6886867e98
Devices that use address_space_rw to write large areas to memory
(as opposed to address_space_map/unmap) were broken with respect
to migration since fe680d0
(exec: Limit translation limiting in
address_space_translate to xen, 2014-05-07). Such devices include
IDE CD-ROMs.
The reason is that invalidate_and_set_dirty (called by address_space_rw
but not address_space_map/unmap) was only setting the dirty bit for
the first page in the translation.
To fix this, introduce cpu_physical_memory_set_dirty_range_nocode that
is the same as cpu_physical_memory_set_dirty_range except it does not
muck with the DIRTY_MEMORY_CODE bitmap. This function can be used if
the caller invalidates translations with tb_invalidate_phys_page_range.
There is another difference between cpu_physical_memory_set_dirty_range
and cpu_physical_memory_set_dirty_flag; the former includes a call
to xen_modified_memory. This is handled separately in
invalidate_and_set_dirty, and is not needed in other callers of
cpu_physical_memory_set_dirty_range_nocode, so leave it alone.
Just one nit: now that invalidate_and_set_dirty takes care of handling
multiple pages, there is no need for address_space_unmap to wrap it
in a loop. In fact that loop would now be O(n^2).
Reported-by: Dave Gilbert <dgilbert@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Tested-by: Gerd Hoffmann <kraxel@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2786 lines
76 KiB
C
2786 lines
76 KiB
C
/*
|
|
* Virtual page mapping
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "config.h"
|
|
#ifndef _WIN32
|
|
#include <sys/types.h>
|
|
#include <sys/mman.h>
|
|
#endif
|
|
|
|
#include "qemu-common.h"
|
|
#include "cpu.h"
|
|
#include "tcg.h"
|
|
#include "hw/hw.h"
|
|
#include "hw/qdev.h"
|
|
#include "qemu/osdep.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "hw/xen/xen.h"
|
|
#include "qemu/timer.h"
|
|
#include "qemu/config-file.h"
|
|
#include "qemu/error-report.h"
|
|
#include "exec/memory.h"
|
|
#include "sysemu/dma.h"
|
|
#include "exec/address-spaces.h"
|
|
#if defined(CONFIG_USER_ONLY)
|
|
#include <qemu.h>
|
|
#else /* !CONFIG_USER_ONLY */
|
|
#include "sysemu/xen-mapcache.h"
|
|
#include "trace.h"
|
|
#endif
|
|
#include "exec/cpu-all.h"
|
|
|
|
#include "exec/cputlb.h"
|
|
#include "translate-all.h"
|
|
|
|
#include "exec/memory-internal.h"
|
|
#include "exec/ram_addr.h"
|
|
|
|
#include "qemu/range.h"
|
|
|
|
//#define DEBUG_SUBPAGE
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
static bool in_migration;
|
|
|
|
RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
|
|
|
|
static MemoryRegion *system_memory;
|
|
static MemoryRegion *system_io;
|
|
|
|
AddressSpace address_space_io;
|
|
AddressSpace address_space_memory;
|
|
|
|
MemoryRegion io_mem_rom, io_mem_notdirty;
|
|
static MemoryRegion io_mem_unassigned;
|
|
|
|
/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
|
|
#define RAM_PREALLOC (1 << 0)
|
|
|
|
/* RAM is mmap-ed with MAP_SHARED */
|
|
#define RAM_SHARED (1 << 1)
|
|
|
|
#endif
|
|
|
|
struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
|
|
/* current CPU in the current thread. It is only valid inside
|
|
cpu_exec() */
|
|
DEFINE_TLS(CPUState *, current_cpu);
|
|
/* 0 = Do not count executed instructions.
|
|
1 = Precise instruction counting.
|
|
2 = Adaptive rate instruction counting. */
|
|
int use_icount;
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
typedef struct PhysPageEntry PhysPageEntry;
|
|
|
|
struct PhysPageEntry {
|
|
/* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
|
|
uint32_t skip : 6;
|
|
/* index into phys_sections (!skip) or phys_map_nodes (skip) */
|
|
uint32_t ptr : 26;
|
|
};
|
|
|
|
#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
|
|
|
|
/* Size of the L2 (and L3, etc) page tables. */
|
|
#define ADDR_SPACE_BITS 64
|
|
|
|
#define P_L2_BITS 9
|
|
#define P_L2_SIZE (1 << P_L2_BITS)
|
|
|
|
#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
|
|
|
|
typedef PhysPageEntry Node[P_L2_SIZE];
|
|
|
|
typedef struct PhysPageMap {
|
|
unsigned sections_nb;
|
|
unsigned sections_nb_alloc;
|
|
unsigned nodes_nb;
|
|
unsigned nodes_nb_alloc;
|
|
Node *nodes;
|
|
MemoryRegionSection *sections;
|
|
} PhysPageMap;
|
|
|
|
struct AddressSpaceDispatch {
|
|
/* This is a multi-level map on the physical address space.
|
|
* The bottom level has pointers to MemoryRegionSections.
|
|
*/
|
|
PhysPageEntry phys_map;
|
|
PhysPageMap map;
|
|
AddressSpace *as;
|
|
};
|
|
|
|
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
|
|
typedef struct subpage_t {
|
|
MemoryRegion iomem;
|
|
AddressSpace *as;
|
|
hwaddr base;
|
|
uint16_t sub_section[TARGET_PAGE_SIZE];
|
|
} subpage_t;
|
|
|
|
#define PHYS_SECTION_UNASSIGNED 0
|
|
#define PHYS_SECTION_NOTDIRTY 1
|
|
#define PHYS_SECTION_ROM 2
|
|
#define PHYS_SECTION_WATCH 3
|
|
|
|
static void io_mem_init(void);
|
|
static void memory_map_init(void);
|
|
static void tcg_commit(MemoryListener *listener);
|
|
|
|
static MemoryRegion io_mem_watch;
|
|
#endif
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
|
|
{
|
|
if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
|
|
map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
|
|
map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
|
|
map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
|
|
}
|
|
}
|
|
|
|
static uint32_t phys_map_node_alloc(PhysPageMap *map)
|
|
{
|
|
unsigned i;
|
|
uint32_t ret;
|
|
|
|
ret = map->nodes_nb++;
|
|
assert(ret != PHYS_MAP_NODE_NIL);
|
|
assert(ret != map->nodes_nb_alloc);
|
|
for (i = 0; i < P_L2_SIZE; ++i) {
|
|
map->nodes[ret][i].skip = 1;
|
|
map->nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
|
|
hwaddr *index, hwaddr *nb, uint16_t leaf,
|
|
int level)
|
|
{
|
|
PhysPageEntry *p;
|
|
int i;
|
|
hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
|
|
|
|
if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
|
|
lp->ptr = phys_map_node_alloc(map);
|
|
p = map->nodes[lp->ptr];
|
|
if (level == 0) {
|
|
for (i = 0; i < P_L2_SIZE; i++) {
|
|
p[i].skip = 0;
|
|
p[i].ptr = PHYS_SECTION_UNASSIGNED;
|
|
}
|
|
}
|
|
} else {
|
|
p = map->nodes[lp->ptr];
|
|
}
|
|
lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
|
|
|
|
while (*nb && lp < &p[P_L2_SIZE]) {
|
|
if ((*index & (step - 1)) == 0 && *nb >= step) {
|
|
lp->skip = 0;
|
|
lp->ptr = leaf;
|
|
*index += step;
|
|
*nb -= step;
|
|
} else {
|
|
phys_page_set_level(map, lp, index, nb, leaf, level - 1);
|
|
}
|
|
++lp;
|
|
}
|
|
}
|
|
|
|
static void phys_page_set(AddressSpaceDispatch *d,
|
|
hwaddr index, hwaddr nb,
|
|
uint16_t leaf)
|
|
{
|
|
/* Wildly overreserve - it doesn't matter much. */
|
|
phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
|
|
|
|
phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
|
|
}
|
|
|
|
/* Compact a non leaf page entry. Simply detect that the entry has a single child,
|
|
* and update our entry so we can skip it and go directly to the destination.
|
|
*/
|
|
static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
|
|
{
|
|
unsigned valid_ptr = P_L2_SIZE;
|
|
int valid = 0;
|
|
PhysPageEntry *p;
|
|
int i;
|
|
|
|
if (lp->ptr == PHYS_MAP_NODE_NIL) {
|
|
return;
|
|
}
|
|
|
|
p = nodes[lp->ptr];
|
|
for (i = 0; i < P_L2_SIZE; i++) {
|
|
if (p[i].ptr == PHYS_MAP_NODE_NIL) {
|
|
continue;
|
|
}
|
|
|
|
valid_ptr = i;
|
|
valid++;
|
|
if (p[i].skip) {
|
|
phys_page_compact(&p[i], nodes, compacted);
|
|
}
|
|
}
|
|
|
|
/* We can only compress if there's only one child. */
|
|
if (valid != 1) {
|
|
return;
|
|
}
|
|
|
|
assert(valid_ptr < P_L2_SIZE);
|
|
|
|
/* Don't compress if it won't fit in the # of bits we have. */
|
|
if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
|
|
return;
|
|
}
|
|
|
|
lp->ptr = p[valid_ptr].ptr;
|
|
if (!p[valid_ptr].skip) {
|
|
/* If our only child is a leaf, make this a leaf. */
|
|
/* By design, we should have made this node a leaf to begin with so we
|
|
* should never reach here.
|
|
* But since it's so simple to handle this, let's do it just in case we
|
|
* change this rule.
|
|
*/
|
|
lp->skip = 0;
|
|
} else {
|
|
lp->skip += p[valid_ptr].skip;
|
|
}
|
|
}
|
|
|
|
static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
|
|
{
|
|
DECLARE_BITMAP(compacted, nodes_nb);
|
|
|
|
if (d->phys_map.skip) {
|
|
phys_page_compact(&d->phys_map, d->map.nodes, compacted);
|
|
}
|
|
}
|
|
|
|
static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
|
|
Node *nodes, MemoryRegionSection *sections)
|
|
{
|
|
PhysPageEntry *p;
|
|
hwaddr index = addr >> TARGET_PAGE_BITS;
|
|
int i;
|
|
|
|
for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
|
|
if (lp.ptr == PHYS_MAP_NODE_NIL) {
|
|
return §ions[PHYS_SECTION_UNASSIGNED];
|
|
}
|
|
p = nodes[lp.ptr];
|
|
lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
|
|
}
|
|
|
|
if (sections[lp.ptr].size.hi ||
|
|
range_covers_byte(sections[lp.ptr].offset_within_address_space,
|
|
sections[lp.ptr].size.lo, addr)) {
|
|
return §ions[lp.ptr];
|
|
} else {
|
|
return §ions[PHYS_SECTION_UNASSIGNED];
|
|
}
|
|
}
|
|
|
|
bool memory_region_is_unassigned(MemoryRegion *mr)
|
|
{
|
|
return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
|
|
&& mr != &io_mem_watch;
|
|
}
|
|
|
|
static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
|
|
hwaddr addr,
|
|
bool resolve_subpage)
|
|
{
|
|
MemoryRegionSection *section;
|
|
subpage_t *subpage;
|
|
|
|
section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
|
|
if (resolve_subpage && section->mr->subpage) {
|
|
subpage = container_of(section->mr, subpage_t, iomem);
|
|
section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
|
|
}
|
|
return section;
|
|
}
|
|
|
|
static MemoryRegionSection *
|
|
address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
|
|
hwaddr *plen, bool resolve_subpage)
|
|
{
|
|
MemoryRegionSection *section;
|
|
Int128 diff;
|
|
|
|
section = address_space_lookup_region(d, addr, resolve_subpage);
|
|
/* Compute offset within MemoryRegionSection */
|
|
addr -= section->offset_within_address_space;
|
|
|
|
/* Compute offset within MemoryRegion */
|
|
*xlat = addr + section->offset_within_region;
|
|
|
|
diff = int128_sub(section->mr->size, int128_make64(addr));
|
|
*plen = int128_get64(int128_min(diff, int128_make64(*plen)));
|
|
return section;
|
|
}
|
|
|
|
static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
|
|
{
|
|
if (memory_region_is_ram(mr)) {
|
|
return !(is_write && mr->readonly);
|
|
}
|
|
if (memory_region_is_romd(mr)) {
|
|
return !is_write;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
|
|
hwaddr *xlat, hwaddr *plen,
|
|
bool is_write)
|
|
{
|
|
IOMMUTLBEntry iotlb;
|
|
MemoryRegionSection *section;
|
|
MemoryRegion *mr;
|
|
hwaddr len = *plen;
|
|
|
|
for (;;) {
|
|
section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
|
|
mr = section->mr;
|
|
|
|
if (!mr->iommu_ops) {
|
|
break;
|
|
}
|
|
|
|
iotlb = mr->iommu_ops->translate(mr, addr);
|
|
addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
|
|
| (addr & iotlb.addr_mask));
|
|
len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
|
|
if (!(iotlb.perm & (1 << is_write))) {
|
|
mr = &io_mem_unassigned;
|
|
break;
|
|
}
|
|
|
|
as = iotlb.target_as;
|
|
}
|
|
|
|
if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
|
|
hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
|
|
len = MIN(page, len);
|
|
}
|
|
|
|
*plen = len;
|
|
*xlat = addr;
|
|
return mr;
|
|
}
|
|
|
|
MemoryRegionSection *
|
|
address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
|
|
hwaddr *plen)
|
|
{
|
|
MemoryRegionSection *section;
|
|
section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
|
|
|
|
assert(!section->mr->iommu_ops);
|
|
return section;
|
|
}
|
|
#endif
|
|
|
|
void cpu_exec_init_all(void)
|
|
{
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
qemu_mutex_init(&ram_list.mutex);
|
|
memory_map_init();
|
|
io_mem_init();
|
|
#endif
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
static int cpu_common_post_load(void *opaque, int version_id)
|
|
{
|
|
CPUState *cpu = opaque;
|
|
|
|
/* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
|
|
version_id is increased. */
|
|
cpu->interrupt_request &= ~0x01;
|
|
tlb_flush(cpu, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
const VMStateDescription vmstate_cpu_common = {
|
|
.name = "cpu_common",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.post_load = cpu_common_post_load,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UINT32(halted, CPUState),
|
|
VMSTATE_UINT32(interrupt_request, CPUState),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
#endif
|
|
|
|
CPUState *qemu_get_cpu(int index)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
if (cpu->cpu_index == index) {
|
|
return cpu;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
void tcg_cpu_address_space_init(CPUState *cpu, AddressSpace *as)
|
|
{
|
|
/* We only support one address space per cpu at the moment. */
|
|
assert(cpu->as == as);
|
|
|
|
if (cpu->tcg_as_listener) {
|
|
memory_listener_unregister(cpu->tcg_as_listener);
|
|
} else {
|
|
cpu->tcg_as_listener = g_new0(MemoryListener, 1);
|
|
}
|
|
cpu->tcg_as_listener->commit = tcg_commit;
|
|
memory_listener_register(cpu->tcg_as_listener, as);
|
|
}
|
|
#endif
|
|
|
|
void cpu_exec_init(CPUArchState *env)
|
|
{
|
|
CPUState *cpu = ENV_GET_CPU(env);
|
|
CPUClass *cc = CPU_GET_CLASS(cpu);
|
|
CPUState *some_cpu;
|
|
int cpu_index;
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
cpu_list_lock();
|
|
#endif
|
|
cpu_index = 0;
|
|
CPU_FOREACH(some_cpu) {
|
|
cpu_index++;
|
|
}
|
|
cpu->cpu_index = cpu_index;
|
|
cpu->numa_node = 0;
|
|
QTAILQ_INIT(&cpu->breakpoints);
|
|
QTAILQ_INIT(&cpu->watchpoints);
|
|
#ifndef CONFIG_USER_ONLY
|
|
cpu->as = &address_space_memory;
|
|
cpu->thread_id = qemu_get_thread_id();
|
|
#endif
|
|
QTAILQ_INSERT_TAIL(&cpus, cpu, node);
|
|
#if defined(CONFIG_USER_ONLY)
|
|
cpu_list_unlock();
|
|
#endif
|
|
if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
|
|
vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
|
|
}
|
|
#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
|
|
register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
|
|
cpu_save, cpu_load, env);
|
|
assert(cc->vmsd == NULL);
|
|
assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
|
|
#endif
|
|
if (cc->vmsd != NULL) {
|
|
vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
|
|
}
|
|
}
|
|
|
|
#if defined(TARGET_HAS_ICE)
|
|
#if defined(CONFIG_USER_ONLY)
|
|
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
|
|
{
|
|
tb_invalidate_phys_page_range(pc, pc + 1, 0);
|
|
}
|
|
#else
|
|
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
|
|
{
|
|
hwaddr phys = cpu_get_phys_page_debug(cpu, pc);
|
|
if (phys != -1) {
|
|
tb_invalidate_phys_addr(cpu->as,
|
|
phys | (pc & ~TARGET_PAGE_MASK));
|
|
}
|
|
}
|
|
#endif
|
|
#endif /* TARGET_HAS_ICE */
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
|
|
|
|
{
|
|
}
|
|
|
|
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
|
|
int flags, CPUWatchpoint **watchpoint)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
#else
|
|
/* Add a watchpoint. */
|
|
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
|
|
int flags, CPUWatchpoint **watchpoint)
|
|
{
|
|
vaddr len_mask = ~(len - 1);
|
|
CPUWatchpoint *wp;
|
|
|
|
/* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
|
|
if ((len & (len - 1)) || (addr & ~len_mask) ||
|
|
len == 0 || len > TARGET_PAGE_SIZE) {
|
|
error_report("tried to set invalid watchpoint at %"
|
|
VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
|
|
return -EINVAL;
|
|
}
|
|
wp = g_malloc(sizeof(*wp));
|
|
|
|
wp->vaddr = addr;
|
|
wp->len_mask = len_mask;
|
|
wp->flags = flags;
|
|
|
|
/* keep all GDB-injected watchpoints in front */
|
|
if (flags & BP_GDB) {
|
|
QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
|
|
} else {
|
|
QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
|
|
}
|
|
|
|
tlb_flush_page(cpu, addr);
|
|
|
|
if (watchpoint)
|
|
*watchpoint = wp;
|
|
return 0;
|
|
}
|
|
|
|
/* Remove a specific watchpoint. */
|
|
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
|
|
int flags)
|
|
{
|
|
vaddr len_mask = ~(len - 1);
|
|
CPUWatchpoint *wp;
|
|
|
|
QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
|
|
if (addr == wp->vaddr && len_mask == wp->len_mask
|
|
&& flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
|
|
cpu_watchpoint_remove_by_ref(cpu, wp);
|
|
return 0;
|
|
}
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
|
|
/* Remove a specific watchpoint by reference. */
|
|
void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
|
|
{
|
|
QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
|
|
|
|
tlb_flush_page(cpu, watchpoint->vaddr);
|
|
|
|
g_free(watchpoint);
|
|
}
|
|
|
|
/* Remove all matching watchpoints. */
|
|
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
|
|
{
|
|
CPUWatchpoint *wp, *next;
|
|
|
|
QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
|
|
if (wp->flags & mask) {
|
|
cpu_watchpoint_remove_by_ref(cpu, wp);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Add a breakpoint. */
|
|
int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
|
|
CPUBreakpoint **breakpoint)
|
|
{
|
|
#if defined(TARGET_HAS_ICE)
|
|
CPUBreakpoint *bp;
|
|
|
|
bp = g_malloc(sizeof(*bp));
|
|
|
|
bp->pc = pc;
|
|
bp->flags = flags;
|
|
|
|
/* keep all GDB-injected breakpoints in front */
|
|
if (flags & BP_GDB) {
|
|
QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
|
|
} else {
|
|
QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
|
|
}
|
|
|
|
breakpoint_invalidate(cpu, pc);
|
|
|
|
if (breakpoint) {
|
|
*breakpoint = bp;
|
|
}
|
|
return 0;
|
|
#else
|
|
return -ENOSYS;
|
|
#endif
|
|
}
|
|
|
|
/* Remove a specific breakpoint. */
|
|
int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
|
|
{
|
|
#if defined(TARGET_HAS_ICE)
|
|
CPUBreakpoint *bp;
|
|
|
|
QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
|
|
if (bp->pc == pc && bp->flags == flags) {
|
|
cpu_breakpoint_remove_by_ref(cpu, bp);
|
|
return 0;
|
|
}
|
|
}
|
|
return -ENOENT;
|
|
#else
|
|
return -ENOSYS;
|
|
#endif
|
|
}
|
|
|
|
/* Remove a specific breakpoint by reference. */
|
|
void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
|
|
{
|
|
#if defined(TARGET_HAS_ICE)
|
|
QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
|
|
|
|
breakpoint_invalidate(cpu, breakpoint->pc);
|
|
|
|
g_free(breakpoint);
|
|
#endif
|
|
}
|
|
|
|
/* Remove all matching breakpoints. */
|
|
void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
|
|
{
|
|
#if defined(TARGET_HAS_ICE)
|
|
CPUBreakpoint *bp, *next;
|
|
|
|
QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
|
|
if (bp->flags & mask) {
|
|
cpu_breakpoint_remove_by_ref(cpu, bp);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* enable or disable single step mode. EXCP_DEBUG is returned by the
|
|
CPU loop after each instruction */
|
|
void cpu_single_step(CPUState *cpu, int enabled)
|
|
{
|
|
#if defined(TARGET_HAS_ICE)
|
|
if (cpu->singlestep_enabled != enabled) {
|
|
cpu->singlestep_enabled = enabled;
|
|
if (kvm_enabled()) {
|
|
kvm_update_guest_debug(cpu, 0);
|
|
} else {
|
|
/* must flush all the translated code to avoid inconsistencies */
|
|
/* XXX: only flush what is necessary */
|
|
CPUArchState *env = cpu->env_ptr;
|
|
tb_flush(env);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void cpu_abort(CPUState *cpu, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
va_list ap2;
|
|
|
|
va_start(ap, fmt);
|
|
va_copy(ap2, ap);
|
|
fprintf(stderr, "qemu: fatal: ");
|
|
vfprintf(stderr, fmt, ap);
|
|
fprintf(stderr, "\n");
|
|
cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
|
|
if (qemu_log_enabled()) {
|
|
qemu_log("qemu: fatal: ");
|
|
qemu_log_vprintf(fmt, ap2);
|
|
qemu_log("\n");
|
|
log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
|
|
qemu_log_flush();
|
|
qemu_log_close();
|
|
}
|
|
va_end(ap2);
|
|
va_end(ap);
|
|
#if defined(CONFIG_USER_ONLY)
|
|
{
|
|
struct sigaction act;
|
|
sigfillset(&act.sa_mask);
|
|
act.sa_handler = SIG_DFL;
|
|
sigaction(SIGABRT, &act, NULL);
|
|
}
|
|
#endif
|
|
abort();
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
|
|
{
|
|
RAMBlock *block;
|
|
|
|
/* The list is protected by the iothread lock here. */
|
|
block = ram_list.mru_block;
|
|
if (block && addr - block->offset < block->length) {
|
|
goto found;
|
|
}
|
|
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
|
|
if (addr - block->offset < block->length) {
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
|
|
abort();
|
|
|
|
found:
|
|
ram_list.mru_block = block;
|
|
return block;
|
|
}
|
|
|
|
static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
|
|
{
|
|
ram_addr_t start1;
|
|
RAMBlock *block;
|
|
ram_addr_t end;
|
|
|
|
end = TARGET_PAGE_ALIGN(start + length);
|
|
start &= TARGET_PAGE_MASK;
|
|
|
|
block = qemu_get_ram_block(start);
|
|
assert(block == qemu_get_ram_block(end - 1));
|
|
start1 = (uintptr_t)block->host + (start - block->offset);
|
|
cpu_tlb_reset_dirty_all(start1, length);
|
|
}
|
|
|
|
/* Note: start and end must be within the same ram block. */
|
|
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t length,
|
|
unsigned client)
|
|
{
|
|
if (length == 0)
|
|
return;
|
|
cpu_physical_memory_clear_dirty_range(start, length, client);
|
|
|
|
if (tcg_enabled()) {
|
|
tlb_reset_dirty_range_all(start, length);
|
|
}
|
|
}
|
|
|
|
static void cpu_physical_memory_set_dirty_tracking(bool enable)
|
|
{
|
|
in_migration = enable;
|
|
}
|
|
|
|
hwaddr memory_region_section_get_iotlb(CPUState *cpu,
|
|
MemoryRegionSection *section,
|
|
target_ulong vaddr,
|
|
hwaddr paddr, hwaddr xlat,
|
|
int prot,
|
|
target_ulong *address)
|
|
{
|
|
hwaddr iotlb;
|
|
CPUWatchpoint *wp;
|
|
|
|
if (memory_region_is_ram(section->mr)) {
|
|
/* Normal RAM. */
|
|
iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
|
|
+ xlat;
|
|
if (!section->readonly) {
|
|
iotlb |= PHYS_SECTION_NOTDIRTY;
|
|
} else {
|
|
iotlb |= PHYS_SECTION_ROM;
|
|
}
|
|
} else {
|
|
iotlb = section - section->address_space->dispatch->map.sections;
|
|
iotlb += xlat;
|
|
}
|
|
|
|
/* Make accesses to pages with watchpoints go via the
|
|
watchpoint trap routines. */
|
|
QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
|
|
if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
|
|
/* Avoid trapping reads of pages with a write breakpoint. */
|
|
if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
|
|
iotlb = PHYS_SECTION_WATCH + paddr;
|
|
*address |= TLB_MMIO;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return iotlb;
|
|
}
|
|
#endif /* defined(CONFIG_USER_ONLY) */
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
|
|
uint16_t section);
|
|
static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
|
|
|
|
static void *(*phys_mem_alloc)(size_t size) = qemu_anon_ram_alloc;
|
|
|
|
/*
|
|
* Set a custom physical guest memory alloator.
|
|
* Accelerators with unusual needs may need this. Hopefully, we can
|
|
* get rid of it eventually.
|
|
*/
|
|
void phys_mem_set_alloc(void *(*alloc)(size_t))
|
|
{
|
|
phys_mem_alloc = alloc;
|
|
}
|
|
|
|
static uint16_t phys_section_add(PhysPageMap *map,
|
|
MemoryRegionSection *section)
|
|
{
|
|
/* The physical section number is ORed with a page-aligned
|
|
* pointer to produce the iotlb entries. Thus it should
|
|
* never overflow into the page-aligned value.
|
|
*/
|
|
assert(map->sections_nb < TARGET_PAGE_SIZE);
|
|
|
|
if (map->sections_nb == map->sections_nb_alloc) {
|
|
map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
|
|
map->sections = g_renew(MemoryRegionSection, map->sections,
|
|
map->sections_nb_alloc);
|
|
}
|
|
map->sections[map->sections_nb] = *section;
|
|
memory_region_ref(section->mr);
|
|
return map->sections_nb++;
|
|
}
|
|
|
|
static void phys_section_destroy(MemoryRegion *mr)
|
|
{
|
|
memory_region_unref(mr);
|
|
|
|
if (mr->subpage) {
|
|
subpage_t *subpage = container_of(mr, subpage_t, iomem);
|
|
object_unref(OBJECT(&subpage->iomem));
|
|
g_free(subpage);
|
|
}
|
|
}
|
|
|
|
static void phys_sections_free(PhysPageMap *map)
|
|
{
|
|
while (map->sections_nb > 0) {
|
|
MemoryRegionSection *section = &map->sections[--map->sections_nb];
|
|
phys_section_destroy(section->mr);
|
|
}
|
|
g_free(map->sections);
|
|
g_free(map->nodes);
|
|
}
|
|
|
|
static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
|
|
{
|
|
subpage_t *subpage;
|
|
hwaddr base = section->offset_within_address_space
|
|
& TARGET_PAGE_MASK;
|
|
MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
|
|
d->map.nodes, d->map.sections);
|
|
MemoryRegionSection subsection = {
|
|
.offset_within_address_space = base,
|
|
.size = int128_make64(TARGET_PAGE_SIZE),
|
|
};
|
|
hwaddr start, end;
|
|
|
|
assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
|
|
|
|
if (!(existing->mr->subpage)) {
|
|
subpage = subpage_init(d->as, base);
|
|
subsection.address_space = d->as;
|
|
subsection.mr = &subpage->iomem;
|
|
phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
|
|
phys_section_add(&d->map, &subsection));
|
|
} else {
|
|
subpage = container_of(existing->mr, subpage_t, iomem);
|
|
}
|
|
start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
|
|
end = start + int128_get64(section->size) - 1;
|
|
subpage_register(subpage, start, end,
|
|
phys_section_add(&d->map, section));
|
|
}
|
|
|
|
|
|
static void register_multipage(AddressSpaceDispatch *d,
|
|
MemoryRegionSection *section)
|
|
{
|
|
hwaddr start_addr = section->offset_within_address_space;
|
|
uint16_t section_index = phys_section_add(&d->map, section);
|
|
uint64_t num_pages = int128_get64(int128_rshift(section->size,
|
|
TARGET_PAGE_BITS));
|
|
|
|
assert(num_pages);
|
|
phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
|
|
}
|
|
|
|
static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
|
|
{
|
|
AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
|
|
AddressSpaceDispatch *d = as->next_dispatch;
|
|
MemoryRegionSection now = *section, remain = *section;
|
|
Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
|
|
|
|
if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
|
|
uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
|
|
- now.offset_within_address_space;
|
|
|
|
now.size = int128_min(int128_make64(left), now.size);
|
|
register_subpage(d, &now);
|
|
} else {
|
|
now.size = int128_zero();
|
|
}
|
|
while (int128_ne(remain.size, now.size)) {
|
|
remain.size = int128_sub(remain.size, now.size);
|
|
remain.offset_within_address_space += int128_get64(now.size);
|
|
remain.offset_within_region += int128_get64(now.size);
|
|
now = remain;
|
|
if (int128_lt(remain.size, page_size)) {
|
|
register_subpage(d, &now);
|
|
} else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
|
|
now.size = page_size;
|
|
register_subpage(d, &now);
|
|
} else {
|
|
now.size = int128_and(now.size, int128_neg(page_size));
|
|
register_multipage(d, &now);
|
|
}
|
|
}
|
|
}
|
|
|
|
void qemu_flush_coalesced_mmio_buffer(void)
|
|
{
|
|
if (kvm_enabled())
|
|
kvm_flush_coalesced_mmio_buffer();
|
|
}
|
|
|
|
void qemu_mutex_lock_ramlist(void)
|
|
{
|
|
qemu_mutex_lock(&ram_list.mutex);
|
|
}
|
|
|
|
void qemu_mutex_unlock_ramlist(void)
|
|
{
|
|
qemu_mutex_unlock(&ram_list.mutex);
|
|
}
|
|
|
|
#ifdef __linux__
|
|
|
|
#include <sys/vfs.h>
|
|
|
|
#define HUGETLBFS_MAGIC 0x958458f6
|
|
|
|
static long gethugepagesize(const char *path)
|
|
{
|
|
struct statfs fs;
|
|
int ret;
|
|
|
|
do {
|
|
ret = statfs(path, &fs);
|
|
} while (ret != 0 && errno == EINTR);
|
|
|
|
if (ret != 0) {
|
|
perror(path);
|
|
return 0;
|
|
}
|
|
|
|
if (fs.f_type != HUGETLBFS_MAGIC)
|
|
fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
|
|
|
|
return fs.f_bsize;
|
|
}
|
|
|
|
static void *file_ram_alloc(RAMBlock *block,
|
|
ram_addr_t memory,
|
|
const char *path,
|
|
Error **errp)
|
|
{
|
|
char *filename;
|
|
char *sanitized_name;
|
|
char *c;
|
|
void *area;
|
|
int fd;
|
|
unsigned long hpagesize;
|
|
|
|
hpagesize = gethugepagesize(path);
|
|
if (!hpagesize) {
|
|
goto error;
|
|
}
|
|
|
|
if (memory < hpagesize) {
|
|
return NULL;
|
|
}
|
|
|
|
if (kvm_enabled() && !kvm_has_sync_mmu()) {
|
|
error_setg(errp,
|
|
"host lacks kvm mmu notifiers, -mem-path unsupported");
|
|
goto error;
|
|
}
|
|
|
|
/* Make name safe to use with mkstemp by replacing '/' with '_'. */
|
|
sanitized_name = g_strdup(block->mr->name);
|
|
for (c = sanitized_name; *c != '\0'; c++) {
|
|
if (*c == '/')
|
|
*c = '_';
|
|
}
|
|
|
|
filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
|
|
sanitized_name);
|
|
g_free(sanitized_name);
|
|
|
|
fd = mkstemp(filename);
|
|
if (fd < 0) {
|
|
error_setg_errno(errp, errno,
|
|
"unable to create backing store for hugepages");
|
|
g_free(filename);
|
|
goto error;
|
|
}
|
|
unlink(filename);
|
|
g_free(filename);
|
|
|
|
memory = (memory+hpagesize-1) & ~(hpagesize-1);
|
|
|
|
/*
|
|
* ftruncate is not supported by hugetlbfs in older
|
|
* hosts, so don't bother bailing out on errors.
|
|
* If anything goes wrong with it under other filesystems,
|
|
* mmap will fail.
|
|
*/
|
|
if (ftruncate(fd, memory)) {
|
|
perror("ftruncate");
|
|
}
|
|
|
|
area = mmap(0, memory, PROT_READ | PROT_WRITE,
|
|
(block->flags & RAM_SHARED ? MAP_SHARED : MAP_PRIVATE),
|
|
fd, 0);
|
|
if (area == MAP_FAILED) {
|
|
error_setg_errno(errp, errno,
|
|
"unable to map backing store for hugepages");
|
|
close(fd);
|
|
goto error;
|
|
}
|
|
|
|
if (mem_prealloc) {
|
|
os_mem_prealloc(fd, area, memory);
|
|
}
|
|
|
|
block->fd = fd;
|
|
return area;
|
|
|
|
error:
|
|
if (mem_prealloc) {
|
|
exit(1);
|
|
}
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
static ram_addr_t find_ram_offset(ram_addr_t size)
|
|
{
|
|
RAMBlock *block, *next_block;
|
|
ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
|
|
|
|
assert(size != 0); /* it would hand out same offset multiple times */
|
|
|
|
if (QTAILQ_EMPTY(&ram_list.blocks))
|
|
return 0;
|
|
|
|
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
|
|
ram_addr_t end, next = RAM_ADDR_MAX;
|
|
|
|
end = block->offset + block->length;
|
|
|
|
QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
|
|
if (next_block->offset >= end) {
|
|
next = MIN(next, next_block->offset);
|
|
}
|
|
}
|
|
if (next - end >= size && next - end < mingap) {
|
|
offset = end;
|
|
mingap = next - end;
|
|
}
|
|
}
|
|
|
|
if (offset == RAM_ADDR_MAX) {
|
|
fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
|
|
(uint64_t)size);
|
|
abort();
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
|
|
ram_addr_t last_ram_offset(void)
|
|
{
|
|
RAMBlock *block;
|
|
ram_addr_t last = 0;
|
|
|
|
QTAILQ_FOREACH(block, &ram_list.blocks, next)
|
|
last = MAX(last, block->offset + block->length);
|
|
|
|
return last;
|
|
}
|
|
|
|
static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
|
|
{
|
|
int ret;
|
|
|
|
/* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
|
|
if (!qemu_opt_get_bool(qemu_get_machine_opts(),
|
|
"dump-guest-core", true)) {
|
|
ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
|
|
if (ret) {
|
|
perror("qemu_madvise");
|
|
fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
|
|
"but dump_guest_core=off specified\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
static RAMBlock *find_ram_block(ram_addr_t addr)
|
|
{
|
|
RAMBlock *block;
|
|
|
|
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
|
|
if (block->offset == addr) {
|
|
return block;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
|
|
{
|
|
RAMBlock *new_block = find_ram_block(addr);
|
|
RAMBlock *block;
|
|
|
|
assert(new_block);
|
|
assert(!new_block->idstr[0]);
|
|
|
|
if (dev) {
|
|
char *id = qdev_get_dev_path(dev);
|
|
if (id) {
|
|
snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
|
|
g_free(id);
|
|
}
|
|
}
|
|
pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
|
|
|
|
/* This assumes the iothread lock is taken here too. */
|
|
qemu_mutex_lock_ramlist();
|
|
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
|
|
if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
|
|
fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
|
|
new_block->idstr);
|
|
abort();
|
|
}
|
|
}
|
|
qemu_mutex_unlock_ramlist();
|
|
}
|
|
|
|
void qemu_ram_unset_idstr(ram_addr_t addr)
|
|
{
|
|
RAMBlock *block = find_ram_block(addr);
|
|
|
|
if (block) {
|
|
memset(block->idstr, 0, sizeof(block->idstr));
|
|
}
|
|
}
|
|
|
|
static int memory_try_enable_merging(void *addr, size_t len)
|
|
{
|
|
if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
|
|
/* disabled by the user */
|
|
return 0;
|
|
}
|
|
|
|
return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
|
|
}
|
|
|
|
static ram_addr_t ram_block_add(RAMBlock *new_block)
|
|
{
|
|
RAMBlock *block;
|
|
ram_addr_t old_ram_size, new_ram_size;
|
|
|
|
old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
|
|
|
|
/* This assumes the iothread lock is taken here too. */
|
|
qemu_mutex_lock_ramlist();
|
|
new_block->offset = find_ram_offset(new_block->length);
|
|
|
|
if (!new_block->host) {
|
|
if (xen_enabled()) {
|
|
xen_ram_alloc(new_block->offset, new_block->length, new_block->mr);
|
|
} else {
|
|
new_block->host = phys_mem_alloc(new_block->length);
|
|
if (!new_block->host) {
|
|
fprintf(stderr, "Cannot set up guest memory '%s': %s\n",
|
|
new_block->mr->name, strerror(errno));
|
|
exit(1);
|
|
}
|
|
memory_try_enable_merging(new_block->host, new_block->length);
|
|
}
|
|
}
|
|
|
|
/* Keep the list sorted from biggest to smallest block. */
|
|
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
|
|
if (block->length < new_block->length) {
|
|
break;
|
|
}
|
|
}
|
|
if (block) {
|
|
QTAILQ_INSERT_BEFORE(block, new_block, next);
|
|
} else {
|
|
QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
|
|
}
|
|
ram_list.mru_block = NULL;
|
|
|
|
ram_list.version++;
|
|
qemu_mutex_unlock_ramlist();
|
|
|
|
new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
|
|
|
|
if (new_ram_size > old_ram_size) {
|
|
int i;
|
|
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
|
|
ram_list.dirty_memory[i] =
|
|
bitmap_zero_extend(ram_list.dirty_memory[i],
|
|
old_ram_size, new_ram_size);
|
|
}
|
|
}
|
|
cpu_physical_memory_set_dirty_range(new_block->offset, new_block->length);
|
|
|
|
qemu_ram_setup_dump(new_block->host, new_block->length);
|
|
qemu_madvise(new_block->host, new_block->length, QEMU_MADV_HUGEPAGE);
|
|
qemu_madvise(new_block->host, new_block->length, QEMU_MADV_DONTFORK);
|
|
|
|
if (kvm_enabled()) {
|
|
kvm_setup_guest_memory(new_block->host, new_block->length);
|
|
}
|
|
|
|
return new_block->offset;
|
|
}
|
|
|
|
#ifdef __linux__
|
|
ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
|
|
bool share, const char *mem_path,
|
|
Error **errp)
|
|
{
|
|
RAMBlock *new_block;
|
|
|
|
if (xen_enabled()) {
|
|
error_setg(errp, "-mem-path not supported with Xen");
|
|
return -1;
|
|
}
|
|
|
|
if (phys_mem_alloc != qemu_anon_ram_alloc) {
|
|
/*
|
|
* file_ram_alloc() needs to allocate just like
|
|
* phys_mem_alloc, but we haven't bothered to provide
|
|
* a hook there.
|
|
*/
|
|
error_setg(errp,
|
|
"-mem-path not supported with this accelerator");
|
|
return -1;
|
|
}
|
|
|
|
size = TARGET_PAGE_ALIGN(size);
|
|
new_block = g_malloc0(sizeof(*new_block));
|
|
new_block->mr = mr;
|
|
new_block->length = size;
|
|
new_block->flags = share ? RAM_SHARED : 0;
|
|
new_block->host = file_ram_alloc(new_block, size,
|
|
mem_path, errp);
|
|
if (!new_block->host) {
|
|
g_free(new_block);
|
|
return -1;
|
|
}
|
|
|
|
return ram_block_add(new_block);
|
|
}
|
|
#endif
|
|
|
|
ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
|
|
MemoryRegion *mr)
|
|
{
|
|
RAMBlock *new_block;
|
|
|
|
size = TARGET_PAGE_ALIGN(size);
|
|
new_block = g_malloc0(sizeof(*new_block));
|
|
new_block->mr = mr;
|
|
new_block->length = size;
|
|
new_block->fd = -1;
|
|
new_block->host = host;
|
|
if (host) {
|
|
new_block->flags |= RAM_PREALLOC;
|
|
}
|
|
return ram_block_add(new_block);
|
|
}
|
|
|
|
ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
|
|
{
|
|
return qemu_ram_alloc_from_ptr(size, NULL, mr);
|
|
}
|
|
|
|
void qemu_ram_free_from_ptr(ram_addr_t addr)
|
|
{
|
|
RAMBlock *block;
|
|
|
|
/* This assumes the iothread lock is taken here too. */
|
|
qemu_mutex_lock_ramlist();
|
|
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
|
|
if (addr == block->offset) {
|
|
QTAILQ_REMOVE(&ram_list.blocks, block, next);
|
|
ram_list.mru_block = NULL;
|
|
ram_list.version++;
|
|
g_free(block);
|
|
break;
|
|
}
|
|
}
|
|
qemu_mutex_unlock_ramlist();
|
|
}
|
|
|
|
void qemu_ram_free(ram_addr_t addr)
|
|
{
|
|
RAMBlock *block;
|
|
|
|
/* This assumes the iothread lock is taken here too. */
|
|
qemu_mutex_lock_ramlist();
|
|
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
|
|
if (addr == block->offset) {
|
|
QTAILQ_REMOVE(&ram_list.blocks, block, next);
|
|
ram_list.mru_block = NULL;
|
|
ram_list.version++;
|
|
if (block->flags & RAM_PREALLOC) {
|
|
;
|
|
} else if (xen_enabled()) {
|
|
xen_invalidate_map_cache_entry(block->host);
|
|
#ifndef _WIN32
|
|
} else if (block->fd >= 0) {
|
|
munmap(block->host, block->length);
|
|
close(block->fd);
|
|
#endif
|
|
} else {
|
|
qemu_anon_ram_free(block->host, block->length);
|
|
}
|
|
g_free(block);
|
|
break;
|
|
}
|
|
}
|
|
qemu_mutex_unlock_ramlist();
|
|
|
|
}
|
|
|
|
#ifndef _WIN32
|
|
void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
|
|
{
|
|
RAMBlock *block;
|
|
ram_addr_t offset;
|
|
int flags;
|
|
void *area, *vaddr;
|
|
|
|
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
|
|
offset = addr - block->offset;
|
|
if (offset < block->length) {
|
|
vaddr = block->host + offset;
|
|
if (block->flags & RAM_PREALLOC) {
|
|
;
|
|
} else if (xen_enabled()) {
|
|
abort();
|
|
} else {
|
|
flags = MAP_FIXED;
|
|
munmap(vaddr, length);
|
|
if (block->fd >= 0) {
|
|
flags |= (block->flags & RAM_SHARED ?
|
|
MAP_SHARED : MAP_PRIVATE);
|
|
area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
|
|
flags, block->fd, offset);
|
|
} else {
|
|
/*
|
|
* Remap needs to match alloc. Accelerators that
|
|
* set phys_mem_alloc never remap. If they did,
|
|
* we'd need a remap hook here.
|
|
*/
|
|
assert(phys_mem_alloc == qemu_anon_ram_alloc);
|
|
|
|
flags |= MAP_PRIVATE | MAP_ANONYMOUS;
|
|
area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
|
|
flags, -1, 0);
|
|
}
|
|
if (area != vaddr) {
|
|
fprintf(stderr, "Could not remap addr: "
|
|
RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
|
|
length, addr);
|
|
exit(1);
|
|
}
|
|
memory_try_enable_merging(vaddr, length);
|
|
qemu_ram_setup_dump(vaddr, length);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
#endif /* !_WIN32 */
|
|
|
|
int qemu_get_ram_fd(ram_addr_t addr)
|
|
{
|
|
RAMBlock *block = qemu_get_ram_block(addr);
|
|
|
|
return block->fd;
|
|
}
|
|
|
|
void *qemu_get_ram_block_host_ptr(ram_addr_t addr)
|
|
{
|
|
RAMBlock *block = qemu_get_ram_block(addr);
|
|
|
|
return block->host;
|
|
}
|
|
|
|
/* Return a host pointer to ram allocated with qemu_ram_alloc.
|
|
With the exception of the softmmu code in this file, this should
|
|
only be used for local memory (e.g. video ram) that the device owns,
|
|
and knows it isn't going to access beyond the end of the block.
|
|
|
|
It should not be used for general purpose DMA.
|
|
Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
|
|
*/
|
|
void *qemu_get_ram_ptr(ram_addr_t addr)
|
|
{
|
|
RAMBlock *block = qemu_get_ram_block(addr);
|
|
|
|
if (xen_enabled()) {
|
|
/* We need to check if the requested address is in the RAM
|
|
* because we don't want to map the entire memory in QEMU.
|
|
* In that case just map until the end of the page.
|
|
*/
|
|
if (block->offset == 0) {
|
|
return xen_map_cache(addr, 0, 0);
|
|
} else if (block->host == NULL) {
|
|
block->host =
|
|
xen_map_cache(block->offset, block->length, 1);
|
|
}
|
|
}
|
|
return block->host + (addr - block->offset);
|
|
}
|
|
|
|
/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
|
|
* but takes a size argument */
|
|
static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
|
|
{
|
|
if (*size == 0) {
|
|
return NULL;
|
|
}
|
|
if (xen_enabled()) {
|
|
return xen_map_cache(addr, *size, 1);
|
|
} else {
|
|
RAMBlock *block;
|
|
|
|
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
|
|
if (addr - block->offset < block->length) {
|
|
if (addr - block->offset + *size > block->length)
|
|
*size = block->length - addr + block->offset;
|
|
return block->host + (addr - block->offset);
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
|
|
abort();
|
|
}
|
|
}
|
|
|
|
/* Some of the softmmu routines need to translate from a host pointer
|
|
(typically a TLB entry) back to a ram offset. */
|
|
MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
|
|
{
|
|
RAMBlock *block;
|
|
uint8_t *host = ptr;
|
|
|
|
if (xen_enabled()) {
|
|
*ram_addr = xen_ram_addr_from_mapcache(ptr);
|
|
return qemu_get_ram_block(*ram_addr)->mr;
|
|
}
|
|
|
|
block = ram_list.mru_block;
|
|
if (block && block->host && host - block->host < block->length) {
|
|
goto found;
|
|
}
|
|
|
|
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
|
|
/* This case append when the block is not mapped. */
|
|
if (block->host == NULL) {
|
|
continue;
|
|
}
|
|
if (host - block->host < block->length) {
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
|
|
found:
|
|
*ram_addr = block->offset + (host - block->host);
|
|
return block->mr;
|
|
}
|
|
|
|
static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
|
|
tb_invalidate_phys_page_fast(ram_addr, size);
|
|
}
|
|
switch (size) {
|
|
case 1:
|
|
stb_p(qemu_get_ram_ptr(ram_addr), val);
|
|
break;
|
|
case 2:
|
|
stw_p(qemu_get_ram_ptr(ram_addr), val);
|
|
break;
|
|
case 4:
|
|
stl_p(qemu_get_ram_ptr(ram_addr), val);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
cpu_physical_memory_set_dirty_range_nocode(ram_addr, size);
|
|
/* we remove the notdirty callback only if the code has been
|
|
flushed */
|
|
if (!cpu_physical_memory_is_clean(ram_addr)) {
|
|
CPUArchState *env = current_cpu->env_ptr;
|
|
tlb_set_dirty(env, current_cpu->mem_io_vaddr);
|
|
}
|
|
}
|
|
|
|
static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
|
|
unsigned size, bool is_write)
|
|
{
|
|
return is_write;
|
|
}
|
|
|
|
static const MemoryRegionOps notdirty_mem_ops = {
|
|
.write = notdirty_mem_write,
|
|
.valid.accepts = notdirty_mem_accepts,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
/* Generate a debug exception if a watchpoint has been hit. */
|
|
static void check_watchpoint(int offset, int len_mask, int flags)
|
|
{
|
|
CPUState *cpu = current_cpu;
|
|
CPUArchState *env = cpu->env_ptr;
|
|
target_ulong pc, cs_base;
|
|
target_ulong vaddr;
|
|
CPUWatchpoint *wp;
|
|
int cpu_flags;
|
|
|
|
if (cpu->watchpoint_hit) {
|
|
/* We re-entered the check after replacing the TB. Now raise
|
|
* the debug interrupt so that is will trigger after the
|
|
* current instruction. */
|
|
cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
|
|
return;
|
|
}
|
|
vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
|
|
QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
|
|
if ((vaddr == (wp->vaddr & len_mask) ||
|
|
(vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
|
|
wp->flags |= BP_WATCHPOINT_HIT;
|
|
if (!cpu->watchpoint_hit) {
|
|
cpu->watchpoint_hit = wp;
|
|
tb_check_watchpoint(cpu);
|
|
if (wp->flags & BP_STOP_BEFORE_ACCESS) {
|
|
cpu->exception_index = EXCP_DEBUG;
|
|
cpu_loop_exit(cpu);
|
|
} else {
|
|
cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
|
|
tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
|
|
cpu_resume_from_signal(cpu, NULL);
|
|
}
|
|
}
|
|
} else {
|
|
wp->flags &= ~BP_WATCHPOINT_HIT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
|
|
so these check for a hit then pass through to the normal out-of-line
|
|
phys routines. */
|
|
static uint64_t watch_mem_read(void *opaque, hwaddr addr,
|
|
unsigned size)
|
|
{
|
|
check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
|
|
switch (size) {
|
|
case 1: return ldub_phys(&address_space_memory, addr);
|
|
case 2: return lduw_phys(&address_space_memory, addr);
|
|
case 4: return ldl_phys(&address_space_memory, addr);
|
|
default: abort();
|
|
}
|
|
}
|
|
|
|
static void watch_mem_write(void *opaque, hwaddr addr,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
|
|
switch (size) {
|
|
case 1:
|
|
stb_phys(&address_space_memory, addr, val);
|
|
break;
|
|
case 2:
|
|
stw_phys(&address_space_memory, addr, val);
|
|
break;
|
|
case 4:
|
|
stl_phys(&address_space_memory, addr, val);
|
|
break;
|
|
default: abort();
|
|
}
|
|
}
|
|
|
|
static const MemoryRegionOps watch_mem_ops = {
|
|
.read = watch_mem_read,
|
|
.write = watch_mem_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static uint64_t subpage_read(void *opaque, hwaddr addr,
|
|
unsigned len)
|
|
{
|
|
subpage_t *subpage = opaque;
|
|
uint8_t buf[4];
|
|
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
|
|
subpage, len, addr);
|
|
#endif
|
|
address_space_read(subpage->as, addr + subpage->base, buf, len);
|
|
switch (len) {
|
|
case 1:
|
|
return ldub_p(buf);
|
|
case 2:
|
|
return lduw_p(buf);
|
|
case 4:
|
|
return ldl_p(buf);
|
|
default:
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static void subpage_write(void *opaque, hwaddr addr,
|
|
uint64_t value, unsigned len)
|
|
{
|
|
subpage_t *subpage = opaque;
|
|
uint8_t buf[4];
|
|
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: subpage %p len %u addr " TARGET_FMT_plx
|
|
" value %"PRIx64"\n",
|
|
__func__, subpage, len, addr, value);
|
|
#endif
|
|
switch (len) {
|
|
case 1:
|
|
stb_p(buf, value);
|
|
break;
|
|
case 2:
|
|
stw_p(buf, value);
|
|
break;
|
|
case 4:
|
|
stl_p(buf, value);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
address_space_write(subpage->as, addr + subpage->base, buf, len);
|
|
}
|
|
|
|
static bool subpage_accepts(void *opaque, hwaddr addr,
|
|
unsigned len, bool is_write)
|
|
{
|
|
subpage_t *subpage = opaque;
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
|
|
__func__, subpage, is_write ? 'w' : 'r', len, addr);
|
|
#endif
|
|
|
|
return address_space_access_valid(subpage->as, addr + subpage->base,
|
|
len, is_write);
|
|
}
|
|
|
|
static const MemoryRegionOps subpage_ops = {
|
|
.read = subpage_read,
|
|
.write = subpage_write,
|
|
.valid.accepts = subpage_accepts,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
|
|
uint16_t section)
|
|
{
|
|
int idx, eidx;
|
|
|
|
if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
|
|
return -1;
|
|
idx = SUBPAGE_IDX(start);
|
|
eidx = SUBPAGE_IDX(end);
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
|
|
__func__, mmio, start, end, idx, eidx, section);
|
|
#endif
|
|
for (; idx <= eidx; idx++) {
|
|
mmio->sub_section[idx] = section;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
|
|
{
|
|
subpage_t *mmio;
|
|
|
|
mmio = g_malloc0(sizeof(subpage_t));
|
|
|
|
mmio->as = as;
|
|
mmio->base = base;
|
|
memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
|
|
NULL, TARGET_PAGE_SIZE);
|
|
mmio->iomem.subpage = true;
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
|
|
mmio, base, TARGET_PAGE_SIZE);
|
|
#endif
|
|
subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
|
|
|
|
return mmio;
|
|
}
|
|
|
|
static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
|
|
MemoryRegion *mr)
|
|
{
|
|
assert(as);
|
|
MemoryRegionSection section = {
|
|
.address_space = as,
|
|
.mr = mr,
|
|
.offset_within_address_space = 0,
|
|
.offset_within_region = 0,
|
|
.size = int128_2_64(),
|
|
};
|
|
|
|
return phys_section_add(map, §ion);
|
|
}
|
|
|
|
MemoryRegion *iotlb_to_region(AddressSpace *as, hwaddr index)
|
|
{
|
|
return as->dispatch->map.sections[index & ~TARGET_PAGE_MASK].mr;
|
|
}
|
|
|
|
static void io_mem_init(void)
|
|
{
|
|
memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
|
|
memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
|
|
NULL, UINT64_MAX);
|
|
memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL,
|
|
NULL, UINT64_MAX);
|
|
memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
|
|
NULL, UINT64_MAX);
|
|
}
|
|
|
|
static void mem_begin(MemoryListener *listener)
|
|
{
|
|
AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
|
|
AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
|
|
uint16_t n;
|
|
|
|
n = dummy_section(&d->map, as, &io_mem_unassigned);
|
|
assert(n == PHYS_SECTION_UNASSIGNED);
|
|
n = dummy_section(&d->map, as, &io_mem_notdirty);
|
|
assert(n == PHYS_SECTION_NOTDIRTY);
|
|
n = dummy_section(&d->map, as, &io_mem_rom);
|
|
assert(n == PHYS_SECTION_ROM);
|
|
n = dummy_section(&d->map, as, &io_mem_watch);
|
|
assert(n == PHYS_SECTION_WATCH);
|
|
|
|
d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
|
|
d->as = as;
|
|
as->next_dispatch = d;
|
|
}
|
|
|
|
static void mem_commit(MemoryListener *listener)
|
|
{
|
|
AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
|
|
AddressSpaceDispatch *cur = as->dispatch;
|
|
AddressSpaceDispatch *next = as->next_dispatch;
|
|
|
|
phys_page_compact_all(next, next->map.nodes_nb);
|
|
|
|
as->dispatch = next;
|
|
|
|
if (cur) {
|
|
phys_sections_free(&cur->map);
|
|
g_free(cur);
|
|
}
|
|
}
|
|
|
|
static void tcg_commit(MemoryListener *listener)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
/* since each CPU stores ram addresses in its TLB cache, we must
|
|
reset the modified entries */
|
|
/* XXX: slow ! */
|
|
CPU_FOREACH(cpu) {
|
|
/* FIXME: Disentangle the cpu.h circular files deps so we can
|
|
directly get the right CPU from listener. */
|
|
if (cpu->tcg_as_listener != listener) {
|
|
continue;
|
|
}
|
|
tlb_flush(cpu, 1);
|
|
}
|
|
}
|
|
|
|
static void core_log_global_start(MemoryListener *listener)
|
|
{
|
|
cpu_physical_memory_set_dirty_tracking(true);
|
|
}
|
|
|
|
static void core_log_global_stop(MemoryListener *listener)
|
|
{
|
|
cpu_physical_memory_set_dirty_tracking(false);
|
|
}
|
|
|
|
static MemoryListener core_memory_listener = {
|
|
.log_global_start = core_log_global_start,
|
|
.log_global_stop = core_log_global_stop,
|
|
.priority = 1,
|
|
};
|
|
|
|
void address_space_init_dispatch(AddressSpace *as)
|
|
{
|
|
as->dispatch = NULL;
|
|
as->dispatch_listener = (MemoryListener) {
|
|
.begin = mem_begin,
|
|
.commit = mem_commit,
|
|
.region_add = mem_add,
|
|
.region_nop = mem_add,
|
|
.priority = 0,
|
|
};
|
|
memory_listener_register(&as->dispatch_listener, as);
|
|
}
|
|
|
|
void address_space_destroy_dispatch(AddressSpace *as)
|
|
{
|
|
AddressSpaceDispatch *d = as->dispatch;
|
|
|
|
memory_listener_unregister(&as->dispatch_listener);
|
|
g_free(d);
|
|
as->dispatch = NULL;
|
|
}
|
|
|
|
static void memory_map_init(void)
|
|
{
|
|
system_memory = g_malloc(sizeof(*system_memory));
|
|
|
|
memory_region_init(system_memory, NULL, "system", UINT64_MAX);
|
|
address_space_init(&address_space_memory, system_memory, "memory");
|
|
|
|
system_io = g_malloc(sizeof(*system_io));
|
|
memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
|
|
65536);
|
|
address_space_init(&address_space_io, system_io, "I/O");
|
|
|
|
memory_listener_register(&core_memory_listener, &address_space_memory);
|
|
}
|
|
|
|
MemoryRegion *get_system_memory(void)
|
|
{
|
|
return system_memory;
|
|
}
|
|
|
|
MemoryRegion *get_system_io(void)
|
|
{
|
|
return system_io;
|
|
}
|
|
|
|
#endif /* !defined(CONFIG_USER_ONLY) */
|
|
|
|
/* physical memory access (slow version, mainly for debug) */
|
|
#if defined(CONFIG_USER_ONLY)
|
|
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
|
|
uint8_t *buf, int len, int is_write)
|
|
{
|
|
int l, flags;
|
|
target_ulong page;
|
|
void * p;
|
|
|
|
while (len > 0) {
|
|
page = addr & TARGET_PAGE_MASK;
|
|
l = (page + TARGET_PAGE_SIZE) - addr;
|
|
if (l > len)
|
|
l = len;
|
|
flags = page_get_flags(page);
|
|
if (!(flags & PAGE_VALID))
|
|
return -1;
|
|
if (is_write) {
|
|
if (!(flags & PAGE_WRITE))
|
|
return -1;
|
|
/* XXX: this code should not depend on lock_user */
|
|
if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
|
|
return -1;
|
|
memcpy(p, buf, l);
|
|
unlock_user(p, addr, l);
|
|
} else {
|
|
if (!(flags & PAGE_READ))
|
|
return -1;
|
|
/* XXX: this code should not depend on lock_user */
|
|
if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
|
|
return -1;
|
|
memcpy(buf, p, l);
|
|
unlock_user(p, addr, 0);
|
|
}
|
|
len -= l;
|
|
buf += l;
|
|
addr += l;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#else
|
|
|
|
static void invalidate_and_set_dirty(hwaddr addr,
|
|
hwaddr length)
|
|
{
|
|
if (cpu_physical_memory_is_clean(addr)) {
|
|
/* invalidate code */
|
|
tb_invalidate_phys_page_range(addr, addr + length, 0);
|
|
/* set dirty bit */
|
|
cpu_physical_memory_set_dirty_range_nocode(addr, length);
|
|
}
|
|
xen_modified_memory(addr, length);
|
|
}
|
|
|
|
static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
|
|
{
|
|
unsigned access_size_max = mr->ops->valid.max_access_size;
|
|
|
|
/* Regions are assumed to support 1-4 byte accesses unless
|
|
otherwise specified. */
|
|
if (access_size_max == 0) {
|
|
access_size_max = 4;
|
|
}
|
|
|
|
/* Bound the maximum access by the alignment of the address. */
|
|
if (!mr->ops->impl.unaligned) {
|
|
unsigned align_size_max = addr & -addr;
|
|
if (align_size_max != 0 && align_size_max < access_size_max) {
|
|
access_size_max = align_size_max;
|
|
}
|
|
}
|
|
|
|
/* Don't attempt accesses larger than the maximum. */
|
|
if (l > access_size_max) {
|
|
l = access_size_max;
|
|
}
|
|
if (l & (l - 1)) {
|
|
l = 1 << (qemu_fls(l) - 1);
|
|
}
|
|
|
|
return l;
|
|
}
|
|
|
|
bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
|
|
int len, bool is_write)
|
|
{
|
|
hwaddr l;
|
|
uint8_t *ptr;
|
|
uint64_t val;
|
|
hwaddr addr1;
|
|
MemoryRegion *mr;
|
|
bool error = false;
|
|
|
|
while (len > 0) {
|
|
l = len;
|
|
mr = address_space_translate(as, addr, &addr1, &l, is_write);
|
|
|
|
if (is_write) {
|
|
if (!memory_access_is_direct(mr, is_write)) {
|
|
l = memory_access_size(mr, l, addr1);
|
|
/* XXX: could force current_cpu to NULL to avoid
|
|
potential bugs */
|
|
switch (l) {
|
|
case 8:
|
|
/* 64 bit write access */
|
|
val = ldq_p(buf);
|
|
error |= io_mem_write(mr, addr1, val, 8);
|
|
break;
|
|
case 4:
|
|
/* 32 bit write access */
|
|
val = ldl_p(buf);
|
|
error |= io_mem_write(mr, addr1, val, 4);
|
|
break;
|
|
case 2:
|
|
/* 16 bit write access */
|
|
val = lduw_p(buf);
|
|
error |= io_mem_write(mr, addr1, val, 2);
|
|
break;
|
|
case 1:
|
|
/* 8 bit write access */
|
|
val = ldub_p(buf);
|
|
error |= io_mem_write(mr, addr1, val, 1);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
} else {
|
|
addr1 += memory_region_get_ram_addr(mr);
|
|
/* RAM case */
|
|
ptr = qemu_get_ram_ptr(addr1);
|
|
memcpy(ptr, buf, l);
|
|
invalidate_and_set_dirty(addr1, l);
|
|
}
|
|
} else {
|
|
if (!memory_access_is_direct(mr, is_write)) {
|
|
/* I/O case */
|
|
l = memory_access_size(mr, l, addr1);
|
|
switch (l) {
|
|
case 8:
|
|
/* 64 bit read access */
|
|
error |= io_mem_read(mr, addr1, &val, 8);
|
|
stq_p(buf, val);
|
|
break;
|
|
case 4:
|
|
/* 32 bit read access */
|
|
error |= io_mem_read(mr, addr1, &val, 4);
|
|
stl_p(buf, val);
|
|
break;
|
|
case 2:
|
|
/* 16 bit read access */
|
|
error |= io_mem_read(mr, addr1, &val, 2);
|
|
stw_p(buf, val);
|
|
break;
|
|
case 1:
|
|
/* 8 bit read access */
|
|
error |= io_mem_read(mr, addr1, &val, 1);
|
|
stb_p(buf, val);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
} else {
|
|
/* RAM case */
|
|
ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
|
|
memcpy(buf, ptr, l);
|
|
}
|
|
}
|
|
len -= l;
|
|
buf += l;
|
|
addr += l;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
bool address_space_write(AddressSpace *as, hwaddr addr,
|
|
const uint8_t *buf, int len)
|
|
{
|
|
return address_space_rw(as, addr, (uint8_t *)buf, len, true);
|
|
}
|
|
|
|
bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
|
|
{
|
|
return address_space_rw(as, addr, buf, len, false);
|
|
}
|
|
|
|
|
|
void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
|
|
int len, int is_write)
|
|
{
|
|
address_space_rw(&address_space_memory, addr, buf, len, is_write);
|
|
}
|
|
|
|
enum write_rom_type {
|
|
WRITE_DATA,
|
|
FLUSH_CACHE,
|
|
};
|
|
|
|
static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
|
|
hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
|
|
{
|
|
hwaddr l;
|
|
uint8_t *ptr;
|
|
hwaddr addr1;
|
|
MemoryRegion *mr;
|
|
|
|
while (len > 0) {
|
|
l = len;
|
|
mr = address_space_translate(as, addr, &addr1, &l, true);
|
|
|
|
if (!(memory_region_is_ram(mr) ||
|
|
memory_region_is_romd(mr))) {
|
|
/* do nothing */
|
|
} else {
|
|
addr1 += memory_region_get_ram_addr(mr);
|
|
/* ROM/RAM case */
|
|
ptr = qemu_get_ram_ptr(addr1);
|
|
switch (type) {
|
|
case WRITE_DATA:
|
|
memcpy(ptr, buf, l);
|
|
invalidate_and_set_dirty(addr1, l);
|
|
break;
|
|
case FLUSH_CACHE:
|
|
flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
|
|
break;
|
|
}
|
|
}
|
|
len -= l;
|
|
buf += l;
|
|
addr += l;
|
|
}
|
|
}
|
|
|
|
/* used for ROM loading : can write in RAM and ROM */
|
|
void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
|
|
const uint8_t *buf, int len)
|
|
{
|
|
cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
|
|
}
|
|
|
|
void cpu_flush_icache_range(hwaddr start, int len)
|
|
{
|
|
/*
|
|
* This function should do the same thing as an icache flush that was
|
|
* triggered from within the guest. For TCG we are always cache coherent,
|
|
* so there is no need to flush anything. For KVM / Xen we need to flush
|
|
* the host's instruction cache at least.
|
|
*/
|
|
if (tcg_enabled()) {
|
|
return;
|
|
}
|
|
|
|
cpu_physical_memory_write_rom_internal(&address_space_memory,
|
|
start, NULL, len, FLUSH_CACHE);
|
|
}
|
|
|
|
typedef struct {
|
|
MemoryRegion *mr;
|
|
void *buffer;
|
|
hwaddr addr;
|
|
hwaddr len;
|
|
} BounceBuffer;
|
|
|
|
static BounceBuffer bounce;
|
|
|
|
typedef struct MapClient {
|
|
void *opaque;
|
|
void (*callback)(void *opaque);
|
|
QLIST_ENTRY(MapClient) link;
|
|
} MapClient;
|
|
|
|
static QLIST_HEAD(map_client_list, MapClient) map_client_list
|
|
= QLIST_HEAD_INITIALIZER(map_client_list);
|
|
|
|
void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
|
|
{
|
|
MapClient *client = g_malloc(sizeof(*client));
|
|
|
|
client->opaque = opaque;
|
|
client->callback = callback;
|
|
QLIST_INSERT_HEAD(&map_client_list, client, link);
|
|
return client;
|
|
}
|
|
|
|
static void cpu_unregister_map_client(void *_client)
|
|
{
|
|
MapClient *client = (MapClient *)_client;
|
|
|
|
QLIST_REMOVE(client, link);
|
|
g_free(client);
|
|
}
|
|
|
|
static void cpu_notify_map_clients(void)
|
|
{
|
|
MapClient *client;
|
|
|
|
while (!QLIST_EMPTY(&map_client_list)) {
|
|
client = QLIST_FIRST(&map_client_list);
|
|
client->callback(client->opaque);
|
|
cpu_unregister_map_client(client);
|
|
}
|
|
}
|
|
|
|
bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
|
|
{
|
|
MemoryRegion *mr;
|
|
hwaddr l, xlat;
|
|
|
|
while (len > 0) {
|
|
l = len;
|
|
mr = address_space_translate(as, addr, &xlat, &l, is_write);
|
|
if (!memory_access_is_direct(mr, is_write)) {
|
|
l = memory_access_size(mr, l, addr);
|
|
if (!memory_region_access_valid(mr, xlat, l, is_write)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
len -= l;
|
|
addr += l;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Map a physical memory region into a host virtual address.
|
|
* May map a subset of the requested range, given by and returned in *plen.
|
|
* May return NULL if resources needed to perform the mapping are exhausted.
|
|
* Use only for reads OR writes - not for read-modify-write operations.
|
|
* Use cpu_register_map_client() to know when retrying the map operation is
|
|
* likely to succeed.
|
|
*/
|
|
void *address_space_map(AddressSpace *as,
|
|
hwaddr addr,
|
|
hwaddr *plen,
|
|
bool is_write)
|
|
{
|
|
hwaddr len = *plen;
|
|
hwaddr done = 0;
|
|
hwaddr l, xlat, base;
|
|
MemoryRegion *mr, *this_mr;
|
|
ram_addr_t raddr;
|
|
|
|
if (len == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
l = len;
|
|
mr = address_space_translate(as, addr, &xlat, &l, is_write);
|
|
if (!memory_access_is_direct(mr, is_write)) {
|
|
if (bounce.buffer) {
|
|
return NULL;
|
|
}
|
|
/* Avoid unbounded allocations */
|
|
l = MIN(l, TARGET_PAGE_SIZE);
|
|
bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
|
|
bounce.addr = addr;
|
|
bounce.len = l;
|
|
|
|
memory_region_ref(mr);
|
|
bounce.mr = mr;
|
|
if (!is_write) {
|
|
address_space_read(as, addr, bounce.buffer, l);
|
|
}
|
|
|
|
*plen = l;
|
|
return bounce.buffer;
|
|
}
|
|
|
|
base = xlat;
|
|
raddr = memory_region_get_ram_addr(mr);
|
|
|
|
for (;;) {
|
|
len -= l;
|
|
addr += l;
|
|
done += l;
|
|
if (len == 0) {
|
|
break;
|
|
}
|
|
|
|
l = len;
|
|
this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
|
|
if (this_mr != mr || xlat != base + done) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
memory_region_ref(mr);
|
|
*plen = done;
|
|
return qemu_ram_ptr_length(raddr + base, plen);
|
|
}
|
|
|
|
/* Unmaps a memory region previously mapped by address_space_map().
|
|
* Will also mark the memory as dirty if is_write == 1. access_len gives
|
|
* the amount of memory that was actually read or written by the caller.
|
|
*/
|
|
void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
|
|
int is_write, hwaddr access_len)
|
|
{
|
|
if (buffer != bounce.buffer) {
|
|
MemoryRegion *mr;
|
|
ram_addr_t addr1;
|
|
|
|
mr = qemu_ram_addr_from_host(buffer, &addr1);
|
|
assert(mr != NULL);
|
|
if (is_write) {
|
|
invalidate_and_set_dirty(addr1, access_len);
|
|
}
|
|
if (xen_enabled()) {
|
|
xen_invalidate_map_cache_entry(buffer);
|
|
}
|
|
memory_region_unref(mr);
|
|
return;
|
|
}
|
|
if (is_write) {
|
|
address_space_write(as, bounce.addr, bounce.buffer, access_len);
|
|
}
|
|
qemu_vfree(bounce.buffer);
|
|
bounce.buffer = NULL;
|
|
memory_region_unref(bounce.mr);
|
|
cpu_notify_map_clients();
|
|
}
|
|
|
|
void *cpu_physical_memory_map(hwaddr addr,
|
|
hwaddr *plen,
|
|
int is_write)
|
|
{
|
|
return address_space_map(&address_space_memory, addr, plen, is_write);
|
|
}
|
|
|
|
void cpu_physical_memory_unmap(void *buffer, hwaddr len,
|
|
int is_write, hwaddr access_len)
|
|
{
|
|
return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
|
|
}
|
|
|
|
/* warning: addr must be aligned */
|
|
static inline uint32_t ldl_phys_internal(AddressSpace *as, hwaddr addr,
|
|
enum device_endian endian)
|
|
{
|
|
uint8_t *ptr;
|
|
uint64_t val;
|
|
MemoryRegion *mr;
|
|
hwaddr l = 4;
|
|
hwaddr addr1;
|
|
|
|
mr = address_space_translate(as, addr, &addr1, &l, false);
|
|
if (l < 4 || !memory_access_is_direct(mr, false)) {
|
|
/* I/O case */
|
|
io_mem_read(mr, addr1, &val, 4);
|
|
#if defined(TARGET_WORDS_BIGENDIAN)
|
|
if (endian == DEVICE_LITTLE_ENDIAN) {
|
|
val = bswap32(val);
|
|
}
|
|
#else
|
|
if (endian == DEVICE_BIG_ENDIAN) {
|
|
val = bswap32(val);
|
|
}
|
|
#endif
|
|
} else {
|
|
/* RAM case */
|
|
ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
|
|
& TARGET_PAGE_MASK)
|
|
+ addr1);
|
|
switch (endian) {
|
|
case DEVICE_LITTLE_ENDIAN:
|
|
val = ldl_le_p(ptr);
|
|
break;
|
|
case DEVICE_BIG_ENDIAN:
|
|
val = ldl_be_p(ptr);
|
|
break;
|
|
default:
|
|
val = ldl_p(ptr);
|
|
break;
|
|
}
|
|
}
|
|
return val;
|
|
}
|
|
|
|
uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
|
|
{
|
|
return ldl_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN);
|
|
}
|
|
|
|
uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
|
|
{
|
|
return ldl_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN);
|
|
}
|
|
|
|
uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
|
|
{
|
|
return ldl_phys_internal(as, addr, DEVICE_BIG_ENDIAN);
|
|
}
|
|
|
|
/* warning: addr must be aligned */
|
|
static inline uint64_t ldq_phys_internal(AddressSpace *as, hwaddr addr,
|
|
enum device_endian endian)
|
|
{
|
|
uint8_t *ptr;
|
|
uint64_t val;
|
|
MemoryRegion *mr;
|
|
hwaddr l = 8;
|
|
hwaddr addr1;
|
|
|
|
mr = address_space_translate(as, addr, &addr1, &l,
|
|
false);
|
|
if (l < 8 || !memory_access_is_direct(mr, false)) {
|
|
/* I/O case */
|
|
io_mem_read(mr, addr1, &val, 8);
|
|
#if defined(TARGET_WORDS_BIGENDIAN)
|
|
if (endian == DEVICE_LITTLE_ENDIAN) {
|
|
val = bswap64(val);
|
|
}
|
|
#else
|
|
if (endian == DEVICE_BIG_ENDIAN) {
|
|
val = bswap64(val);
|
|
}
|
|
#endif
|
|
} else {
|
|
/* RAM case */
|
|
ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
|
|
& TARGET_PAGE_MASK)
|
|
+ addr1);
|
|
switch (endian) {
|
|
case DEVICE_LITTLE_ENDIAN:
|
|
val = ldq_le_p(ptr);
|
|
break;
|
|
case DEVICE_BIG_ENDIAN:
|
|
val = ldq_be_p(ptr);
|
|
break;
|
|
default:
|
|
val = ldq_p(ptr);
|
|
break;
|
|
}
|
|
}
|
|
return val;
|
|
}
|
|
|
|
uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
|
|
{
|
|
return ldq_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN);
|
|
}
|
|
|
|
uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
|
|
{
|
|
return ldq_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN);
|
|
}
|
|
|
|
uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
|
|
{
|
|
return ldq_phys_internal(as, addr, DEVICE_BIG_ENDIAN);
|
|
}
|
|
|
|
/* XXX: optimize */
|
|
uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
|
|
{
|
|
uint8_t val;
|
|
address_space_rw(as, addr, &val, 1, 0);
|
|
return val;
|
|
}
|
|
|
|
/* warning: addr must be aligned */
|
|
static inline uint32_t lduw_phys_internal(AddressSpace *as, hwaddr addr,
|
|
enum device_endian endian)
|
|
{
|
|
uint8_t *ptr;
|
|
uint64_t val;
|
|
MemoryRegion *mr;
|
|
hwaddr l = 2;
|
|
hwaddr addr1;
|
|
|
|
mr = address_space_translate(as, addr, &addr1, &l,
|
|
false);
|
|
if (l < 2 || !memory_access_is_direct(mr, false)) {
|
|
/* I/O case */
|
|
io_mem_read(mr, addr1, &val, 2);
|
|
#if defined(TARGET_WORDS_BIGENDIAN)
|
|
if (endian == DEVICE_LITTLE_ENDIAN) {
|
|
val = bswap16(val);
|
|
}
|
|
#else
|
|
if (endian == DEVICE_BIG_ENDIAN) {
|
|
val = bswap16(val);
|
|
}
|
|
#endif
|
|
} else {
|
|
/* RAM case */
|
|
ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
|
|
& TARGET_PAGE_MASK)
|
|
+ addr1);
|
|
switch (endian) {
|
|
case DEVICE_LITTLE_ENDIAN:
|
|
val = lduw_le_p(ptr);
|
|
break;
|
|
case DEVICE_BIG_ENDIAN:
|
|
val = lduw_be_p(ptr);
|
|
break;
|
|
default:
|
|
val = lduw_p(ptr);
|
|
break;
|
|
}
|
|
}
|
|
return val;
|
|
}
|
|
|
|
uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
|
|
{
|
|
return lduw_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN);
|
|
}
|
|
|
|
uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
|
|
{
|
|
return lduw_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN);
|
|
}
|
|
|
|
uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
|
|
{
|
|
return lduw_phys_internal(as, addr, DEVICE_BIG_ENDIAN);
|
|
}
|
|
|
|
/* warning: addr must be aligned. The ram page is not masked as dirty
|
|
and the code inside is not invalidated. It is useful if the dirty
|
|
bits are used to track modified PTEs */
|
|
void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
|
|
{
|
|
uint8_t *ptr;
|
|
MemoryRegion *mr;
|
|
hwaddr l = 4;
|
|
hwaddr addr1;
|
|
|
|
mr = address_space_translate(as, addr, &addr1, &l,
|
|
true);
|
|
if (l < 4 || !memory_access_is_direct(mr, true)) {
|
|
io_mem_write(mr, addr1, val, 4);
|
|
} else {
|
|
addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
|
|
ptr = qemu_get_ram_ptr(addr1);
|
|
stl_p(ptr, val);
|
|
|
|
if (unlikely(in_migration)) {
|
|
if (cpu_physical_memory_is_clean(addr1)) {
|
|
/* invalidate code */
|
|
tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
|
|
/* set dirty bit */
|
|
cpu_physical_memory_set_dirty_range_nocode(addr1, 4);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* warning: addr must be aligned */
|
|
static inline void stl_phys_internal(AddressSpace *as,
|
|
hwaddr addr, uint32_t val,
|
|
enum device_endian endian)
|
|
{
|
|
uint8_t *ptr;
|
|
MemoryRegion *mr;
|
|
hwaddr l = 4;
|
|
hwaddr addr1;
|
|
|
|
mr = address_space_translate(as, addr, &addr1, &l,
|
|
true);
|
|
if (l < 4 || !memory_access_is_direct(mr, true)) {
|
|
#if defined(TARGET_WORDS_BIGENDIAN)
|
|
if (endian == DEVICE_LITTLE_ENDIAN) {
|
|
val = bswap32(val);
|
|
}
|
|
#else
|
|
if (endian == DEVICE_BIG_ENDIAN) {
|
|
val = bswap32(val);
|
|
}
|
|
#endif
|
|
io_mem_write(mr, addr1, val, 4);
|
|
} else {
|
|
/* RAM case */
|
|
addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
|
|
ptr = qemu_get_ram_ptr(addr1);
|
|
switch (endian) {
|
|
case DEVICE_LITTLE_ENDIAN:
|
|
stl_le_p(ptr, val);
|
|
break;
|
|
case DEVICE_BIG_ENDIAN:
|
|
stl_be_p(ptr, val);
|
|
break;
|
|
default:
|
|
stl_p(ptr, val);
|
|
break;
|
|
}
|
|
invalidate_and_set_dirty(addr1, 4);
|
|
}
|
|
}
|
|
|
|
void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
|
|
{
|
|
stl_phys_internal(as, addr, val, DEVICE_NATIVE_ENDIAN);
|
|
}
|
|
|
|
void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
|
|
{
|
|
stl_phys_internal(as, addr, val, DEVICE_LITTLE_ENDIAN);
|
|
}
|
|
|
|
void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
|
|
{
|
|
stl_phys_internal(as, addr, val, DEVICE_BIG_ENDIAN);
|
|
}
|
|
|
|
/* XXX: optimize */
|
|
void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
|
|
{
|
|
uint8_t v = val;
|
|
address_space_rw(as, addr, &v, 1, 1);
|
|
}
|
|
|
|
/* warning: addr must be aligned */
|
|
static inline void stw_phys_internal(AddressSpace *as,
|
|
hwaddr addr, uint32_t val,
|
|
enum device_endian endian)
|
|
{
|
|
uint8_t *ptr;
|
|
MemoryRegion *mr;
|
|
hwaddr l = 2;
|
|
hwaddr addr1;
|
|
|
|
mr = address_space_translate(as, addr, &addr1, &l, true);
|
|
if (l < 2 || !memory_access_is_direct(mr, true)) {
|
|
#if defined(TARGET_WORDS_BIGENDIAN)
|
|
if (endian == DEVICE_LITTLE_ENDIAN) {
|
|
val = bswap16(val);
|
|
}
|
|
#else
|
|
if (endian == DEVICE_BIG_ENDIAN) {
|
|
val = bswap16(val);
|
|
}
|
|
#endif
|
|
io_mem_write(mr, addr1, val, 2);
|
|
} else {
|
|
/* RAM case */
|
|
addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
|
|
ptr = qemu_get_ram_ptr(addr1);
|
|
switch (endian) {
|
|
case DEVICE_LITTLE_ENDIAN:
|
|
stw_le_p(ptr, val);
|
|
break;
|
|
case DEVICE_BIG_ENDIAN:
|
|
stw_be_p(ptr, val);
|
|
break;
|
|
default:
|
|
stw_p(ptr, val);
|
|
break;
|
|
}
|
|
invalidate_and_set_dirty(addr1, 2);
|
|
}
|
|
}
|
|
|
|
void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
|
|
{
|
|
stw_phys_internal(as, addr, val, DEVICE_NATIVE_ENDIAN);
|
|
}
|
|
|
|
void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
|
|
{
|
|
stw_phys_internal(as, addr, val, DEVICE_LITTLE_ENDIAN);
|
|
}
|
|
|
|
void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
|
|
{
|
|
stw_phys_internal(as, addr, val, DEVICE_BIG_ENDIAN);
|
|
}
|
|
|
|
/* XXX: optimize */
|
|
void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
|
|
{
|
|
val = tswap64(val);
|
|
address_space_rw(as, addr, (void *) &val, 8, 1);
|
|
}
|
|
|
|
void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
|
|
{
|
|
val = cpu_to_le64(val);
|
|
address_space_rw(as, addr, (void *) &val, 8, 1);
|
|
}
|
|
|
|
void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
|
|
{
|
|
val = cpu_to_be64(val);
|
|
address_space_rw(as, addr, (void *) &val, 8, 1);
|
|
}
|
|
|
|
/* virtual memory access for debug (includes writing to ROM) */
|
|
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
|
|
uint8_t *buf, int len, int is_write)
|
|
{
|
|
int l;
|
|
hwaddr phys_addr;
|
|
target_ulong page;
|
|
|
|
while (len > 0) {
|
|
page = addr & TARGET_PAGE_MASK;
|
|
phys_addr = cpu_get_phys_page_debug(cpu, page);
|
|
/* if no physical page mapped, return an error */
|
|
if (phys_addr == -1)
|
|
return -1;
|
|
l = (page + TARGET_PAGE_SIZE) - addr;
|
|
if (l > len)
|
|
l = len;
|
|
phys_addr += (addr & ~TARGET_PAGE_MASK);
|
|
if (is_write) {
|
|
cpu_physical_memory_write_rom(cpu->as, phys_addr, buf, l);
|
|
} else {
|
|
address_space_rw(cpu->as, phys_addr, buf, l, 0);
|
|
}
|
|
len -= l;
|
|
buf += l;
|
|
addr += l;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* A helper function for the _utterly broken_ virtio device model to find out if
|
|
* it's running on a big endian machine. Don't do this at home kids!
|
|
*/
|
|
bool target_words_bigendian(void);
|
|
bool target_words_bigendian(void)
|
|
{
|
|
#if defined(TARGET_WORDS_BIGENDIAN)
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
bool cpu_physical_memory_is_io(hwaddr phys_addr)
|
|
{
|
|
MemoryRegion*mr;
|
|
hwaddr l = 1;
|
|
|
|
mr = address_space_translate(&address_space_memory,
|
|
phys_addr, &phys_addr, &l, false);
|
|
|
|
return !(memory_region_is_ram(mr) ||
|
|
memory_region_is_romd(mr));
|
|
}
|
|
|
|
void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
|
|
{
|
|
RAMBlock *block;
|
|
|
|
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
|
|
func(block->host, block->offset, block->length, opaque);
|
|
}
|
|
}
|
|
#endif
|