qemu-e2k/hw/arm_timer.c
Paul Brook 2ac711791b Replace cpu_abort with hw_error
Signed-off-by: Paul Brook <paul@codesourcery.com>
2009-05-08 02:35:15 +01:00

343 lines
8.8 KiB
C

/*
* ARM PrimeCell Timer modules.
*
* Copyright (c) 2005-2006 CodeSourcery.
* Written by Paul Brook
*
* This code is licenced under the GPL.
*/
#include "hw.h"
#include "qemu-timer.h"
#include "primecell.h"
/* Common timer implementation. */
#define TIMER_CTRL_ONESHOT (1 << 0)
#define TIMER_CTRL_32BIT (1 << 1)
#define TIMER_CTRL_DIV1 (0 << 2)
#define TIMER_CTRL_DIV16 (1 << 2)
#define TIMER_CTRL_DIV256 (2 << 2)
#define TIMER_CTRL_IE (1 << 5)
#define TIMER_CTRL_PERIODIC (1 << 6)
#define TIMER_CTRL_ENABLE (1 << 7)
typedef struct {
ptimer_state *timer;
uint32_t control;
uint32_t limit;
int freq;
int int_level;
qemu_irq irq;
} arm_timer_state;
/* Check all active timers, and schedule the next timer interrupt. */
static void arm_timer_update(arm_timer_state *s)
{
/* Update interrupts. */
if (s->int_level && (s->control & TIMER_CTRL_IE)) {
qemu_irq_raise(s->irq);
} else {
qemu_irq_lower(s->irq);
}
}
static uint32_t arm_timer_read(void *opaque, target_phys_addr_t offset)
{
arm_timer_state *s = (arm_timer_state *)opaque;
switch (offset >> 2) {
case 0: /* TimerLoad */
case 6: /* TimerBGLoad */
return s->limit;
case 1: /* TimerValue */
return ptimer_get_count(s->timer);
case 2: /* TimerControl */
return s->control;
case 4: /* TimerRIS */
return s->int_level;
case 5: /* TimerMIS */
if ((s->control & TIMER_CTRL_IE) == 0)
return 0;
return s->int_level;
default:
hw_error("arm_timer_read: Bad offset %x\n", (int)offset);
return 0;
}
}
/* Reset the timer limit after settings have changed. */
static void arm_timer_recalibrate(arm_timer_state *s, int reload)
{
uint32_t limit;
if ((s->control & TIMER_CTRL_PERIODIC) == 0) {
/* Free running. */
if (s->control & TIMER_CTRL_32BIT)
limit = 0xffffffff;
else
limit = 0xffff;
} else {
/* Periodic. */
limit = s->limit;
}
ptimer_set_limit(s->timer, limit, reload);
}
static void arm_timer_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
arm_timer_state *s = (arm_timer_state *)opaque;
int freq;
switch (offset >> 2) {
case 0: /* TimerLoad */
s->limit = value;
arm_timer_recalibrate(s, 1);
break;
case 1: /* TimerValue */
/* ??? Linux seems to want to write to this readonly register.
Ignore it. */
break;
case 2: /* TimerControl */
if (s->control & TIMER_CTRL_ENABLE) {
/* Pause the timer if it is running. This may cause some
inaccuracy dure to rounding, but avoids a whole lot of other
messyness. */
ptimer_stop(s->timer);
}
s->control = value;
freq = s->freq;
/* ??? Need to recalculate expiry time after changing divisor. */
switch ((value >> 2) & 3) {
case 1: freq >>= 4; break;
case 2: freq >>= 8; break;
}
arm_timer_recalibrate(s, 0);
ptimer_set_freq(s->timer, freq);
if (s->control & TIMER_CTRL_ENABLE) {
/* Restart the timer if still enabled. */
ptimer_run(s->timer, (s->control & TIMER_CTRL_ONESHOT) != 0);
}
break;
case 3: /* TimerIntClr */
s->int_level = 0;
break;
case 6: /* TimerBGLoad */
s->limit = value;
arm_timer_recalibrate(s, 0);
break;
default:
hw_error("arm_timer_write: Bad offset %x\n", (int)offset);
}
arm_timer_update(s);
}
static void arm_timer_tick(void *opaque)
{
arm_timer_state *s = (arm_timer_state *)opaque;
s->int_level = 1;
arm_timer_update(s);
}
static void arm_timer_save(QEMUFile *f, void *opaque)
{
arm_timer_state *s = (arm_timer_state *)opaque;
qemu_put_be32(f, s->control);
qemu_put_be32(f, s->limit);
qemu_put_be32(f, s->int_level);
qemu_put_ptimer(f, s->timer);
}
static int arm_timer_load(QEMUFile *f, void *opaque, int version_id)
{
arm_timer_state *s = (arm_timer_state *)opaque;
if (version_id != 1)
return -EINVAL;
s->control = qemu_get_be32(f);
s->limit = qemu_get_be32(f);
s->int_level = qemu_get_be32(f);
qemu_get_ptimer(f, s->timer);
return 0;
}
static void *arm_timer_init(uint32_t freq, qemu_irq irq)
{
arm_timer_state *s;
QEMUBH *bh;
s = (arm_timer_state *)qemu_mallocz(sizeof(arm_timer_state));
s->irq = irq;
s->freq = freq;
s->control = TIMER_CTRL_IE;
bh = qemu_bh_new(arm_timer_tick, s);
s->timer = ptimer_init(bh);
register_savevm("arm_timer", -1, 1, arm_timer_save, arm_timer_load, s);
return s;
}
/* ARM PrimeCell SP804 dual timer module.
Docs for this device don't seem to be publicly available. This
implementation is based on guesswork, the linux kernel sources and the
Integrator/CP timer modules. */
typedef struct {
void *timer[2];
int level[2];
qemu_irq irq;
} sp804_state;
/* Merge the IRQs from the two component devices. */
static void sp804_set_irq(void *opaque, int irq, int level)
{
sp804_state *s = (sp804_state *)opaque;
s->level[irq] = level;
qemu_set_irq(s->irq, s->level[0] || s->level[1]);
}
static uint32_t sp804_read(void *opaque, target_phys_addr_t offset)
{
sp804_state *s = (sp804_state *)opaque;
/* ??? Don't know the PrimeCell ID for this device. */
if (offset < 0x20) {
return arm_timer_read(s->timer[0], offset);
} else {
return arm_timer_read(s->timer[1], offset - 0x20);
}
}
static void sp804_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
sp804_state *s = (sp804_state *)opaque;
if (offset < 0x20) {
arm_timer_write(s->timer[0], offset, value);
} else {
arm_timer_write(s->timer[1], offset - 0x20, value);
}
}
static CPUReadMemoryFunc *sp804_readfn[] = {
sp804_read,
sp804_read,
sp804_read
};
static CPUWriteMemoryFunc *sp804_writefn[] = {
sp804_write,
sp804_write,
sp804_write
};
static void sp804_save(QEMUFile *f, void *opaque)
{
sp804_state *s = (sp804_state *)opaque;
qemu_put_be32(f, s->level[0]);
qemu_put_be32(f, s->level[1]);
}
static int sp804_load(QEMUFile *f, void *opaque, int version_id)
{
sp804_state *s = (sp804_state *)opaque;
if (version_id != 1)
return -EINVAL;
s->level[0] = qemu_get_be32(f);
s->level[1] = qemu_get_be32(f);
return 0;
}
void sp804_init(uint32_t base, qemu_irq irq)
{
int iomemtype;
sp804_state *s;
qemu_irq *qi;
s = (sp804_state *)qemu_mallocz(sizeof(sp804_state));
qi = qemu_allocate_irqs(sp804_set_irq, s, 2);
s->irq = irq;
/* ??? The timers are actually configurable between 32kHz and 1MHz, but
we don't implement that. */
s->timer[0] = arm_timer_init(1000000, qi[0]);
s->timer[1] = arm_timer_init(1000000, qi[1]);
iomemtype = cpu_register_io_memory(0, sp804_readfn,
sp804_writefn, s);
cpu_register_physical_memory(base, 0x00001000, iomemtype);
register_savevm("sp804", -1, 1, sp804_save, sp804_load, s);
}
/* Integrator/CP timer module. */
typedef struct {
void *timer[3];
} icp_pit_state;
static uint32_t icp_pit_read(void *opaque, target_phys_addr_t offset)
{
icp_pit_state *s = (icp_pit_state *)opaque;
int n;
/* ??? Don't know the PrimeCell ID for this device. */
n = offset >> 8;
if (n > 3) {
hw_error("sp804_read: Bad timer %d\n", n);
}
return arm_timer_read(s->timer[n], offset & 0xff);
}
static void icp_pit_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
icp_pit_state *s = (icp_pit_state *)opaque;
int n;
n = offset >> 8;
if (n > 3) {
hw_error("sp804_write: Bad timer %d\n", n);
}
arm_timer_write(s->timer[n], offset & 0xff, value);
}
static CPUReadMemoryFunc *icp_pit_readfn[] = {
icp_pit_read,
icp_pit_read,
icp_pit_read
};
static CPUWriteMemoryFunc *icp_pit_writefn[] = {
icp_pit_write,
icp_pit_write,
icp_pit_write
};
void icp_pit_init(uint32_t base, qemu_irq *pic, int irq)
{
int iomemtype;
icp_pit_state *s;
s = (icp_pit_state *)qemu_mallocz(sizeof(icp_pit_state));
/* Timer 0 runs at the system clock speed (40MHz). */
s->timer[0] = arm_timer_init(40000000, pic[irq]);
/* The other two timers run at 1MHz. */
s->timer[1] = arm_timer_init(1000000, pic[irq + 1]);
s->timer[2] = arm_timer_init(1000000, pic[irq + 2]);
iomemtype = cpu_register_io_memory(0, icp_pit_readfn,
icp_pit_writefn, s);
cpu_register_physical_memory(base, 0x00001000, iomemtype);
/* This device has no state to save/restore. The component timers will
save themselves. */
}