'd have to
re-realize, which can fail.  This design is fundamentally broken.

device_set_realized() does not roll back at all.  Instead, it keeps
unrealizing, ignoring further errors.

It can screw up even for a device with no buses: if the lone
dc->unrealize() fails, it still unregisters vmstate, and calls
listeners' unrealize() callback.

bus_set_realized() does not roll back either.  Instead, it stops
unrealizing.

Fortunately, no unrealize method can fail, as we'll see below.

To fix the design error, drop parameter @errp from all the unrealize
methods.

Any unrealize method that uses @errp now needs an update.  This leads
us to unrealize() methods that can fail.  Merely passing it to another
unrealize method cannot cause failure, though.  Here are the ones that
do other things with @errp:

* virtio_serial_device_unrealize()

  Fails when qbus_set_hotplug_handler() fails, but still does all the
  other work.  On failure, the device would stay realized with its
  resources completely gone.  Oops.  Can't happen, because
  qbus_set_hotplug_handler() can't actually fail here.  Pass
  &error_abort to qbus_set_hotplug_handler() instead.

* hw/ppc/spapr_drc.c's unrealize()

  Fails when object_property_del() fails, but all the other work is
  already done.  On failure, the device would stay realized with its
  vmstate registration gone.  Oops.  Can't happen, because
  object_property_del() can't actually fail here.  Pass &error_abort
  to object_property_del() instead.

* spapr_phb_unrealize()

  Fails and bails out when remove_drcs() fails, but other work is
  already done.  On failure, the device would stay realized with some
  of its resources gone.  Oops.  remove_drcs() fails only when
  chassis_from_bus()'s object_property_get_uint() fails, and it can't
  here.  Pass &error_abort to remove_drcs() instead.

Therefore, no unrealize method can fail before this patch.

device_set_realized()'s recursive unrealization via bus uses
object_property_set_bool().  Can't drop @errp there, so pass
&error_abort.

We similarly unrealize with object_property_set_bool() elsewhere,
always ignoring errors.  Pass &error_abort instead.

Several unrealize methods no longer handle errors from other unrealize
methods: virtio_9p_device_unrealize(),
virtio_input_device_unrealize(), scsi_qdev_unrealize(), ...
Much of the deleted error handling looks wrong anyway.

One unrealize methods no longer ignore such errors:
usb_ehci_pci_exit().

Several realize methods no longer ignore errors when rolling back:
v9fs_device_realize_common(), pci_qdev_unrealize(),
spapr_phb_realize(), usb_qdev_realize(), vfio_ccw_realize(),
virtio_device_realize().

Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200505152926.18877-17-armbru@redhat.com>
2020-05-15 07:08:14 +02:00

756 lines
18 KiB
C

/*
* QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
*
* PAPR Virtualized Interrupt System, aka ICS/ICP aka xics
*
* Copyright (c) 2010,2011 David Gibson, IBM Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "cpu.h"
#include "trace.h"
#include "qemu/timer.h"
#include "hw/ppc/xics.h"
#include "hw/qdev-properties.h"
#include "qemu/error-report.h"
#include "qemu/module.h"
#include "qapi/visitor.h"
#include "migration/vmstate.h"
#include "monitor/monitor.h"
#include "hw/intc/intc.h"
#include "hw/irq.h"
#include "sysemu/kvm.h"
#include "sysemu/reset.h"
void icp_pic_print_info(ICPState *icp, Monitor *mon)
{
int cpu_index;
/* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs
* are hot plugged or unplugged.
*/
if (!icp) {
return;
}
cpu_index = icp->cs ? icp->cs->cpu_index : -1;
if (!icp->output) {
return;
}
if (kvm_irqchip_in_kernel()) {
icp_synchronize_state(icp);
}
monitor_printf(mon, "CPU %d XIRR=%08x (%p) PP=%02x MFRR=%02x\n",
cpu_index, icp->xirr, icp->xirr_owner,
icp->pending_priority, icp->mfrr);
}
void ics_pic_print_info(ICSState *ics, Monitor *mon)
{
uint32_t i;
monitor_printf(mon, "ICS %4x..%4x %p\n",
ics->offset, ics->offset + ics->nr_irqs - 1, ics);
if (!ics->irqs) {
return;
}
if (kvm_irqchip_in_kernel()) {
ics_synchronize_state(ics);
}
for (i = 0; i < ics->nr_irqs; i++) {
ICSIRQState *irq = ics->irqs + i;
if (!(irq->flags & XICS_FLAGS_IRQ_MASK)) {
continue;
}
monitor_printf(mon, " %4x %s %02x %02x\n",
ics->offset + i,
(irq->flags & XICS_FLAGS_IRQ_LSI) ?
"LSI" : "MSI",
irq->priority, irq->status);
}
}
/*
* ICP: Presentation layer
*/
#define XISR_MASK 0x00ffffff
#define CPPR_MASK 0xff000000
#define XISR(icp) (((icp)->xirr) & XISR_MASK)
#define CPPR(icp) (((icp)->xirr) >> 24)
static void ics_reject(ICSState *ics, uint32_t nr);
static void ics_eoi(ICSState *ics, uint32_t nr);
static void icp_check_ipi(ICPState *icp)
{
if (XISR(icp) && (icp->pending_priority <= icp->mfrr)) {
return;
}
trace_xics_icp_check_ipi(icp->cs->cpu_index, icp->mfrr);
if (XISR(icp) && icp->xirr_owner) {
ics_reject(icp->xirr_owner, XISR(icp));
}
icp->xirr = (icp->xirr & ~XISR_MASK) | XICS_IPI;
icp->pending_priority = icp->mfrr;
icp->xirr_owner = NULL;
qemu_irq_raise(icp->output);
}
void icp_resend(ICPState *icp)
{
XICSFabric *xi = icp->xics;
XICSFabricClass *xic = XICS_FABRIC_GET_CLASS(xi);
if (icp->mfrr < CPPR(icp)) {
icp_check_ipi(icp);
}
xic->ics_resend(xi);
}
void icp_set_cppr(ICPState *icp, uint8_t cppr)
{
uint8_t old_cppr;
uint32_t old_xisr;
old_cppr = CPPR(icp);
icp->xirr = (icp->xirr & ~CPPR_MASK) | (cppr << 24);
if (cppr < old_cppr) {
if (XISR(icp) && (cppr <= icp->pending_priority)) {
old_xisr = XISR(icp);
icp->xirr &= ~XISR_MASK; /* Clear XISR */
icp->pending_priority = 0xff;
qemu_irq_lower(icp->output);
if (icp->xirr_owner) {
ics_reject(icp->xirr_owner, old_xisr);
icp->xirr_owner = NULL;
}
}
} else {
if (!XISR(icp)) {
icp_resend(icp);
}
}
}
void icp_set_mfrr(ICPState *icp, uint8_t mfrr)
{
icp->mfrr = mfrr;
if (mfrr < CPPR(icp)) {
icp_check_ipi(icp);
}
}
uint32_t icp_accept(ICPState *icp)
{
uint32_t xirr = icp->xirr;
qemu_irq_lower(icp->output);
icp->xirr = icp->pending_priority << 24;
icp->pending_priority = 0xff;
icp->xirr_owner = NULL;
trace_xics_icp_accept(xirr, icp->xirr);
return xirr;
}
uint32_t icp_ipoll(ICPState *icp, uint32_t *mfrr)
{
if (mfrr) {
*mfrr = icp->mfrr;
}
return icp->xirr;
}
void icp_eoi(ICPState *icp, uint32_t xirr)
{
XICSFabric *xi = icp->xics;
XICSFabricClass *xic = XICS_FABRIC_GET_CLASS(xi);
ICSState *ics;
uint32_t irq;
/* Send EOI -> ICS */
icp->xirr = (icp->xirr & ~CPPR_MASK) | (xirr & CPPR_MASK);
trace_xics_icp_eoi(icp->cs->cpu_index, xirr, icp->xirr);
irq = xirr & XISR_MASK;
ics = xic->ics_get(xi, irq);
if (ics) {
ics_eoi(ics, irq);
}
if (!XISR(icp)) {
icp_resend(icp);
}
}
void icp_irq(ICSState *ics, int server, int nr, uint8_t priority)
{
ICPState *icp = xics_icp_get(ics->xics, server);
trace_xics_icp_irq(server, nr, priority);
if ((priority >= CPPR(icp))
|| (XISR(icp) && (icp->pending_priority <= priority))) {
ics_reject(ics, nr);
} else {
if (XISR(icp) && icp->xirr_owner) {
ics_reject(icp->xirr_owner, XISR(icp));
icp->xirr_owner = NULL;
}
icp->xirr = (icp->xirr & ~XISR_MASK) | (nr & XISR_MASK);
icp->xirr_owner = ics;
icp->pending_priority = priority;
trace_xics_icp_raise(icp->xirr, icp->pending_priority);
qemu_irq_raise(icp->output);
}
}
static int icp_pre_save(void *opaque)
{
ICPState *icp = opaque;
if (kvm_irqchip_in_kernel()) {
icp_get_kvm_state(icp);
}
return 0;
}
static int icp_post_load(void *opaque, int version_id)
{
ICPState *icp = opaque;
if (kvm_irqchip_in_kernel()) {
Error *local_err = NULL;
int ret;
ret = icp_set_kvm_state(icp, &local_err);
if (ret < 0) {
error_report_err(local_err);
return ret;
}
}
return 0;
}
static const VMStateDescription vmstate_icp_server = {
.name = "icp/server",
.version_id = 1,
.minimum_version_id = 1,
.pre_save = icp_pre_save,
.post_load = icp_post_load,
.fields = (VMStateField[]) {
/* Sanity check */
VMSTATE_UINT32(xirr, ICPState),
VMSTATE_UINT8(pending_priority, ICPState),
VMSTATE_UINT8(mfrr, ICPState),
VMSTATE_END_OF_LIST()
},
};
void icp_reset(ICPState *icp)
{
icp->xirr = 0;
icp->pending_priority = 0xff;
icp->mfrr = 0xff;
if (kvm_irqchip_in_kernel()) {
Error *local_err = NULL;
icp_set_kvm_state(icp, &local_err);
if (local_err) {
error_report_err(local_err);
}
}
}
static void icp_realize(DeviceState *dev, Error **errp)
{
ICPState *icp = ICP(dev);
CPUPPCState *env;
Error *err = NULL;
assert(icp->xics);
assert(icp->cs);
env = &POWERPC_CPU(icp->cs)->env;
switch (PPC_INPUT(env)) {
case PPC_FLAGS_INPUT_POWER7:
icp->output = env->irq_inputs[POWER7_INPUT_INT];
break;
case PPC_FLAGS_INPUT_POWER9: /* For SPAPR xics emulation */
icp->output = env->irq_inputs[POWER9_INPUT_INT];
break;
case PPC_FLAGS_INPUT_970:
icp->output = env->irq_inputs[PPC970_INPUT_INT];
break;
default:
error_setg(errp, "XICS interrupt controller does not support this CPU bus model");
return;
}
/* Connect the presenter to the VCPU (required for CPU hotplug) */
if (kvm_irqchip_in_kernel()) {
icp_kvm_realize(dev, &err);
if (err) {
error_propagate(errp, err);
return;
}
}
vmstate_register(NULL, icp->cs->cpu_index, &vmstate_icp_server, icp);
}
static void icp_unrealize(DeviceState *dev)
{
ICPState *icp = ICP(dev);
vmstate_unregister(NULL, &vmstate_icp_server, icp);
}
static Property icp_properties[] = {
DEFINE_PROP_LINK(ICP_PROP_XICS, ICPState, xics, TYPE_XICS_FABRIC,
XICSFabric *),
DEFINE_PROP_LINK(ICP_PROP_CPU, ICPState, cs, TYPE_CPU, CPUState *),
DEFINE_PROP_END_OF_LIST(),
};
static void icp_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = icp_realize;
dc->unrealize = icp_unrealize;
device_class_set_props(dc, icp_properties);
/*
* Reason: part of XICS interrupt controller, needs to be wired up
* by icp_create().
*/
dc->user_creatable = false;
}
static const TypeInfo icp_info = {
.name = TYPE_ICP,
.parent = TYPE_DEVICE,
.instance_size = sizeof(ICPState),
.class_init = icp_class_init,
.class_size = sizeof(ICPStateClass),
};
Object *icp_create(Object *cpu, const char *type, XICSFabric *xi, Error **errp)
{
Error *local_err = NULL;
Object *obj;
obj = object_new(type);
object_property_add_child(cpu, type, obj);
object_unref(obj);
object_property_set_link(obj, OBJECT(xi), ICP_PROP_XICS, &error_abort);
object_property_set_link(obj, cpu, ICP_PROP_CPU, &error_abort);
object_property_set_bool(obj, true, "realized", &local_err);
if (local_err) {
object_unparent(obj);
error_propagate(errp, local_err);
obj = NULL;
}
return obj;
}
void icp_destroy(ICPState *icp)
{
Object *obj = OBJECT(icp);
object_unparent(obj);
}
/*
* ICS: Source layer
*/
static void ics_resend_msi(ICSState *ics, int srcno)
{
ICSIRQState *irq = ics->irqs + srcno;
/* FIXME: filter by server#? */
if (irq->status & XICS_STATUS_REJECTED) {
irq->status &= ~XICS_STATUS_REJECTED;
if (irq->priority != 0xff) {
icp_irq(ics, irq->server, srcno + ics->offset, irq->priority);
}
}
}
static void ics_resend_lsi(ICSState *ics, int srcno)
{
ICSIRQState *irq = ics->irqs + srcno;
if ((irq->priority != 0xff)
&& (irq->status & XICS_STATUS_ASSERTED)
&& !(irq->status & XICS_STATUS_SENT)) {
irq->status |= XICS_STATUS_SENT;
icp_irq(ics, irq->server, srcno + ics->offset, irq->priority);
}
}
static void ics_set_irq_msi(ICSState *ics, int srcno, int val)
{
ICSIRQState *irq = ics->irqs + srcno;
trace_xics_ics_set_irq_msi(srcno, srcno + ics->offset);
if (val) {
if (irq->priority == 0xff) {
irq->status |= XICS_STATUS_MASKED_PENDING;
trace_xics_masked_pending();
} else {
icp_irq(ics, irq->server, srcno + ics->offset, irq->priority);
}
}
}
static void ics_set_irq_lsi(ICSState *ics, int srcno, int val)
{
ICSIRQState *irq = ics->irqs + srcno;
trace_xics_ics_set_irq_lsi(srcno, srcno + ics->offset);
if (val) {
irq->status |= XICS_STATUS_ASSERTED;
} else {
irq->status &= ~XICS_STATUS_ASSERTED;
}
ics_resend_lsi(ics, srcno);
}
void ics_set_irq(void *opaque, int srcno, int val)
{
ICSState *ics = (ICSState *)opaque;
if (kvm_irqchip_in_kernel()) {
ics_kvm_set_irq(ics, srcno, val);
return;
}
if (ics->irqs[srcno].flags & XICS_FLAGS_IRQ_LSI) {
ics_set_irq_lsi(ics, srcno, val);
} else {
ics_set_irq_msi(ics, srcno, val);
}
}
static void ics_write_xive_msi(ICSState *ics, int srcno)
{
ICSIRQState *irq = ics->irqs + srcno;
if (!(irq->status & XICS_STATUS_MASKED_PENDING)
|| (irq->priority == 0xff)) {
return;
}
irq->status &= ~XICS_STATUS_MASKED_PENDING;
icp_irq(ics, irq->server, srcno + ics->offset, irq->priority);
}
static void ics_write_xive_lsi(ICSState *ics, int srcno)
{
ics_resend_lsi(ics, srcno);
}
void ics_write_xive(ICSState *ics, int srcno, int server,
uint8_t priority, uint8_t saved_priority)
{
ICSIRQState *irq = ics->irqs + srcno;
irq->server = server;
irq->priority = priority;
irq->saved_priority = saved_priority;
trace_xics_ics_write_xive(ics->offset + srcno, srcno, server, priority);
if (ics->irqs[srcno].flags & XICS_FLAGS_IRQ_LSI) {
ics_write_xive_lsi(ics, srcno);
} else {
ics_write_xive_msi(ics, srcno);
}
}
static void ics_reject(ICSState *ics, uint32_t nr)
{
ICSStateClass *isc = ICS_GET_CLASS(ics);
ICSIRQState *irq = ics->irqs + nr - ics->offset;
if (isc->reject) {
isc->reject(ics, nr);
return;
}
trace_xics_ics_reject(nr, nr - ics->offset);
if (irq->flags & XICS_FLAGS_IRQ_MSI) {
irq->status |= XICS_STATUS_REJECTED;
} else if (irq->flags & XICS_FLAGS_IRQ_LSI) {
irq->status &= ~XICS_STATUS_SENT;
}
}
void ics_resend(ICSState *ics)
{
ICSStateClass *isc = ICS_GET_CLASS(ics);
int i;
if (isc->resend) {
isc->resend(ics);
return;
}
for (i = 0; i < ics->nr_irqs; i++) {
/* FIXME: filter by server#? */
if (ics->irqs[i].flags & XICS_FLAGS_IRQ_LSI) {
ics_resend_lsi(ics, i);
} else {
ics_resend_msi(ics, i);
}
}
}
static void ics_eoi(ICSState *ics, uint32_t nr)
{
int srcno = nr - ics->offset;
ICSIRQState *irq = ics->irqs + srcno;
trace_xics_ics_eoi(nr);
if (ics->irqs[srcno].flags & XICS_FLAGS_IRQ_LSI) {
irq->status &= ~XICS_STATUS_SENT;
}
}
static void ics_reset_irq(ICSIRQState *irq)
{
irq->priority = 0xff;
irq->saved_priority = 0xff;
}
static void ics_reset(DeviceState *dev)
{
ICSState *ics = ICS(dev);
int i;
uint8_t flags[ics->nr_irqs];
for (i = 0; i < ics->nr_irqs; i++) {
flags[i] = ics->irqs[i].flags;
}
memset(ics->irqs, 0, sizeof(ICSIRQState) * ics->nr_irqs);
for (i = 0; i < ics->nr_irqs; i++) {
ics_reset_irq(ics->irqs + i);
ics->irqs[i].flags = flags[i];
}
if (kvm_irqchip_in_kernel()) {
Error *local_err = NULL;
ics_set_kvm_state(ICS(dev), &local_err);
if (local_err) {
error_report_err(local_err);
}
}
}
static void ics_reset_handler(void *dev)
{
ics_reset(dev);
}
static void ics_realize(DeviceState *dev, Error **errp)
{
ICSState *ics = ICS(dev);
assert(ics->xics);
if (!ics->nr_irqs) {
error_setg(errp, "Number of interrupts needs to be greater 0");
return;
}
ics->irqs = g_malloc0(ics->nr_irqs * sizeof(ICSIRQState));
qemu_register_reset(ics_reset_handler, ics);
}
static void ics_instance_init(Object *obj)
{
ICSState *ics = ICS(obj);
ics->offset = XICS_IRQ_BASE;
}
static int ics_pre_save(void *opaque)
{
ICSState *ics = opaque;
if (kvm_irqchip_in_kernel()) {
ics_get_kvm_state(ics);
}
return 0;
}
static int ics_post_load(void *opaque, int version_id)
{
ICSState *ics = opaque;
if (kvm_irqchip_in_kernel()) {
Error *local_err = NULL;
int ret;
ret = ics_set_kvm_state(ics, &local_err);
if (ret < 0) {
error_report_err(local_err);
return ret;
}
}
return 0;
}
static const VMStateDescription vmstate_ics_irq = {
.name = "ics/irq",
.version_id = 2,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(server, ICSIRQState),
VMSTATE_UINT8(priority, ICSIRQState),
VMSTATE_UINT8(saved_priority, ICSIRQState),
VMSTATE_UINT8(status, ICSIRQState),
VMSTATE_UINT8(flags, ICSIRQState),
VMSTATE_END_OF_LIST()
},
};
static const VMStateDescription vmstate_ics = {
.name = "ics",
.version_id = 1,
.minimum_version_id = 1,
.pre_save = ics_pre_save,
.post_load = ics_post_load,
.fields = (VMStateField[]) {
/* Sanity check */
VMSTATE_UINT32_EQUAL(nr_irqs, ICSState, NULL),
VMSTATE_STRUCT_VARRAY_POINTER_UINT32(irqs, ICSState, nr_irqs,
vmstate_ics_irq,
ICSIRQState),
VMSTATE_END_OF_LIST()
},
};
static Property ics_properties[] = {
DEFINE_PROP_UINT32("nr-irqs", ICSState, nr_irqs, 0),
DEFINE_PROP_LINK(ICS_PROP_XICS, ICSState, xics, TYPE_XICS_FABRIC,
XICSFabric *),
DEFINE_PROP_END_OF_LIST(),
};
static void ics_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = ics_realize;
device_class_set_props(dc, ics_properties);
dc->reset = ics_reset;
dc->vmsd = &vmstate_ics;
/*
* Reason: part of XICS interrupt controller, needs to be wired up,
* e.g. by spapr_irq_init().
*/
dc->user_creatable = false;
}
static const TypeInfo ics_info = {
.name = TYPE_ICS,
.parent = TYPE_DEVICE,
.instance_size = sizeof(ICSState),
.instance_init = ics_instance_init,
.class_init = ics_class_init,
.class_size = sizeof(ICSStateClass),
};
static const TypeInfo xics_fabric_info = {
.name = TYPE_XICS_FABRIC,
.parent = TYPE_INTERFACE,
.class_size = sizeof(XICSFabricClass),
};
/*
* Exported functions
*/
ICPState *xics_icp_get(XICSFabric *xi, int server)
{
XICSFabricClass *xic = XICS_FABRIC_GET_CLASS(xi);
return xic->icp_get(xi, server);
}
void ics_set_irq_type(ICSState *ics, int srcno, bool lsi)
{
assert(!(ics->irqs[srcno].flags & XICS_FLAGS_IRQ_MASK));
ics->irqs[srcno].flags |=
lsi ? XICS_FLAGS_IRQ_LSI : XICS_FLAGS_IRQ_MSI;
if (kvm_irqchip_in_kernel()) {
Error *local_err = NULL;
ics_reset_irq(ics->irqs + srcno);
ics_set_kvm_state_one(ics, srcno, &local_err);
if (local_err) {
error_report_err(local_err);
}
}
}
static void xics_register_types(void)
{
type_register_static(&ics_info);
type_register_static(&icp_info);
type_register_static(&xics_fabric_info);
}
type_init(xics_register_types)