qemu-e2k/hw/hppa/machine.c

283 lines
9.2 KiB
C

/*
* QEMU HPPA hardware system emulator.
* Copyright 2018 Helge Deller <deller@gmx.de>
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "cpu.h"
#include "hw/hw.h"
#include "elf.h"
#include "hw/loader.h"
#include "hw/boards.h"
#include "qemu/error-report.h"
#include "sysemu/sysemu.h"
#include "hw/timer/mc146818rtc.h"
#include "hw/ide.h"
#include "hw/timer/i8254.h"
#include "hw/char/serial.h"
#include "hw/hppa/hppa_sys.h"
#include "qemu/cutils.h"
#include "qapi/error.h"
#include "qemu/log.h"
#define MAX_IDE_BUS 2
static ISABus *hppa_isa_bus(void)
{
ISABus *isa_bus;
qemu_irq *isa_irqs;
MemoryRegion *isa_region;
isa_region = g_new(MemoryRegion, 1);
memory_region_init_io(isa_region, NULL, &hppa_pci_ignore_ops,
NULL, "isa-io", 0x800);
memory_region_add_subregion(get_system_memory(), IDE_HPA,
isa_region);
isa_bus = isa_bus_new(NULL, get_system_memory(), isa_region,
&error_abort);
isa_irqs = i8259_init(isa_bus,
/* qemu_allocate_irq(dino_set_isa_irq, s, 0)); */
NULL);
isa_bus_irqs(isa_bus, isa_irqs);
return isa_bus;
}
static uint64_t cpu_hppa_to_phys(void *opaque, uint64_t addr)
{
addr &= (0x10000000 - 1);
return addr;
}
static HPPACPU *cpu[HPPA_MAX_CPUS];
static uint64_t firmware_entry;
static void machine_hppa_init(MachineState *machine)
{
const char *kernel_filename = machine->kernel_filename;
const char *kernel_cmdline = machine->kernel_cmdline;
const char *initrd_filename = machine->initrd_filename;
PCIBus *pci_bus;
ISABus *isa_bus;
qemu_irq rtc_irq, serial_irq;
char *firmware_filename;
uint64_t firmware_low, firmware_high;
long size;
uint64_t kernel_entry = 0, kernel_low, kernel_high;
MemoryRegion *addr_space = get_system_memory();
MemoryRegion *rom_region;
MemoryRegion *ram_region;
MemoryRegion *cpu_region;
long i;
ram_size = machine->ram_size;
/* Create CPUs. */
for (i = 0; i < smp_cpus; i++) {
cpu[i] = HPPA_CPU(cpu_create(machine->cpu_type));
cpu_region = g_new(MemoryRegion, 1);
memory_region_init_io(cpu_region, OBJECT(cpu[i]), &hppa_io_eir_ops,
cpu[i], g_strdup_printf("cpu%ld-io-eir", i), 4);
memory_region_add_subregion(addr_space, CPU_HPA + i * 0x1000,
cpu_region);
}
/* Limit main memory. */
if (ram_size > FIRMWARE_START) {
machine->ram_size = ram_size = FIRMWARE_START;
}
/* Main memory region. */
ram_region = g_new(MemoryRegion, 1);
memory_region_allocate_system_memory(ram_region, OBJECT(machine),
"ram", ram_size);
memory_region_add_subregion(addr_space, 0, ram_region);
/* Init Dino (PCI host bus chip). */
pci_bus = dino_init(addr_space, &rtc_irq, &serial_irq);
assert(pci_bus);
/* Create ISA bus. */
isa_bus = hppa_isa_bus();
assert(isa_bus);
/* Realtime clock, used by firmware for PDC_TOD call. */
mc146818_rtc_init(isa_bus, 2000, rtc_irq);
/* Serial code setup. */
if (serial_hd(0)) {
uint32_t addr = DINO_UART_HPA + 0x800;
serial_mm_init(addr_space, addr, 0, serial_irq,
115200, serial_hd(0), DEVICE_BIG_ENDIAN);
}
/* SCSI disk setup. */
lsi53c895a_create(pci_bus);
/* Network setup. e1000 is good enough, failing Tulip support. */
for (i = 0; i < nb_nics; i++) {
pci_nic_init_nofail(&nd_table[i], pci_bus, "e1000", NULL);
}
/* Load firmware. Given that this is not "real" firmware,
but one explicitly written for the emulation, we might as
well load it directly from an ELF image. */
firmware_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
bios_name ? bios_name :
"hppa-firmware.img");
if (firmware_filename == NULL) {
error_report("no firmware provided");
exit(1);
}
size = load_elf(firmware_filename, NULL,
NULL, &firmware_entry, &firmware_low, &firmware_high,
true, EM_PARISC, 0, 0);
/* Unfortunately, load_elf sign-extends reading elf32. */
firmware_entry = (target_ureg)firmware_entry;
firmware_low = (target_ureg)firmware_low;
firmware_high = (target_ureg)firmware_high;
if (size < 0) {
error_report("could not load firmware '%s'", firmware_filename);
exit(1);
}
qemu_log_mask(CPU_LOG_PAGE, "Firmware loaded at 0x%08" PRIx64
"-0x%08" PRIx64 ", entry at 0x%08" PRIx64 ".\n",
firmware_low, firmware_high, firmware_entry);
if (firmware_low < ram_size || firmware_high >= FIRMWARE_END) {
error_report("Firmware overlaps with memory or IO space");
exit(1);
}
g_free(firmware_filename);
rom_region = g_new(MemoryRegion, 1);
memory_region_allocate_system_memory(rom_region, OBJECT(machine),
"firmware",
(FIRMWARE_END - FIRMWARE_START));
memory_region_add_subregion(addr_space, FIRMWARE_START, rom_region);
/* Load kernel */
if (kernel_filename) {
size = load_elf(kernel_filename, &cpu_hppa_to_phys,
NULL, &kernel_entry, &kernel_low, &kernel_high,
true, EM_PARISC, 0, 0);
/* Unfortunately, load_elf sign-extends reading elf32. */
kernel_entry = (target_ureg) cpu_hppa_to_phys(NULL, kernel_entry);
kernel_low = (target_ureg)kernel_low;
kernel_high = (target_ureg)kernel_high;
if (size < 0) {
error_report("could not load kernel '%s'", kernel_filename);
exit(1);
}
qemu_log_mask(CPU_LOG_PAGE, "Kernel loaded at 0x%08" PRIx64
"-0x%08" PRIx64 ", entry at 0x%08" PRIx64
", size %ld kB.\n",
kernel_low, kernel_high, kernel_entry, size / 1024);
if (kernel_cmdline) {
cpu[0]->env.gr[24] = 0x4000;
pstrcpy_targphys("cmdline", cpu[0]->env.gr[24],
TARGET_PAGE_SIZE, kernel_cmdline);
}
if (initrd_filename) {
ram_addr_t initrd_base;
long initrd_size;
initrd_size = get_image_size(initrd_filename);
if (initrd_size < 0) {
error_report("could not load initial ram disk '%s'",
initrd_filename);
exit(1);
}
/* Load the initrd image high in memory.
Mirror the algorithm used by palo:
(1) Due to sign-extension problems and PDC,
put the initrd no higher than 1G.
(2) Reserve 64k for stack. */
initrd_base = MIN(ram_size, 1024 * 1024 * 1024);
initrd_base = initrd_base - 64 * 1024;
initrd_base = (initrd_base - initrd_size) & TARGET_PAGE_MASK;
if (initrd_base < kernel_high) {
error_report("kernel and initial ram disk too large!");
exit(1);
}
load_image_targphys(initrd_filename, initrd_base, initrd_size);
cpu[0]->env.gr[23] = initrd_base;
cpu[0]->env.gr[22] = initrd_base + initrd_size;
}
}
if (!kernel_entry) {
/* When booting via firmware, tell firmware if we want interactive
* mode (kernel_entry=1), and to boot from CD (gr[24]='d')
* or hard disc * (gr[24]='c').
*/
kernel_entry = boot_menu ? 1 : 0;
cpu[0]->env.gr[24] = machine->boot_order[0];
}
/* We jump to the firmware entry routine and pass the
* various parameters in registers. After firmware initialization,
* firmware will start the Linux kernel with ramdisk and cmdline.
*/
cpu[0]->env.gr[26] = ram_size;
cpu[0]->env.gr[25] = kernel_entry;
/* tell firmware how many SMP CPUs to present in inventory table */
cpu[0]->env.gr[21] = smp_cpus;
}
static void hppa_machine_reset(void)
{
int i;
qemu_devices_reset();
/* Start all CPUs at the firmware entry point.
* Monarch CPU will initialize firmware, secondary CPUs
* will enter a small idle look and wait for rendevouz. */
for (i = 0; i < smp_cpus; i++) {
cpu_set_pc(CPU(cpu[i]), firmware_entry);
cpu[i]->env.gr[5] = CPU_HPA + i * 0x1000;
}
/* already initialized by machine_hppa_init()? */
if (cpu[0]->env.gr[26] == ram_size) {
return;
}
cpu[0]->env.gr[26] = ram_size;
cpu[0]->env.gr[25] = 0; /* no firmware boot menu */
cpu[0]->env.gr[24] = 'c';
/* gr22/gr23 unused, no initrd while reboot. */
cpu[0]->env.gr[21] = smp_cpus;
}
static void machine_hppa_machine_init(MachineClass *mc)
{
mc->desc = "HPPA generic machine";
mc->default_cpu_type = TYPE_HPPA_CPU;
mc->init = machine_hppa_init;
mc->reset = hppa_machine_reset;
mc->block_default_type = IF_SCSI;
mc->max_cpus = HPPA_MAX_CPUS;
mc->default_cpus = 1;
mc->is_default = 1;
mc->default_ram_size = 512 * M_BYTE;
mc->default_boot_order = "cd";
}
DEFINE_MACHINE("hppa", machine_hppa_machine_init)