qemu-e2k/vl.c
balrog aa941b9445 Savevm/loadvm bits for ARM core, the PXA2xx peripherals and Spitz hardware.
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2857 c046a42c-6fe2-441c-8c8c-71466251a162
2007-05-24 18:50:09 +00:00

8012 lines
206 KiB
C

/*
* QEMU System Emulator
*
* Copyright (c) 2003-2007 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
#include <unistd.h>
#include <fcntl.h>
#include <signal.h>
#include <time.h>
#include <errno.h>
#include <sys/time.h>
#include <zlib.h>
#ifndef _WIN32
#include <sys/times.h>
#include <sys/wait.h>
#include <termios.h>
#include <sys/poll.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <dirent.h>
#include <netdb.h>
#ifdef _BSD
#include <sys/stat.h>
#ifndef __APPLE__
#include <libutil.h>
#endif
#else
#ifndef __sun__
#include <linux/if.h>
#include <linux/if_tun.h>
#include <pty.h>
#include <malloc.h>
#include <linux/rtc.h>
#include <linux/ppdev.h>
#include <linux/parport.h>
#else
#include <sys/stat.h>
#include <sys/ethernet.h>
#include <sys/sockio.h>
#include <arpa/inet.h>
#include <netinet/arp.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h> // must come after ip.h
#include <netinet/udp.h>
#include <netinet/tcp.h>
#include <net/if.h>
#include <syslog.h>
#include <stropts.h>
#endif
#endif
#endif
#if defined(CONFIG_SLIRP)
#include "libslirp.h"
#endif
#ifdef _WIN32
#include <malloc.h>
#include <sys/timeb.h>
#include <windows.h>
#define getopt_long_only getopt_long
#define memalign(align, size) malloc(size)
#endif
#include "qemu_socket.h"
#ifdef CONFIG_SDL
#ifdef __APPLE__
#include <SDL/SDL.h>
#endif
#endif /* CONFIG_SDL */
#ifdef CONFIG_COCOA
#undef main
#define main qemu_main
#endif /* CONFIG_COCOA */
#include "disas.h"
#include "exec-all.h"
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
#ifdef __sun__
#define SMBD_COMMAND "/usr/sfw/sbin/smbd"
#else
#define SMBD_COMMAND "/usr/sbin/smbd"
#endif
//#define DEBUG_UNUSED_IOPORT
//#define DEBUG_IOPORT
#define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
#ifdef TARGET_PPC
#define DEFAULT_RAM_SIZE 144
#else
#define DEFAULT_RAM_SIZE 128
#endif
/* in ms */
#define GUI_REFRESH_INTERVAL 30
/* Max number of USB devices that can be specified on the commandline. */
#define MAX_USB_CMDLINE 8
/* XXX: use a two level table to limit memory usage */
#define MAX_IOPORTS 65536
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
char phys_ram_file[1024];
void *ioport_opaque[MAX_IOPORTS];
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
/* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
to store the VM snapshots */
BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
BlockDriverState *pflash_table[MAX_PFLASH];
BlockDriverState *sd_bdrv;
BlockDriverState *mtd_bdrv;
/* point to the block driver where the snapshots are managed */
BlockDriverState *bs_snapshots;
int vga_ram_size;
static DisplayState display_state;
int nographic;
const char* keyboard_layout = NULL;
int64_t ticks_per_sec;
int boot_device = 'c';
int ram_size;
int pit_min_timer_count = 0;
int nb_nics;
NICInfo nd_table[MAX_NICS];
QEMUTimer *gui_timer;
int vm_running;
int rtc_utc = 1;
int cirrus_vga_enabled = 1;
int vmsvga_enabled = 0;
#ifdef TARGET_SPARC
int graphic_width = 1024;
int graphic_height = 768;
int graphic_depth = 8;
#else
int graphic_width = 800;
int graphic_height = 600;
int graphic_depth = 15;
#endif
int full_screen = 0;
int no_frame = 0;
int no_quit = 0;
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
#ifdef TARGET_I386
int win2k_install_hack = 0;
#endif
int usb_enabled = 0;
static VLANState *first_vlan;
int smp_cpus = 1;
const char *vnc_display;
#if defined(TARGET_SPARC)
#define MAX_CPUS 16
#elif defined(TARGET_I386)
#define MAX_CPUS 255
#else
#define MAX_CPUS 1
#endif
int acpi_enabled = 1;
int fd_bootchk = 1;
int no_reboot = 0;
int cursor_hide = 1;
int graphic_rotate = 0;
int daemonize = 0;
const char *option_rom[MAX_OPTION_ROMS];
int nb_option_roms;
int semihosting_enabled = 0;
int autostart = 1;
const char *qemu_name;
#ifdef TARGET_SPARC
unsigned int nb_prom_envs = 0;
const char *prom_envs[MAX_PROM_ENVS];
#endif
/***********************************************************/
/* x86 ISA bus support */
target_phys_addr_t isa_mem_base = 0;
PicState2 *isa_pic;
uint32_t default_ioport_readb(void *opaque, uint32_t address)
{
#ifdef DEBUG_UNUSED_IOPORT
fprintf(stderr, "unused inb: port=0x%04x\n", address);
#endif
return 0xff;
}
void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
{
#ifdef DEBUG_UNUSED_IOPORT
fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
#endif
}
/* default is to make two byte accesses */
uint32_t default_ioport_readw(void *opaque, uint32_t address)
{
uint32_t data;
data = ioport_read_table[0][address](ioport_opaque[address], address);
address = (address + 1) & (MAX_IOPORTS - 1);
data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
return data;
}
void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
{
ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
address = (address + 1) & (MAX_IOPORTS - 1);
ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
}
uint32_t default_ioport_readl(void *opaque, uint32_t address)
{
#ifdef DEBUG_UNUSED_IOPORT
fprintf(stderr, "unused inl: port=0x%04x\n", address);
#endif
return 0xffffffff;
}
void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
{
#ifdef DEBUG_UNUSED_IOPORT
fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
#endif
}
void init_ioports(void)
{
int i;
for(i = 0; i < MAX_IOPORTS; i++) {
ioport_read_table[0][i] = default_ioport_readb;
ioport_write_table[0][i] = default_ioport_writeb;
ioport_read_table[1][i] = default_ioport_readw;
ioport_write_table[1][i] = default_ioport_writew;
ioport_read_table[2][i] = default_ioport_readl;
ioport_write_table[2][i] = default_ioport_writel;
}
}
/* size is the word size in byte */
int register_ioport_read(int start, int length, int size,
IOPortReadFunc *func, void *opaque)
{
int i, bsize;
if (size == 1) {
bsize = 0;
} else if (size == 2) {
bsize = 1;
} else if (size == 4) {
bsize = 2;
} else {
hw_error("register_ioport_read: invalid size");
return -1;
}
for(i = start; i < start + length; i += size) {
ioport_read_table[bsize][i] = func;
if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
hw_error("register_ioport_read: invalid opaque");
ioport_opaque[i] = opaque;
}
return 0;
}
/* size is the word size in byte */
int register_ioport_write(int start, int length, int size,
IOPortWriteFunc *func, void *opaque)
{
int i, bsize;
if (size == 1) {
bsize = 0;
} else if (size == 2) {
bsize = 1;
} else if (size == 4) {
bsize = 2;
} else {
hw_error("register_ioport_write: invalid size");
return -1;
}
for(i = start; i < start + length; i += size) {
ioport_write_table[bsize][i] = func;
if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
hw_error("register_ioport_write: invalid opaque");
ioport_opaque[i] = opaque;
}
return 0;
}
void isa_unassign_ioport(int start, int length)
{
int i;
for(i = start; i < start + length; i++) {
ioport_read_table[0][i] = default_ioport_readb;
ioport_read_table[1][i] = default_ioport_readw;
ioport_read_table[2][i] = default_ioport_readl;
ioport_write_table[0][i] = default_ioport_writeb;
ioport_write_table[1][i] = default_ioport_writew;
ioport_write_table[2][i] = default_ioport_writel;
}
}
/***********************************************************/
void cpu_outb(CPUState *env, int addr, int val)
{
#ifdef DEBUG_IOPORT
if (loglevel & CPU_LOG_IOPORT)
fprintf(logfile, "outb: %04x %02x\n", addr, val);
#endif
ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
#ifdef USE_KQEMU
if (env)
env->last_io_time = cpu_get_time_fast();
#endif
}
void cpu_outw(CPUState *env, int addr, int val)
{
#ifdef DEBUG_IOPORT
if (loglevel & CPU_LOG_IOPORT)
fprintf(logfile, "outw: %04x %04x\n", addr, val);
#endif
ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
#ifdef USE_KQEMU
if (env)
env->last_io_time = cpu_get_time_fast();
#endif
}
void cpu_outl(CPUState *env, int addr, int val)
{
#ifdef DEBUG_IOPORT
if (loglevel & CPU_LOG_IOPORT)
fprintf(logfile, "outl: %04x %08x\n", addr, val);
#endif
ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
#ifdef USE_KQEMU
if (env)
env->last_io_time = cpu_get_time_fast();
#endif
}
int cpu_inb(CPUState *env, int addr)
{
int val;
val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
#ifdef DEBUG_IOPORT
if (loglevel & CPU_LOG_IOPORT)
fprintf(logfile, "inb : %04x %02x\n", addr, val);
#endif
#ifdef USE_KQEMU
if (env)
env->last_io_time = cpu_get_time_fast();
#endif
return val;
}
int cpu_inw(CPUState *env, int addr)
{
int val;
val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
#ifdef DEBUG_IOPORT
if (loglevel & CPU_LOG_IOPORT)
fprintf(logfile, "inw : %04x %04x\n", addr, val);
#endif
#ifdef USE_KQEMU
if (env)
env->last_io_time = cpu_get_time_fast();
#endif
return val;
}
int cpu_inl(CPUState *env, int addr)
{
int val;
val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
#ifdef DEBUG_IOPORT
if (loglevel & CPU_LOG_IOPORT)
fprintf(logfile, "inl : %04x %08x\n", addr, val);
#endif
#ifdef USE_KQEMU
if (env)
env->last_io_time = cpu_get_time_fast();
#endif
return val;
}
/***********************************************************/
void hw_error(const char *fmt, ...)
{
va_list ap;
CPUState *env;
va_start(ap, fmt);
fprintf(stderr, "qemu: hardware error: ");
vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n");
for(env = first_cpu; env != NULL; env = env->next_cpu) {
fprintf(stderr, "CPU #%d:\n", env->cpu_index);
#ifdef TARGET_I386
cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
#else
cpu_dump_state(env, stderr, fprintf, 0);
#endif
}
va_end(ap);
abort();
}
/***********************************************************/
/* keyboard/mouse */
static QEMUPutKBDEvent *qemu_put_kbd_event;
static void *qemu_put_kbd_event_opaque;
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
{
qemu_put_kbd_event_opaque = opaque;
qemu_put_kbd_event = func;
}
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
void *opaque, int absolute,
const char *name)
{
QEMUPutMouseEntry *s, *cursor;
s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
if (!s)
return NULL;
s->qemu_put_mouse_event = func;
s->qemu_put_mouse_event_opaque = opaque;
s->qemu_put_mouse_event_absolute = absolute;
s->qemu_put_mouse_event_name = qemu_strdup(name);
s->next = NULL;
if (!qemu_put_mouse_event_head) {
qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
return s;
}
cursor = qemu_put_mouse_event_head;
while (cursor->next != NULL)
cursor = cursor->next;
cursor->next = s;
qemu_put_mouse_event_current = s;
return s;
}
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
{
QEMUPutMouseEntry *prev = NULL, *cursor;
if (!qemu_put_mouse_event_head || entry == NULL)
return;
cursor = qemu_put_mouse_event_head;
while (cursor != NULL && cursor != entry) {
prev = cursor;
cursor = cursor->next;
}
if (cursor == NULL) // does not exist or list empty
return;
else if (prev == NULL) { // entry is head
qemu_put_mouse_event_head = cursor->next;
if (qemu_put_mouse_event_current == entry)
qemu_put_mouse_event_current = cursor->next;
qemu_free(entry->qemu_put_mouse_event_name);
qemu_free(entry);
return;
}
prev->next = entry->next;
if (qemu_put_mouse_event_current == entry)
qemu_put_mouse_event_current = prev;
qemu_free(entry->qemu_put_mouse_event_name);
qemu_free(entry);
}
void kbd_put_keycode(int keycode)
{
if (qemu_put_kbd_event) {
qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
}
}
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
{
QEMUPutMouseEvent *mouse_event;
void *mouse_event_opaque;
int width;
if (!qemu_put_mouse_event_current) {
return;
}
mouse_event =
qemu_put_mouse_event_current->qemu_put_mouse_event;
mouse_event_opaque =
qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
if (mouse_event) {
if (graphic_rotate) {
if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
width = 0x7fff;
else
width = graphic_width;
mouse_event(mouse_event_opaque,
width - dy, dx, dz, buttons_state);
} else
mouse_event(mouse_event_opaque,
dx, dy, dz, buttons_state);
}
}
int kbd_mouse_is_absolute(void)
{
if (!qemu_put_mouse_event_current)
return 0;
return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
}
void do_info_mice(void)
{
QEMUPutMouseEntry *cursor;
int index = 0;
if (!qemu_put_mouse_event_head) {
term_printf("No mouse devices connected\n");
return;
}
term_printf("Mouse devices available:\n");
cursor = qemu_put_mouse_event_head;
while (cursor != NULL) {
term_printf("%c Mouse #%d: %s\n",
(cursor == qemu_put_mouse_event_current ? '*' : ' '),
index, cursor->qemu_put_mouse_event_name);
index++;
cursor = cursor->next;
}
}
void do_mouse_set(int index)
{
QEMUPutMouseEntry *cursor;
int i = 0;
if (!qemu_put_mouse_event_head) {
term_printf("No mouse devices connected\n");
return;
}
cursor = qemu_put_mouse_event_head;
while (cursor != NULL && index != i) {
i++;
cursor = cursor->next;
}
if (cursor != NULL)
qemu_put_mouse_event_current = cursor;
else
term_printf("Mouse at given index not found\n");
}
/* compute with 96 bit intermediate result: (a*b)/c */
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
{
union {
uint64_t ll;
struct {
#ifdef WORDS_BIGENDIAN
uint32_t high, low;
#else
uint32_t low, high;
#endif
} l;
} u, res;
uint64_t rl, rh;
u.ll = a;
rl = (uint64_t)u.l.low * (uint64_t)b;
rh = (uint64_t)u.l.high * (uint64_t)b;
rh += (rl >> 32);
res.l.high = rh / c;
res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
return res.ll;
}
/***********************************************************/
/* real time host monotonic timer */
#define QEMU_TIMER_BASE 1000000000LL
#ifdef WIN32
static int64_t clock_freq;
static void init_get_clock(void)
{
LARGE_INTEGER freq;
int ret;
ret = QueryPerformanceFrequency(&freq);
if (ret == 0) {
fprintf(stderr, "Could not calibrate ticks\n");
exit(1);
}
clock_freq = freq.QuadPart;
}
static int64_t get_clock(void)
{
LARGE_INTEGER ti;
QueryPerformanceCounter(&ti);
return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
}
#else
static int use_rt_clock;
static void init_get_clock(void)
{
use_rt_clock = 0;
#if defined(__linux__)
{
struct timespec ts;
if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
use_rt_clock = 1;
}
}
#endif
}
static int64_t get_clock(void)
{
#if defined(__linux__)
if (use_rt_clock) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return ts.tv_sec * 1000000000LL + ts.tv_nsec;
} else
#endif
{
/* XXX: using gettimeofday leads to problems if the date
changes, so it should be avoided. */
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
}
}
#endif
/***********************************************************/
/* guest cycle counter */
static int64_t cpu_ticks_prev;
static int64_t cpu_ticks_offset;
static int64_t cpu_clock_offset;
static int cpu_ticks_enabled;
/* return the host CPU cycle counter and handle stop/restart */
int64_t cpu_get_ticks(void)
{
if (!cpu_ticks_enabled) {
return cpu_ticks_offset;
} else {
int64_t ticks;
ticks = cpu_get_real_ticks();
if (cpu_ticks_prev > ticks) {
/* Note: non increasing ticks may happen if the host uses
software suspend */
cpu_ticks_offset += cpu_ticks_prev - ticks;
}
cpu_ticks_prev = ticks;
return ticks + cpu_ticks_offset;
}
}
/* return the host CPU monotonic timer and handle stop/restart */
static int64_t cpu_get_clock(void)
{
int64_t ti;
if (!cpu_ticks_enabled) {
return cpu_clock_offset;
} else {
ti = get_clock();
return ti + cpu_clock_offset;
}
}
/* enable cpu_get_ticks() */
void cpu_enable_ticks(void)
{
if (!cpu_ticks_enabled) {
cpu_ticks_offset -= cpu_get_real_ticks();
cpu_clock_offset -= get_clock();
cpu_ticks_enabled = 1;
}
}
/* disable cpu_get_ticks() : the clock is stopped. You must not call
cpu_get_ticks() after that. */
void cpu_disable_ticks(void)
{
if (cpu_ticks_enabled) {
cpu_ticks_offset = cpu_get_ticks();
cpu_clock_offset = cpu_get_clock();
cpu_ticks_enabled = 0;
}
}
/***********************************************************/
/* timers */
#define QEMU_TIMER_REALTIME 0
#define QEMU_TIMER_VIRTUAL 1
struct QEMUClock {
int type;
/* XXX: add frequency */
};
struct QEMUTimer {
QEMUClock *clock;
int64_t expire_time;
QEMUTimerCB *cb;
void *opaque;
struct QEMUTimer *next;
};
QEMUClock *rt_clock;
QEMUClock *vm_clock;
static QEMUTimer *active_timers[2];
#ifdef _WIN32
static MMRESULT timerID;
static HANDLE host_alarm = NULL;
static unsigned int period = 1;
#else
/* frequency of the times() clock tick */
static int timer_freq;
#endif
QEMUClock *qemu_new_clock(int type)
{
QEMUClock *clock;
clock = qemu_mallocz(sizeof(QEMUClock));
if (!clock)
return NULL;
clock->type = type;
return clock;
}
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
{
QEMUTimer *ts;
ts = qemu_mallocz(sizeof(QEMUTimer));
ts->clock = clock;
ts->cb = cb;
ts->opaque = opaque;
return ts;
}
void qemu_free_timer(QEMUTimer *ts)
{
qemu_free(ts);
}
/* stop a timer, but do not dealloc it */
void qemu_del_timer(QEMUTimer *ts)
{
QEMUTimer **pt, *t;
/* NOTE: this code must be signal safe because
qemu_timer_expired() can be called from a signal. */
pt = &active_timers[ts->clock->type];
for(;;) {
t = *pt;
if (!t)
break;
if (t == ts) {
*pt = t->next;
break;
}
pt = &t->next;
}
}
/* modify the current timer so that it will be fired when current_time
>= expire_time. The corresponding callback will be called. */
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
{
QEMUTimer **pt, *t;
qemu_del_timer(ts);
/* add the timer in the sorted list */
/* NOTE: this code must be signal safe because
qemu_timer_expired() can be called from a signal. */
pt = &active_timers[ts->clock->type];
for(;;) {
t = *pt;
if (!t)
break;
if (t->expire_time > expire_time)
break;
pt = &t->next;
}
ts->expire_time = expire_time;
ts->next = *pt;
*pt = ts;
}
int qemu_timer_pending(QEMUTimer *ts)
{
QEMUTimer *t;
for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
if (t == ts)
return 1;
}
return 0;
}
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
{
if (!timer_head)
return 0;
return (timer_head->expire_time <= current_time);
}
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
{
QEMUTimer *ts;
for(;;) {
ts = *ptimer_head;
if (!ts || ts->expire_time > current_time)
break;
/* remove timer from the list before calling the callback */
*ptimer_head = ts->next;
ts->next = NULL;
/* run the callback (the timer list can be modified) */
ts->cb(ts->opaque);
}
}
int64_t qemu_get_clock(QEMUClock *clock)
{
switch(clock->type) {
case QEMU_TIMER_REALTIME:
return get_clock() / 1000000;
default:
case QEMU_TIMER_VIRTUAL:
return cpu_get_clock();
}
}
static void init_timers(void)
{
init_get_clock();
ticks_per_sec = QEMU_TIMER_BASE;
rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
}
/* save a timer */
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
{
uint64_t expire_time;
if (qemu_timer_pending(ts)) {
expire_time = ts->expire_time;
} else {
expire_time = -1;
}
qemu_put_be64(f, expire_time);
}
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
{
uint64_t expire_time;
expire_time = qemu_get_be64(f);
if (expire_time != -1) {
qemu_mod_timer(ts, expire_time);
} else {
qemu_del_timer(ts);
}
}
static void timer_save(QEMUFile *f, void *opaque)
{
if (cpu_ticks_enabled) {
hw_error("cannot save state if virtual timers are running");
}
qemu_put_be64s(f, &cpu_ticks_offset);
qemu_put_be64s(f, &ticks_per_sec);
qemu_put_be64s(f, &cpu_clock_offset);
}
static int timer_load(QEMUFile *f, void *opaque, int version_id)
{
if (version_id != 1 && version_id != 2)
return -EINVAL;
if (cpu_ticks_enabled) {
return -EINVAL;
}
qemu_get_be64s(f, &cpu_ticks_offset);
qemu_get_be64s(f, &ticks_per_sec);
if (version_id == 2) {
qemu_get_be64s(f, &cpu_clock_offset);
}
return 0;
}
#ifdef _WIN32
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
#else
static void host_alarm_handler(int host_signum)
#endif
{
#if 0
#define DISP_FREQ 1000
{
static int64_t delta_min = INT64_MAX;
static int64_t delta_max, delta_cum, last_clock, delta, ti;
static int count;
ti = qemu_get_clock(vm_clock);
if (last_clock != 0) {
delta = ti - last_clock;
if (delta < delta_min)
delta_min = delta;
if (delta > delta_max)
delta_max = delta;
delta_cum += delta;
if (++count == DISP_FREQ) {
printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
muldiv64(delta_min, 1000000, ticks_per_sec),
muldiv64(delta_max, 1000000, ticks_per_sec),
muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
(double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
count = 0;
delta_min = INT64_MAX;
delta_max = 0;
delta_cum = 0;
}
}
last_clock = ti;
}
#endif
if (qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
qemu_get_clock(vm_clock)) ||
qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
qemu_get_clock(rt_clock))) {
#ifdef _WIN32
SetEvent(host_alarm);
#endif
CPUState *env = cpu_single_env;
if (env) {
/* stop the currently executing cpu because a timer occured */
cpu_interrupt(env, CPU_INTERRUPT_EXIT);
#ifdef USE_KQEMU
if (env->kqemu_enabled) {
kqemu_cpu_interrupt(env);
}
#endif
}
}
}
#ifndef _WIN32
#if defined(__linux__)
#define RTC_FREQ 1024
static int rtc_fd;
static int start_rtc_timer(void)
{
rtc_fd = open("/dev/rtc", O_RDONLY);
if (rtc_fd < 0)
return -1;
if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
"error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
"type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
goto fail;
}
if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
fail:
close(rtc_fd);
return -1;
}
pit_min_timer_count = PIT_FREQ / RTC_FREQ;
return 0;
}
#else
static int start_rtc_timer(void)
{
return -1;
}
#endif /* !defined(__linux__) */
#endif /* !defined(_WIN32) */
static void init_timer_alarm(void)
{
#ifdef _WIN32
{
int count=0;
TIMECAPS tc;
ZeroMemory(&tc, sizeof(TIMECAPS));
timeGetDevCaps(&tc, sizeof(TIMECAPS));
if (period < tc.wPeriodMin)
period = tc.wPeriodMin;
timeBeginPeriod(period);
timerID = timeSetEvent(1, // interval (ms)
period, // resolution
host_alarm_handler, // function
(DWORD)&count, // user parameter
TIME_PERIODIC | TIME_CALLBACK_FUNCTION);
if( !timerID ) {
perror("failed timer alarm");
exit(1);
}
host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
if (!host_alarm) {
perror("failed CreateEvent");
exit(1);
}
qemu_add_wait_object(host_alarm, NULL, NULL);
}
pit_min_timer_count = ((uint64_t)10000 * PIT_FREQ) / 1000000;
#else
{
struct sigaction act;
struct itimerval itv;
/* get times() syscall frequency */
timer_freq = sysconf(_SC_CLK_TCK);
/* timer signal */
sigfillset(&act.sa_mask);
act.sa_flags = 0;
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
act.sa_flags |= SA_ONSTACK;
#endif
act.sa_handler = host_alarm_handler;
sigaction(SIGALRM, &act, NULL);
itv.it_interval.tv_sec = 0;
itv.it_interval.tv_usec = 999; /* for i386 kernel 2.6 to get 1 ms */
itv.it_value.tv_sec = 0;
itv.it_value.tv_usec = 10 * 1000;
setitimer(ITIMER_REAL, &itv, NULL);
/* we probe the tick duration of the kernel to inform the user if
the emulated kernel requested a too high timer frequency */
getitimer(ITIMER_REAL, &itv);
#if defined(__linux__)
/* XXX: force /dev/rtc usage because even 2.6 kernels may not
have timers with 1 ms resolution. The correct solution will
be to use the POSIX real time timers available in recent
2.6 kernels */
if (itv.it_interval.tv_usec > 1000 || 1) {
/* try to use /dev/rtc to have a faster timer */
if (start_rtc_timer() < 0)
goto use_itimer;
/* disable itimer */
itv.it_interval.tv_sec = 0;
itv.it_interval.tv_usec = 0;
itv.it_value.tv_sec = 0;
itv.it_value.tv_usec = 0;
setitimer(ITIMER_REAL, &itv, NULL);
/* use the RTC */
sigaction(SIGIO, &act, NULL);
fcntl(rtc_fd, F_SETFL, O_ASYNC);
fcntl(rtc_fd, F_SETOWN, getpid());
} else
#endif /* defined(__linux__) */
{
use_itimer:
pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec *
PIT_FREQ) / 1000000;
}
}
#endif
}
void quit_timers(void)
{
#ifdef _WIN32
timeKillEvent(timerID);
timeEndPeriod(period);
if (host_alarm) {
CloseHandle(host_alarm);
host_alarm = NULL;
}
#endif
}
/***********************************************************/
/* character device */
static void qemu_chr_event(CharDriverState *s, int event)
{
if (!s->chr_event)
return;
s->chr_event(s->handler_opaque, event);
}
static void qemu_chr_reset_bh(void *opaque)
{
CharDriverState *s = opaque;
qemu_chr_event(s, CHR_EVENT_RESET);
qemu_bh_delete(s->bh);
s->bh = NULL;
}
void qemu_chr_reset(CharDriverState *s)
{
if (s->bh == NULL) {
s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
qemu_bh_schedule(s->bh);
}
}
int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
{
return s->chr_write(s, buf, len);
}
int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
{
if (!s->chr_ioctl)
return -ENOTSUP;
return s->chr_ioctl(s, cmd, arg);
}
int qemu_chr_can_read(CharDriverState *s)
{
if (!s->chr_can_read)
return 0;
return s->chr_can_read(s->handler_opaque);
}
void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
{
s->chr_read(s->handler_opaque, buf, len);
}
void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
{
char buf[4096];
va_list ap;
va_start(ap, fmt);
vsnprintf(buf, sizeof(buf), fmt, ap);
qemu_chr_write(s, buf, strlen(buf));
va_end(ap);
}
void qemu_chr_send_event(CharDriverState *s, int event)
{
if (s->chr_send_event)
s->chr_send_event(s, event);
}
void qemu_chr_add_handlers(CharDriverState *s,
IOCanRWHandler *fd_can_read,
IOReadHandler *fd_read,
IOEventHandler *fd_event,
void *opaque)
{
s->chr_can_read = fd_can_read;
s->chr_read = fd_read;
s->chr_event = fd_event;
s->handler_opaque = opaque;
if (s->chr_update_read_handler)
s->chr_update_read_handler(s);
}
static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
{
return len;
}
static CharDriverState *qemu_chr_open_null(void)
{
CharDriverState *chr;
chr = qemu_mallocz(sizeof(CharDriverState));
if (!chr)
return NULL;
chr->chr_write = null_chr_write;
return chr;
}
/* MUX driver for serial I/O splitting */
static int term_timestamps;
static int64_t term_timestamps_start;
#define MAX_MUX 4
typedef struct {
IOCanRWHandler *chr_can_read[MAX_MUX];
IOReadHandler *chr_read[MAX_MUX];
IOEventHandler *chr_event[MAX_MUX];
void *ext_opaque[MAX_MUX];
CharDriverState *drv;
int mux_cnt;
int term_got_escape;
int max_size;
} MuxDriver;
static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
{
MuxDriver *d = chr->opaque;
int ret;
if (!term_timestamps) {
ret = d->drv->chr_write(d->drv, buf, len);
} else {
int i;
ret = 0;
for(i = 0; i < len; i++) {
ret += d->drv->chr_write(d->drv, buf+i, 1);
if (buf[i] == '\n') {
char buf1[64];
int64_t ti;
int secs;
ti = get_clock();
if (term_timestamps_start == -1)
term_timestamps_start = ti;
ti -= term_timestamps_start;
secs = ti / 1000000000;
snprintf(buf1, sizeof(buf1),
"[%02d:%02d:%02d.%03d] ",
secs / 3600,
(secs / 60) % 60,
secs % 60,
(int)((ti / 1000000) % 1000));
d->drv->chr_write(d->drv, buf1, strlen(buf1));
}
}
}
return ret;
}
static char *mux_help[] = {
"% h print this help\n\r",
"% x exit emulator\n\r",
"% s save disk data back to file (if -snapshot)\n\r",
"% t toggle console timestamps\n\r"
"% b send break (magic sysrq)\n\r",
"% c switch between console and monitor\n\r",
"% % sends %\n\r",
NULL
};
static int term_escape_char = 0x01; /* ctrl-a is used for escape */
static void mux_print_help(CharDriverState *chr)
{
int i, j;
char ebuf[15] = "Escape-Char";
char cbuf[50] = "\n\r";
if (term_escape_char > 0 && term_escape_char < 26) {
sprintf(cbuf,"\n\r");
sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
} else {
sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char);
}
chr->chr_write(chr, cbuf, strlen(cbuf));
for (i = 0; mux_help[i] != NULL; i++) {
for (j=0; mux_help[i][j] != '\0'; j++) {
if (mux_help[i][j] == '%')
chr->chr_write(chr, ebuf, strlen(ebuf));
else
chr->chr_write(chr, &mux_help[i][j], 1);
}
}
}
static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
{
if (d->term_got_escape) {
d->term_got_escape = 0;
if (ch == term_escape_char)
goto send_char;
switch(ch) {
case '?':
case 'h':
mux_print_help(chr);
break;
case 'x':
{
char *term = "QEMU: Terminated\n\r";
chr->chr_write(chr,term,strlen(term));
exit(0);
break;
}
case 's':
{
int i;
for (i = 0; i < MAX_DISKS; i++) {
if (bs_table[i])
bdrv_commit(bs_table[i]);
}
}
break;
case 'b':
qemu_chr_event(chr, CHR_EVENT_BREAK);
break;
case 'c':
/* Switch to the next registered device */
chr->focus++;
if (chr->focus >= d->mux_cnt)
chr->focus = 0;
break;
case 't':
term_timestamps = !term_timestamps;
term_timestamps_start = -1;
break;
}
} else if (ch == term_escape_char) {
d->term_got_escape = 1;
} else {
send_char:
return 1;
}
return 0;
}
static int mux_chr_can_read(void *opaque)
{
CharDriverState *chr = opaque;
MuxDriver *d = chr->opaque;
if (d->chr_can_read[chr->focus])
return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
return 0;
}
static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
{
CharDriverState *chr = opaque;
MuxDriver *d = chr->opaque;
int i;
for(i = 0; i < size; i++)
if (mux_proc_byte(chr, d, buf[i]))
d->chr_read[chr->focus](d->ext_opaque[chr->focus], &buf[i], 1);
}
static void mux_chr_event(void *opaque, int event)
{
CharDriverState *chr = opaque;
MuxDriver *d = chr->opaque;
int i;
/* Send the event to all registered listeners */
for (i = 0; i < d->mux_cnt; i++)
if (d->chr_event[i])
d->chr_event[i](d->ext_opaque[i], event);
}
static void mux_chr_update_read_handler(CharDriverState *chr)
{
MuxDriver *d = chr->opaque;
if (d->mux_cnt >= MAX_MUX) {
fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
return;
}
d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
d->chr_read[d->mux_cnt] = chr->chr_read;
d->chr_event[d->mux_cnt] = chr->chr_event;
/* Fix up the real driver with mux routines */
if (d->mux_cnt == 0) {
qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
mux_chr_event, chr);
}
chr->focus = d->mux_cnt;
d->mux_cnt++;
}
CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
{
CharDriverState *chr;
MuxDriver *d;
chr = qemu_mallocz(sizeof(CharDriverState));
if (!chr)
return NULL;
d = qemu_mallocz(sizeof(MuxDriver));
if (!d) {
free(chr);
return NULL;
}
chr->opaque = d;
d->drv = drv;
chr->focus = -1;
chr->chr_write = mux_chr_write;
chr->chr_update_read_handler = mux_chr_update_read_handler;
return chr;
}
#ifdef _WIN32
static void socket_cleanup(void)
{
WSACleanup();
}
static int socket_init(void)
{
WSADATA Data;
int ret, err;
ret = WSAStartup(MAKEWORD(2,2), &Data);
if (ret != 0) {
err = WSAGetLastError();
fprintf(stderr, "WSAStartup: %d\n", err);
return -1;
}
atexit(socket_cleanup);
return 0;
}
static int send_all(int fd, const uint8_t *buf, int len1)
{
int ret, len;
len = len1;
while (len > 0) {
ret = send(fd, buf, len, 0);
if (ret < 0) {
int errno;
errno = WSAGetLastError();
if (errno != WSAEWOULDBLOCK) {
return -1;
}
} else if (ret == 0) {
break;
} else {
buf += ret;
len -= ret;
}
}
return len1 - len;
}
void socket_set_nonblock(int fd)
{
unsigned long opt = 1;
ioctlsocket(fd, FIONBIO, &opt);
}
#else
static int unix_write(int fd, const uint8_t *buf, int len1)
{
int ret, len;
len = len1;
while (len > 0) {
ret = write(fd, buf, len);
if (ret < 0) {
if (errno != EINTR && errno != EAGAIN)
return -1;
} else if (ret == 0) {
break;
} else {
buf += ret;
len -= ret;
}
}
return len1 - len;
}
static inline int send_all(int fd, const uint8_t *buf, int len1)
{
return unix_write(fd, buf, len1);
}
void socket_set_nonblock(int fd)
{
fcntl(fd, F_SETFL, O_NONBLOCK);
}
#endif /* !_WIN32 */
#ifndef _WIN32
typedef struct {
int fd_in, fd_out;
int max_size;
} FDCharDriver;
#define STDIO_MAX_CLIENTS 1
static int stdio_nb_clients = 0;
static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
{
FDCharDriver *s = chr->opaque;
return unix_write(s->fd_out, buf, len);
}
static int fd_chr_read_poll(void *opaque)
{
CharDriverState *chr = opaque;
FDCharDriver *s = chr->opaque;
s->max_size = qemu_chr_can_read(chr);
return s->max_size;
}
static void fd_chr_read(void *opaque)
{
CharDriverState *chr = opaque;
FDCharDriver *s = chr->opaque;
int size, len;
uint8_t buf[1024];
len = sizeof(buf);
if (len > s->max_size)
len = s->max_size;
if (len == 0)
return;
size = read(s->fd_in, buf, len);
if (size == 0) {
/* FD has been closed. Remove it from the active list. */
qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
return;
}
if (size > 0) {
qemu_chr_read(chr, buf, size);
}
}
static void fd_chr_update_read_handler(CharDriverState *chr)
{
FDCharDriver *s = chr->opaque;
if (s->fd_in >= 0) {
if (nographic && s->fd_in == 0) {
} else {
qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
fd_chr_read, NULL, chr);
}
}
}
/* open a character device to a unix fd */
static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
{
CharDriverState *chr;
FDCharDriver *s;
chr = qemu_mallocz(sizeof(CharDriverState));
if (!chr)
return NULL;
s = qemu_mallocz(sizeof(FDCharDriver));
if (!s) {
free(chr);
return NULL;
}
s->fd_in = fd_in;
s->fd_out = fd_out;
chr->opaque = s;
chr->chr_write = fd_chr_write;
chr->chr_update_read_handler = fd_chr_update_read_handler;
qemu_chr_reset(chr);
return chr;
}
static CharDriverState *qemu_chr_open_file_out(const char *file_out)
{
int fd_out;
fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666);
if (fd_out < 0)
return NULL;
return qemu_chr_open_fd(-1, fd_out);
}
static CharDriverState *qemu_chr_open_pipe(const char *filename)
{
int fd_in, fd_out;
char filename_in[256], filename_out[256];
snprintf(filename_in, 256, "%s.in", filename);
snprintf(filename_out, 256, "%s.out", filename);
fd_in = open(filename_in, O_RDWR | O_BINARY);
fd_out = open(filename_out, O_RDWR | O_BINARY);
if (fd_in < 0 || fd_out < 0) {
if (fd_in >= 0)
close(fd_in);
if (fd_out >= 0)
close(fd_out);
fd_in = fd_out = open(filename, O_RDWR | O_BINARY);
if (fd_in < 0)
return NULL;
}
return qemu_chr_open_fd(fd_in, fd_out);
}
/* for STDIO, we handle the case where several clients use it
(nographic mode) */
#define TERM_FIFO_MAX_SIZE 1
static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
static int term_fifo_size;
static int stdio_read_poll(void *opaque)
{
CharDriverState *chr = opaque;
/* try to flush the queue if needed */
if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
qemu_chr_read(chr, term_fifo, 1);
term_fifo_size = 0;
}
/* see if we can absorb more chars */
if (term_fifo_size == 0)
return 1;
else
return 0;
}
static void stdio_read(void *opaque)
{
int size;
uint8_t buf[1];
CharDriverState *chr = opaque;
size = read(0, buf, 1);
if (size == 0) {
/* stdin has been closed. Remove it from the active list. */
qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
return;
}
if (size > 0) {
if (qemu_chr_can_read(chr) > 0) {
qemu_chr_read(chr, buf, 1);
} else if (term_fifo_size == 0) {
term_fifo[term_fifo_size++] = buf[0];
}
}
}
/* init terminal so that we can grab keys */
static struct termios oldtty;
static int old_fd0_flags;
static void term_exit(void)
{
tcsetattr (0, TCSANOW, &oldtty);
fcntl(0, F_SETFL, old_fd0_flags);
}
static void term_init(void)
{
struct termios tty;
tcgetattr (0, &tty);
oldtty = tty;
old_fd0_flags = fcntl(0, F_GETFL);
tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
|INLCR|IGNCR|ICRNL|IXON);
tty.c_oflag |= OPOST;
tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
/* if graphical mode, we allow Ctrl-C handling */
if (nographic)
tty.c_lflag &= ~ISIG;
tty.c_cflag &= ~(CSIZE|PARENB);
tty.c_cflag |= CS8;
tty.c_cc[VMIN] = 1;
tty.c_cc[VTIME] = 0;
tcsetattr (0, TCSANOW, &tty);
atexit(term_exit);
fcntl(0, F_SETFL, O_NONBLOCK);
}
static CharDriverState *qemu_chr_open_stdio(void)
{
CharDriverState *chr;
if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
return NULL;
chr = qemu_chr_open_fd(0, 1);
qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
stdio_nb_clients++;
term_init();
return chr;
}
#if defined(__linux__)
static CharDriverState *qemu_chr_open_pty(void)
{
struct termios tty;
char slave_name[1024];
int master_fd, slave_fd;
/* Not satisfying */
if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
return NULL;
}
/* Disabling local echo and line-buffered output */
tcgetattr (master_fd, &tty);
tty.c_lflag &= ~(ECHO|ICANON|ISIG);
tty.c_cc[VMIN] = 1;
tty.c_cc[VTIME] = 0;
tcsetattr (master_fd, TCSAFLUSH, &tty);
fprintf(stderr, "char device redirected to %s\n", slave_name);
return qemu_chr_open_fd(master_fd, master_fd);
}
static void tty_serial_init(int fd, int speed,
int parity, int data_bits, int stop_bits)
{
struct termios tty;
speed_t spd;
#if 0
printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
speed, parity, data_bits, stop_bits);
#endif
tcgetattr (fd, &tty);
switch(speed) {
case 50:
spd = B50;
break;
case 75:
spd = B75;
break;
case 300:
spd = B300;
break;
case 600:
spd = B600;
break;
case 1200:
spd = B1200;
break;
case 2400:
spd = B2400;
break;
case 4800:
spd = B4800;
break;
case 9600:
spd = B9600;
break;
case 19200:
spd = B19200;
break;
case 38400:
spd = B38400;
break;
case 57600:
spd = B57600;
break;
default:
case 115200:
spd = B115200;
break;
}
cfsetispeed(&tty, spd);
cfsetospeed(&tty, spd);
tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
|INLCR|IGNCR|ICRNL|IXON);
tty.c_oflag |= OPOST;
tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
switch(data_bits) {
default:
case 8:
tty.c_cflag |= CS8;
break;
case 7:
tty.c_cflag |= CS7;
break;
case 6:
tty.c_cflag |= CS6;
break;
case 5:
tty.c_cflag |= CS5;
break;
}
switch(parity) {
default:
case 'N':
break;
case 'E':
tty.c_cflag |= PARENB;
break;
case 'O':
tty.c_cflag |= PARENB | PARODD;
break;
}
if (stop_bits == 2)
tty.c_cflag |= CSTOPB;
tcsetattr (fd, TCSANOW, &tty);
}
static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
{
FDCharDriver *s = chr->opaque;
switch(cmd) {
case CHR_IOCTL_SERIAL_SET_PARAMS:
{
QEMUSerialSetParams *ssp = arg;
tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
ssp->data_bits, ssp->stop_bits);
}
break;
case CHR_IOCTL_SERIAL_SET_BREAK:
{
int enable = *(int *)arg;
if (enable)
tcsendbreak(s->fd_in, 1);
}
break;
default:
return -ENOTSUP;
}
return 0;
}
static CharDriverState *qemu_chr_open_tty(const char *filename)
{
CharDriverState *chr;
int fd;
fd = open(filename, O_RDWR | O_NONBLOCK);
if (fd < 0)
return NULL;
fcntl(fd, F_SETFL, O_NONBLOCK);
tty_serial_init(fd, 115200, 'N', 8, 1);
chr = qemu_chr_open_fd(fd, fd);
if (!chr)
return NULL;
chr->chr_ioctl = tty_serial_ioctl;
qemu_chr_reset(chr);
return chr;
}
typedef struct {
int fd;
int mode;
} ParallelCharDriver;
static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
{
if (s->mode != mode) {
int m = mode;
if (ioctl(s->fd, PPSETMODE, &m) < 0)
return 0;
s->mode = mode;
}
return 1;
}
static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
{
ParallelCharDriver *drv = chr->opaque;
int fd = drv->fd;
uint8_t b;
switch(cmd) {
case CHR_IOCTL_PP_READ_DATA:
if (ioctl(fd, PPRDATA, &b) < 0)
return -ENOTSUP;
*(uint8_t *)arg = b;
break;
case CHR_IOCTL_PP_WRITE_DATA:
b = *(uint8_t *)arg;
if (ioctl(fd, PPWDATA, &b) < 0)
return -ENOTSUP;
break;
case CHR_IOCTL_PP_READ_CONTROL:
if (ioctl(fd, PPRCONTROL, &b) < 0)
return -ENOTSUP;
/* Linux gives only the lowest bits, and no way to know data
direction! For better compatibility set the fixed upper
bits. */
*(uint8_t *)arg = b | 0xc0;
break;
case CHR_IOCTL_PP_WRITE_CONTROL:
b = *(uint8_t *)arg;
if (ioctl(fd, PPWCONTROL, &b) < 0)
return -ENOTSUP;
break;
case CHR_IOCTL_PP_READ_STATUS:
if (ioctl(fd, PPRSTATUS, &b) < 0)
return -ENOTSUP;
*(uint8_t *)arg = b;
break;
case CHR_IOCTL_PP_EPP_READ_ADDR:
if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
struct ParallelIOArg *parg = arg;
int n = read(fd, parg->buffer, parg->count);
if (n != parg->count) {
return -EIO;
}
}
break;
case CHR_IOCTL_PP_EPP_READ:
if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
struct ParallelIOArg *parg = arg;
int n = read(fd, parg->buffer, parg->count);
if (n != parg->count) {
return -EIO;
}
}
break;
case CHR_IOCTL_PP_EPP_WRITE_ADDR:
if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
struct ParallelIOArg *parg = arg;
int n = write(fd, parg->buffer, parg->count);
if (n != parg->count) {
return -EIO;
}
}
break;
case CHR_IOCTL_PP_EPP_WRITE:
if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
struct ParallelIOArg *parg = arg;
int n = write(fd, parg->buffer, parg->count);
if (n != parg->count) {
return -EIO;
}
}
break;
default:
return -ENOTSUP;
}
return 0;
}
static void pp_close(CharDriverState *chr)
{
ParallelCharDriver *drv = chr->opaque;
int fd = drv->fd;
pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
ioctl(fd, PPRELEASE);
close(fd);
qemu_free(drv);
}
static CharDriverState *qemu_chr_open_pp(const char *filename)
{
CharDriverState *chr;
ParallelCharDriver *drv;
int fd;
fd = open(filename, O_RDWR);
if (fd < 0)
return NULL;
if (ioctl(fd, PPCLAIM) < 0) {
close(fd);
return NULL;
}
drv = qemu_mallocz(sizeof(ParallelCharDriver));
if (!drv) {
close(fd);
return NULL;
}
drv->fd = fd;
drv->mode = IEEE1284_MODE_COMPAT;
chr = qemu_mallocz(sizeof(CharDriverState));
if (!chr) {
qemu_free(drv);
close(fd);
return NULL;
}
chr->chr_write = null_chr_write;
chr->chr_ioctl = pp_ioctl;
chr->chr_close = pp_close;
chr->opaque = drv;
qemu_chr_reset(chr);
return chr;
}
#else
static CharDriverState *qemu_chr_open_pty(void)
{
return NULL;
}
#endif
#endif /* !defined(_WIN32) */
#ifdef _WIN32
typedef struct {
int max_size;
HANDLE hcom, hrecv, hsend;
OVERLAPPED orecv, osend;
BOOL fpipe;
DWORD len;
} WinCharState;
#define NSENDBUF 2048
#define NRECVBUF 2048
#define MAXCONNECT 1
#define NTIMEOUT 5000
static int win_chr_poll(void *opaque);
static int win_chr_pipe_poll(void *opaque);
static void win_chr_close(CharDriverState *chr)
{
WinCharState *s = chr->opaque;
if (s->hsend) {
CloseHandle(s->hsend);
s->hsend = NULL;
}
if (s->hrecv) {
CloseHandle(s->hrecv);
s->hrecv = NULL;
}
if (s->hcom) {
CloseHandle(s->hcom);
s->hcom = NULL;
}
if (s->fpipe)
qemu_del_polling_cb(win_chr_pipe_poll, chr);
else
qemu_del_polling_cb(win_chr_poll, chr);
}
static int win_chr_init(CharDriverState *chr, const char *filename)
{
WinCharState *s = chr->opaque;
COMMCONFIG comcfg;
COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
COMSTAT comstat;
DWORD size;
DWORD err;
s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
if (!s->hsend) {
fprintf(stderr, "Failed CreateEvent\n");
goto fail;
}
s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
if (!s->hrecv) {
fprintf(stderr, "Failed CreateEvent\n");
goto fail;
}
s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
if (s->hcom == INVALID_HANDLE_VALUE) {
fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
s->hcom = NULL;
goto fail;
}
if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
fprintf(stderr, "Failed SetupComm\n");
goto fail;
}
ZeroMemory(&comcfg, sizeof(COMMCONFIG));
size = sizeof(COMMCONFIG);
GetDefaultCommConfig(filename, &comcfg, &size);
comcfg.dcb.DCBlength = sizeof(DCB);
CommConfigDialog(filename, NULL, &comcfg);
if (!SetCommState(s->hcom, &comcfg.dcb)) {
fprintf(stderr, "Failed SetCommState\n");
goto fail;
}
if (!SetCommMask(s->hcom, EV_ERR)) {
fprintf(stderr, "Failed SetCommMask\n");
goto fail;
}
cto.ReadIntervalTimeout = MAXDWORD;
if (!SetCommTimeouts(s->hcom, &cto)) {
fprintf(stderr, "Failed SetCommTimeouts\n");
goto fail;
}
if (!ClearCommError(s->hcom, &err, &comstat)) {
fprintf(stderr, "Failed ClearCommError\n");
goto fail;
}
qemu_add_polling_cb(win_chr_poll, chr);
return 0;
fail:
win_chr_close(chr);
return -1;
}
static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
{
WinCharState *s = chr->opaque;
DWORD len, ret, size, err;
len = len1;
ZeroMemory(&s->osend, sizeof(s->osend));
s->osend.hEvent = s->hsend;
while (len > 0) {
if (s->hsend)
ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
else
ret = WriteFile(s->hcom, buf, len, &size, NULL);
if (!ret) {
err = GetLastError();
if (err == ERROR_IO_PENDING) {
ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
if (ret) {
buf += size;
len -= size;
} else {
break;
}
} else {
break;
}
} else {
buf += size;
len -= size;
}
}
return len1 - len;
}
static int win_chr_read_poll(CharDriverState *chr)
{
WinCharState *s = chr->opaque;
s->max_size = qemu_chr_can_read(chr);
return s->max_size;
}
static void win_chr_readfile(CharDriverState *chr)
{
WinCharState *s = chr->opaque;
int ret, err;
uint8_t buf[1024];
DWORD size;
ZeroMemory(&s->orecv, sizeof(s->orecv));
s->orecv.hEvent = s->hrecv;
ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
if (!ret) {
err = GetLastError();
if (err == ERROR_IO_PENDING) {
ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
}
}
if (size > 0) {
qemu_chr_read(chr, buf, size);
}
}
static void win_chr_read(CharDriverState *chr)
{
WinCharState *s = chr->opaque;
if (s->len > s->max_size)
s->len = s->max_size;
if (s->len == 0)
return;
win_chr_readfile(chr);
}
static int win_chr_poll(void *opaque)
{
CharDriverState *chr = opaque;
WinCharState *s = chr->opaque;
COMSTAT status;
DWORD comerr;
ClearCommError(s->hcom, &comerr, &status);
if (status.cbInQue > 0) {
s->len = status.cbInQue;
win_chr_read_poll(chr);
win_chr_read(chr);
return 1;
}
return 0;
}
static CharDriverState *qemu_chr_open_win(const char *filename)
{
CharDriverState *chr;
WinCharState *s;
chr = qemu_mallocz(sizeof(CharDriverState));
if (!chr)
return NULL;
s = qemu_mallocz(sizeof(WinCharState));
if (!s) {
free(chr);
return NULL;
}
chr->opaque = s;
chr->chr_write = win_chr_write;
chr->chr_close = win_chr_close;
if (win_chr_init(chr, filename) < 0) {
free(s);
free(chr);
return NULL;
}
qemu_chr_reset(chr);
return chr;
}
static int win_chr_pipe_poll(void *opaque)
{
CharDriverState *chr = opaque;
WinCharState *s = chr->opaque;
DWORD size;
PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
if (size > 0) {
s->len = size;
win_chr_read_poll(chr);
win_chr_read(chr);
return 1;
}
return 0;
}
static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
{
WinCharState *s = chr->opaque;
OVERLAPPED ov;
int ret;
DWORD size;
char openname[256];
s->fpipe = TRUE;
s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
if (!s->hsend) {
fprintf(stderr, "Failed CreateEvent\n");
goto fail;
}
s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
if (!s->hrecv) {
fprintf(stderr, "Failed CreateEvent\n");
goto fail;
}
snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
PIPE_WAIT,
MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
if (s->hcom == INVALID_HANDLE_VALUE) {
fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
s->hcom = NULL;
goto fail;
}
ZeroMemory(&ov, sizeof(ov));
ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
ret = ConnectNamedPipe(s->hcom, &ov);
if (ret) {
fprintf(stderr, "Failed ConnectNamedPipe\n");
goto fail;
}
ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
if (!ret) {
fprintf(stderr, "Failed GetOverlappedResult\n");
if (ov.hEvent) {
CloseHandle(ov.hEvent);
ov.hEvent = NULL;
}
goto fail;
}
if (ov.hEvent) {
CloseHandle(ov.hEvent);
ov.hEvent = NULL;
}
qemu_add_polling_cb(win_chr_pipe_poll, chr);
return 0;
fail:
win_chr_close(chr);
return -1;
}
static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
{
CharDriverState *chr;
WinCharState *s;
chr = qemu_mallocz(sizeof(CharDriverState));
if (!chr)
return NULL;
s = qemu_mallocz(sizeof(WinCharState));
if (!s) {
free(chr);
return NULL;
}
chr->opaque = s;
chr->chr_write = win_chr_write;
chr->chr_close = win_chr_close;
if (win_chr_pipe_init(chr, filename) < 0) {
free(s);
free(chr);
return NULL;
}
qemu_chr_reset(chr);
return chr;
}
static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
{
CharDriverState *chr;
WinCharState *s;
chr = qemu_mallocz(sizeof(CharDriverState));
if (!chr)
return NULL;
s = qemu_mallocz(sizeof(WinCharState));
if (!s) {
free(chr);
return NULL;
}
s->hcom = fd_out;
chr->opaque = s;
chr->chr_write = win_chr_write;
qemu_chr_reset(chr);
return chr;
}
static CharDriverState *qemu_chr_open_win_con(const char *filename)
{
return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
}
static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
{
HANDLE fd_out;
fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
if (fd_out == INVALID_HANDLE_VALUE)
return NULL;
return qemu_chr_open_win_file(fd_out);
}
#endif
/***********************************************************/
/* UDP Net console */
typedef struct {
int fd;
struct sockaddr_in daddr;
char buf[1024];
int bufcnt;
int bufptr;
int max_size;
} NetCharDriver;
static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
{
NetCharDriver *s = chr->opaque;
return sendto(s->fd, buf, len, 0,
(struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
}
static int udp_chr_read_poll(void *opaque)
{
CharDriverState *chr = opaque;
NetCharDriver *s = chr->opaque;
s->max_size = qemu_chr_can_read(chr);
/* If there were any stray characters in the queue process them
* first
*/
while (s->max_size > 0 && s->bufptr < s->bufcnt) {
qemu_chr_read(chr, &s->buf[s->bufptr], 1);
s->bufptr++;
s->max_size = qemu_chr_can_read(chr);
}
return s->max_size;
}
static void udp_chr_read(void *opaque)
{
CharDriverState *chr = opaque;
NetCharDriver *s = chr->opaque;
if (s->max_size == 0)
return;
s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
s->bufptr = s->bufcnt;
if (s->bufcnt <= 0)
return;
s->bufptr = 0;
while (s->max_size > 0 && s->bufptr < s->bufcnt) {
qemu_chr_read(chr, &s->buf[s->bufptr], 1);
s->bufptr++;
s->max_size = qemu_chr_can_read(chr);
}
}
static void udp_chr_update_read_handler(CharDriverState *chr)
{
NetCharDriver *s = chr->opaque;
if (s->fd >= 0) {
qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
udp_chr_read, NULL, chr);
}
}
int parse_host_port(struct sockaddr_in *saddr, const char *str);
#ifndef _WIN32
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
#endif
int parse_host_src_port(struct sockaddr_in *haddr,
struct sockaddr_in *saddr,
const char *str);
static CharDriverState *qemu_chr_open_udp(const char *def)
{
CharDriverState *chr = NULL;
NetCharDriver *s = NULL;
int fd = -1;
struct sockaddr_in saddr;
chr = qemu_mallocz(sizeof(CharDriverState));
if (!chr)
goto return_err;
s = qemu_mallocz(sizeof(NetCharDriver));
if (!s)
goto return_err;
fd = socket(PF_INET, SOCK_DGRAM, 0);
if (fd < 0) {
perror("socket(PF_INET, SOCK_DGRAM)");
goto return_err;
}
if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
printf("Could not parse: %s\n", def);
goto return_err;
}
if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
{
perror("bind");
goto return_err;
}
s->fd = fd;
s->bufcnt = 0;
s->bufptr = 0;
chr->opaque = s;
chr->chr_write = udp_chr_write;
chr->chr_update_read_handler = udp_chr_update_read_handler;
return chr;
return_err:
if (chr)
free(chr);
if (s)
free(s);
if (fd >= 0)
closesocket(fd);
return NULL;
}
/***********************************************************/
/* TCP Net console */
typedef struct {
int fd, listen_fd;
int connected;
int max_size;
int do_telnetopt;
int do_nodelay;
int is_unix;
} TCPCharDriver;
static void tcp_chr_accept(void *opaque);
static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
{
TCPCharDriver *s = chr->opaque;
if (s->connected) {
return send_all(s->fd, buf, len);
} else {
/* XXX: indicate an error ? */
return len;
}
}
static int tcp_chr_read_poll(void *opaque)
{
CharDriverState *chr = opaque;
TCPCharDriver *s = chr->opaque;
if (!s->connected)
return 0;
s->max_size = qemu_chr_can_read(chr);
return s->max_size;
}
#define IAC 255
#define IAC_BREAK 243
static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
TCPCharDriver *s,
char *buf, int *size)
{
/* Handle any telnet client's basic IAC options to satisfy char by
* char mode with no echo. All IAC options will be removed from
* the buf and the do_telnetopt variable will be used to track the
* state of the width of the IAC information.
*
* IAC commands come in sets of 3 bytes with the exception of the
* "IAC BREAK" command and the double IAC.
*/
int i;
int j = 0;
for (i = 0; i < *size; i++) {
if (s->do_telnetopt > 1) {
if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
/* Double IAC means send an IAC */
if (j != i)
buf[j] = buf[i];
j++;
s->do_telnetopt = 1;
} else {
if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
/* Handle IAC break commands by sending a serial break */
qemu_chr_event(chr, CHR_EVENT_BREAK);
s->do_telnetopt++;
}
s->do_telnetopt++;
}
if (s->do_telnetopt >= 4) {
s->do_telnetopt = 1;
}
} else {
if ((unsigned char)buf[i] == IAC) {
s->do_telnetopt = 2;
} else {
if (j != i)
buf[j] = buf[i];
j++;
}
}
}
*size = j;
}
static void tcp_chr_read(void *opaque)
{
CharDriverState *chr = opaque;
TCPCharDriver *s = chr->opaque;
uint8_t buf[1024];
int len, size;
if (!s->connected || s->max_size <= 0)
return;
len = sizeof(buf);
if (len > s->max_size)
len = s->max_size;
size = recv(s->fd, buf, len, 0);
if (size == 0) {
/* connection closed */
s->connected = 0;
if (s->listen_fd >= 0) {
qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
}
qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
closesocket(s->fd);
s->fd = -1;
} else if (size > 0) {
if (s->do_telnetopt)
tcp_chr_process_IAC_bytes(chr, s, buf, &size);
if (size > 0)
qemu_chr_read(chr, buf, size);
}
}
static void tcp_chr_connect(void *opaque)
{
CharDriverState *chr = opaque;
TCPCharDriver *s = chr->opaque;
s->connected = 1;
qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
tcp_chr_read, NULL, chr);
qemu_chr_reset(chr);
}
#define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
static void tcp_chr_telnet_init(int fd)
{
char buf[3];
/* Send the telnet negotion to put telnet in binary, no echo, single char mode */
IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
send(fd, (char *)buf, 3, 0);
IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
send(fd, (char *)buf, 3, 0);
IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
send(fd, (char *)buf, 3, 0);
IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
send(fd, (char *)buf, 3, 0);
}
static void socket_set_nodelay(int fd)
{
int val = 1;
setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
}
static void tcp_chr_accept(void *opaque)
{
CharDriverState *chr = opaque;
TCPCharDriver *s = chr->opaque;
struct sockaddr_in saddr;
#ifndef _WIN32
struct sockaddr_un uaddr;
#endif
struct sockaddr *addr;
socklen_t len;
int fd;
for(;;) {
#ifndef _WIN32
if (s->is_unix) {
len = sizeof(uaddr);
addr = (struct sockaddr *)&uaddr;
} else
#endif
{
len = sizeof(saddr);
addr = (struct sockaddr *)&saddr;
}
fd = accept(s->listen_fd, addr, &len);
if (fd < 0 && errno != EINTR) {
return;
} else if (fd >= 0) {
if (s->do_telnetopt)
tcp_chr_telnet_init(fd);
break;
}
}
socket_set_nonblock(fd);
if (s->do_nodelay)
socket_set_nodelay(fd);
s->fd = fd;
qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
tcp_chr_connect(chr);
}
static void tcp_chr_close(CharDriverState *chr)
{
TCPCharDriver *s = chr->opaque;
if (s->fd >= 0)
closesocket(s->fd);
if (s->listen_fd >= 0)
closesocket(s->listen_fd);
qemu_free(s);
}
static CharDriverState *qemu_chr_open_tcp(const char *host_str,
int is_telnet,
int is_unix)
{
CharDriverState *chr = NULL;
TCPCharDriver *s = NULL;
int fd = -1, ret, err, val;
int is_listen = 0;
int is_waitconnect = 1;
int do_nodelay = 0;
const char *ptr;
struct sockaddr_in saddr;
#ifndef _WIN32
struct sockaddr_un uaddr;
#endif
struct sockaddr *addr;
socklen_t addrlen;
#ifndef _WIN32
if (is_unix) {
addr = (struct sockaddr *)&uaddr;
addrlen = sizeof(uaddr);
if (parse_unix_path(&uaddr, host_str) < 0)
goto fail;
} else
#endif
{
addr = (struct sockaddr *)&saddr;
addrlen = sizeof(saddr);
if (parse_host_port(&saddr, host_str) < 0)
goto fail;
}
ptr = host_str;
while((ptr = strchr(ptr,','))) {
ptr++;
if (!strncmp(ptr,"server",6)) {
is_listen = 1;
} else if (!strncmp(ptr,"nowait",6)) {
is_waitconnect = 0;
} else if (!strncmp(ptr,"nodelay",6)) {
do_nodelay = 1;
} else {
printf("Unknown option: %s\n", ptr);
goto fail;
}
}
if (!is_listen)
is_waitconnect = 0;
chr = qemu_mallocz(sizeof(CharDriverState));
if (!chr)
goto fail;
s = qemu_mallocz(sizeof(TCPCharDriver));
if (!s)
goto fail;
#ifndef _WIN32
if (is_unix)
fd = socket(PF_UNIX, SOCK_STREAM, 0);
else
#endif
fd = socket(PF_INET, SOCK_STREAM, 0);
if (fd < 0)
goto fail;
if (!is_waitconnect)
socket_set_nonblock(fd);
s->connected = 0;
s->fd = -1;
s->listen_fd = -1;
s->is_unix = is_unix;
s->do_nodelay = do_nodelay && !is_unix;
chr->opaque = s;
chr->chr_write = tcp_chr_write;
chr->chr_close = tcp_chr_close;
if (is_listen) {
/* allow fast reuse */
#ifndef _WIN32
if (is_unix) {
char path[109];
strncpy(path, uaddr.sun_path, 108);
path[108] = 0;
unlink(path);
} else
#endif
{
val = 1;
setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
}
ret = bind(fd, addr, addrlen);
if (ret < 0)
goto fail;
ret = listen(fd, 0);
if (ret < 0)
goto fail;
s->listen_fd = fd;
qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
if (is_telnet)
s->do_telnetopt = 1;
} else {
for(;;) {
ret = connect(fd, addr, addrlen);
if (ret < 0) {
err = socket_error();
if (err == EINTR || err == EWOULDBLOCK) {
} else if (err == EINPROGRESS) {
break;
#ifdef _WIN32
} else if (err == WSAEALREADY) {
break;
#endif
} else {
goto fail;
}
} else {
s->connected = 1;
break;
}
}
s->fd = fd;
socket_set_nodelay(fd);
if (s->connected)
tcp_chr_connect(chr);
else
qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
}
if (is_listen && is_waitconnect) {
printf("QEMU waiting for connection on: %s\n", host_str);
tcp_chr_accept(chr);
socket_set_nonblock(s->listen_fd);
}
return chr;
fail:
if (fd >= 0)
closesocket(fd);
qemu_free(s);
qemu_free(chr);
return NULL;
}
CharDriverState *qemu_chr_open(const char *filename)
{
const char *p;
if (!strcmp(filename, "vc")) {
return text_console_init(&display_state);
} else if (!strcmp(filename, "null")) {
return qemu_chr_open_null();
} else
if (strstart(filename, "tcp:", &p)) {
return qemu_chr_open_tcp(p, 0, 0);
} else
if (strstart(filename, "telnet:", &p)) {
return qemu_chr_open_tcp(p, 1, 0);
} else
if (strstart(filename, "udp:", &p)) {
return qemu_chr_open_udp(p);
} else
if (strstart(filename, "mon:", &p)) {
CharDriverState *drv = qemu_chr_open(p);
if (drv) {
drv = qemu_chr_open_mux(drv);
monitor_init(drv, !nographic);
return drv;
}
printf("Unable to open driver: %s\n", p);
return 0;
} else
#ifndef _WIN32
if (strstart(filename, "unix:", &p)) {
return qemu_chr_open_tcp(p, 0, 1);
} else if (strstart(filename, "file:", &p)) {
return qemu_chr_open_file_out(p);
} else if (strstart(filename, "pipe:", &p)) {
return qemu_chr_open_pipe(p);
} else if (!strcmp(filename, "pty")) {
return qemu_chr_open_pty();
} else if (!strcmp(filename, "stdio")) {
return qemu_chr_open_stdio();
} else
#endif
#if defined(__linux__)
if (strstart(filename, "/dev/parport", NULL)) {
return qemu_chr_open_pp(filename);
} else
if (strstart(filename, "/dev/", NULL)) {
return qemu_chr_open_tty(filename);
} else
#endif
#ifdef _WIN32
if (strstart(filename, "COM", NULL)) {
return qemu_chr_open_win(filename);
} else
if (strstart(filename, "pipe:", &p)) {
return qemu_chr_open_win_pipe(p);
} else
if (strstart(filename, "con:", NULL)) {
return qemu_chr_open_win_con(filename);
} else
if (strstart(filename, "file:", &p)) {
return qemu_chr_open_win_file_out(p);
}
#endif
{
return NULL;
}
}
void qemu_chr_close(CharDriverState *chr)
{
if (chr->chr_close)
chr->chr_close(chr);
}
/***********************************************************/
/* network device redirectors */
void hex_dump(FILE *f, const uint8_t *buf, int size)
{
int len, i, j, c;
for(i=0;i<size;i+=16) {
len = size - i;
if (len > 16)
len = 16;
fprintf(f, "%08x ", i);
for(j=0;j<16;j++) {
if (j < len)
fprintf(f, " %02x", buf[i+j]);
else
fprintf(f, " ");
}
fprintf(f, " ");
for(j=0;j<len;j++) {
c = buf[i+j];
if (c < ' ' || c > '~')
c = '.';
fprintf(f, "%c", c);
}
fprintf(f, "\n");
}
}
static int parse_macaddr(uint8_t *macaddr, const char *p)
{
int i;
for(i = 0; i < 6; i++) {
macaddr[i] = strtol(p, (char **)&p, 16);
if (i == 5) {
if (*p != '\0')
return -1;
} else {
if (*p != ':')
return -1;
p++;
}
}
return 0;
}
static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
{
const char *p, *p1;
int len;
p = *pp;
p1 = strchr(p, sep);
if (!p1)
return -1;
len = p1 - p;
p1++;
if (buf_size > 0) {
if (len > buf_size - 1)
len = buf_size - 1;
memcpy(buf, p, len);
buf[len] = '\0';
}
*pp = p1;
return 0;
}
int parse_host_src_port(struct sockaddr_in *haddr,
struct sockaddr_in *saddr,
const char *input_str)
{
char *str = strdup(input_str);
char *host_str = str;
char *src_str;
char *ptr;
/*
* Chop off any extra arguments at the end of the string which
* would start with a comma, then fill in the src port information
* if it was provided else use the "any address" and "any port".
*/
if ((ptr = strchr(str,',')))
*ptr = '\0';
if ((src_str = strchr(input_str,'@'))) {
*src_str = '\0';
src_str++;
}
if (parse_host_port(haddr, host_str) < 0)
goto fail;
if (!src_str || *src_str == '\0')
src_str = ":0";
if (parse_host_port(saddr, src_str) < 0)
goto fail;
free(str);
return(0);
fail:
free(str);
return -1;
}
int parse_host_port(struct sockaddr_in *saddr, const char *str)
{
char buf[512];
struct hostent *he;
const char *p, *r;
int port;
p = str;
if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
return -1;
saddr->sin_family = AF_INET;
if (buf[0] == '\0') {
saddr->sin_addr.s_addr = 0;
} else {
if (isdigit(buf[0])) {
if (!inet_aton(buf, &saddr->sin_addr))
return -1;
} else {
if ((he = gethostbyname(buf)) == NULL)
return - 1;
saddr->sin_addr = *(struct in_addr *)he->h_addr;
}
}
port = strtol(p, (char **)&r, 0);
if (r == p)
return -1;
saddr->sin_port = htons(port);
return 0;
}
#ifndef _WIN32
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
{
const char *p;
int len;
len = MIN(108, strlen(str));
p = strchr(str, ',');
if (p)
len = MIN(len, p - str);
memset(uaddr, 0, sizeof(*uaddr));
uaddr->sun_family = AF_UNIX;
memcpy(uaddr->sun_path, str, len);
return 0;
}
#endif
/* find or alloc a new VLAN */
VLANState *qemu_find_vlan(int id)
{
VLANState **pvlan, *vlan;
for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
if (vlan->id == id)
return vlan;
}
vlan = qemu_mallocz(sizeof(VLANState));
if (!vlan)
return NULL;
vlan->id = id;
vlan->next = NULL;
pvlan = &first_vlan;
while (*pvlan != NULL)
pvlan = &(*pvlan)->next;
*pvlan = vlan;
return vlan;
}
VLANClientState *qemu_new_vlan_client(VLANState *vlan,
IOReadHandler *fd_read,
IOCanRWHandler *fd_can_read,
void *opaque)
{
VLANClientState *vc, **pvc;
vc = qemu_mallocz(sizeof(VLANClientState));
if (!vc)
return NULL;
vc->fd_read = fd_read;
vc->fd_can_read = fd_can_read;
vc->opaque = opaque;
vc->vlan = vlan;
vc->next = NULL;
pvc = &vlan->first_client;
while (*pvc != NULL)
pvc = &(*pvc)->next;
*pvc = vc;
return vc;
}
int qemu_can_send_packet(VLANClientState *vc1)
{
VLANState *vlan = vc1->vlan;
VLANClientState *vc;
for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
if (vc != vc1) {
if (vc->fd_can_read && !vc->fd_can_read(vc->opaque))
return 0;
}
}
return 1;
}
void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
{
VLANState *vlan = vc1->vlan;
VLANClientState *vc;
#if 0
printf("vlan %d send:\n", vlan->id);
hex_dump(stdout, buf, size);
#endif
for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
if (vc != vc1) {
vc->fd_read(vc->opaque, buf, size);
}
}
}
#if defined(CONFIG_SLIRP)
/* slirp network adapter */
static int slirp_inited;
static VLANClientState *slirp_vc;
int slirp_can_output(void)
{
return !slirp_vc || qemu_can_send_packet(slirp_vc);
}
void slirp_output(const uint8_t *pkt, int pkt_len)
{
#if 0
printf("slirp output:\n");
hex_dump(stdout, pkt, pkt_len);
#endif
if (!slirp_vc)
return;
qemu_send_packet(slirp_vc, pkt, pkt_len);
}
static void slirp_receive(void *opaque, const uint8_t *buf, int size)
{
#if 0
printf("slirp input:\n");
hex_dump(stdout, buf, size);
#endif
slirp_input(buf, size);
}
static int net_slirp_init(VLANState *vlan)
{
if (!slirp_inited) {
slirp_inited = 1;
slirp_init();
}
slirp_vc = qemu_new_vlan_client(vlan,
slirp_receive, NULL, NULL);
snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
return 0;
}
static void net_slirp_redir(const char *redir_str)
{
int is_udp;
char buf[256], *r;
const char *p;
struct in_addr guest_addr;
int host_port, guest_port;
if (!slirp_inited) {
slirp_inited = 1;
slirp_init();
}
p = redir_str;
if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
goto fail;
if (!strcmp(buf, "tcp")) {
is_udp = 0;
} else if (!strcmp(buf, "udp")) {
is_udp = 1;
} else {
goto fail;
}
if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
goto fail;
host_port = strtol(buf, &r, 0);
if (r == buf)
goto fail;
if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
goto fail;
if (buf[0] == '\0') {
pstrcpy(buf, sizeof(buf), "10.0.2.15");
}
if (!inet_aton(buf, &guest_addr))
goto fail;
guest_port = strtol(p, &r, 0);
if (r == p)
goto fail;
if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
fprintf(stderr, "qemu: could not set up redirection\n");
exit(1);
}
return;
fail:
fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
exit(1);
}
#ifndef _WIN32
char smb_dir[1024];
static void smb_exit(void)
{
DIR *d;
struct dirent *de;
char filename[1024];
/* erase all the files in the directory */
d = opendir(smb_dir);
for(;;) {
de = readdir(d);
if (!de)
break;
if (strcmp(de->d_name, ".") != 0 &&
strcmp(de->d_name, "..") != 0) {
snprintf(filename, sizeof(filename), "%s/%s",
smb_dir, de->d_name);
unlink(filename);
}
}
closedir(d);
rmdir(smb_dir);
}
/* automatic user mode samba server configuration */
void net_slirp_smb(const char *exported_dir)
{
char smb_conf[1024];
char smb_cmdline[1024];
FILE *f;
if (!slirp_inited) {
slirp_inited = 1;
slirp_init();
}
/* XXX: better tmp dir construction */
snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
if (mkdir(smb_dir, 0700) < 0) {
fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
exit(1);
}
snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
f = fopen(smb_conf, "w");
if (!f) {
fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
exit(1);
}
fprintf(f,
"[global]\n"
"private dir=%s\n"
"smb ports=0\n"
"socket address=127.0.0.1\n"
"pid directory=%s\n"
"lock directory=%s\n"
"log file=%s/log.smbd\n"
"smb passwd file=%s/smbpasswd\n"
"security = share\n"
"[qemu]\n"
"path=%s\n"
"read only=no\n"
"guest ok=yes\n",
smb_dir,
smb_dir,
smb_dir,
smb_dir,
smb_dir,
exported_dir
);
fclose(f);
atexit(smb_exit);
snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
SMBD_COMMAND, smb_conf);
slirp_add_exec(0, smb_cmdline, 4, 139);
}
#endif /* !defined(_WIN32) */
#endif /* CONFIG_SLIRP */
#if !defined(_WIN32)
typedef struct TAPState {
VLANClientState *vc;
int fd;
} TAPState;
static void tap_receive(void *opaque, const uint8_t *buf, int size)
{
TAPState *s = opaque;
int ret;
for(;;) {
ret = write(s->fd, buf, size);
if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
} else {
break;
}
}
}
static void tap_send(void *opaque)
{
TAPState *s = opaque;
uint8_t buf[4096];
int size;
#ifdef __sun__
struct strbuf sbuf;
int f = 0;
sbuf.maxlen = sizeof(buf);
sbuf.buf = buf;
size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
#else
size = read(s->fd, buf, sizeof(buf));
#endif
if (size > 0) {
qemu_send_packet(s->vc, buf, size);
}
}
/* fd support */
static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
{
TAPState *s;
s = qemu_mallocz(sizeof(TAPState));
if (!s)
return NULL;
s->fd = fd;
s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
qemu_set_fd_handler(s->fd, tap_send, NULL, s);
snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
return s;
}
#ifdef _BSD
static int tap_open(char *ifname, int ifname_size)
{
int fd;
char *dev;
struct stat s;
fd = open("/dev/tap", O_RDWR);
if (fd < 0) {
fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
return -1;
}
fstat(fd, &s);
dev = devname(s.st_rdev, S_IFCHR);
pstrcpy(ifname, ifname_size, dev);
fcntl(fd, F_SETFL, O_NONBLOCK);
return fd;
}
#elif defined(__sun__)
#define TUNNEWPPA (('T'<<16) | 0x0001)
/*
* Allocate TAP device, returns opened fd.
* Stores dev name in the first arg(must be large enough).
*/
int tap_alloc(char *dev)
{
int tap_fd, if_fd, ppa = -1;
static int ip_fd = 0;
char *ptr;
static int arp_fd = 0;
int ip_muxid, arp_muxid;
struct strioctl strioc_if, strioc_ppa;
int link_type = I_PLINK;;
struct lifreq ifr;
char actual_name[32] = "";
memset(&ifr, 0x0, sizeof(ifr));
if( *dev ){
ptr = dev;
while( *ptr && !isdigit((int)*ptr) ) ptr++;
ppa = atoi(ptr);
}
/* Check if IP device was opened */
if( ip_fd )
close(ip_fd);
if( (ip_fd = open("/dev/udp", O_RDWR, 0)) < 0){
syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
return -1;
}
if( (tap_fd = open("/dev/tap", O_RDWR, 0)) < 0){
syslog(LOG_ERR, "Can't open /dev/tap");
return -1;
}
/* Assign a new PPA and get its unit number. */
strioc_ppa.ic_cmd = TUNNEWPPA;
strioc_ppa.ic_timout = 0;
strioc_ppa.ic_len = sizeof(ppa);
strioc_ppa.ic_dp = (char *)&ppa;
if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
syslog (LOG_ERR, "Can't assign new interface");
if( (if_fd = open("/dev/tap", O_RDWR, 0)) < 0){
syslog(LOG_ERR, "Can't open /dev/tap (2)");
return -1;
}
if(ioctl(if_fd, I_PUSH, "ip") < 0){
syslog(LOG_ERR, "Can't push IP module");
return -1;
}
if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
syslog(LOG_ERR, "Can't get flags\n");
snprintf (actual_name, 32, "tap%d", ppa);
strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
ifr.lifr_ppa = ppa;
/* Assign ppa according to the unit number returned by tun device */
if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
syslog (LOG_ERR, "Can't set PPA %d", ppa);
if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
syslog (LOG_ERR, "Can't get flags\n");
/* Push arp module to if_fd */
if (ioctl (if_fd, I_PUSH, "arp") < 0)
syslog (LOG_ERR, "Can't push ARP module (2)");
/* Push arp module to ip_fd */
if (ioctl (ip_fd, I_POP, NULL) < 0)
syslog (LOG_ERR, "I_POP failed\n");
if (ioctl (ip_fd, I_PUSH, "arp") < 0)
syslog (LOG_ERR, "Can't push ARP module (3)\n");
/* Open arp_fd */
if ((arp_fd = open ("/dev/tap", O_RDWR, 0)) < 0)
syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
/* Set ifname to arp */
strioc_if.ic_cmd = SIOCSLIFNAME;
strioc_if.ic_timout = 0;
strioc_if.ic_len = sizeof(ifr);
strioc_if.ic_dp = (char *)&ifr;
if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
syslog (LOG_ERR, "Can't set ifname to arp\n");
}
if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
syslog(LOG_ERR, "Can't link TAP device to IP");
return -1;
}
if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
syslog (LOG_ERR, "Can't link TAP device to ARP");
close (if_fd);
memset(&ifr, 0x0, sizeof(ifr));
strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
ifr.lifr_ip_muxid = ip_muxid;
ifr.lifr_arp_muxid = arp_muxid;
if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
{
ioctl (ip_fd, I_PUNLINK , arp_muxid);
ioctl (ip_fd, I_PUNLINK, ip_muxid);
syslog (LOG_ERR, "Can't set multiplexor id");
}
sprintf(dev, "tap%d", ppa);
return tap_fd;
}
static int tap_open(char *ifname, int ifname_size)
{
char dev[10]="";
int fd;
if( (fd = tap_alloc(dev)) < 0 ){
fprintf(stderr, "Cannot allocate TAP device\n");
return -1;
}
pstrcpy(ifname, ifname_size, dev);
fcntl(fd, F_SETFL, O_NONBLOCK);
return fd;
}
#else
static int tap_open(char *ifname, int ifname_size)
{
struct ifreq ifr;
int fd, ret;
fd = open("/dev/net/tun", O_RDWR);
if (fd < 0) {
fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
return -1;
}
memset(&ifr, 0, sizeof(ifr));
ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
if (ifname[0] != '\0')
pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
else
pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
if (ret != 0) {
fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
close(fd);
return -1;
}
pstrcpy(ifname, ifname_size, ifr.ifr_name);
fcntl(fd, F_SETFL, O_NONBLOCK);
return fd;
}
#endif
static int net_tap_init(VLANState *vlan, const char *ifname1,
const char *setup_script)
{
TAPState *s;
int pid, status, fd;
char *args[3];
char **parg;
char ifname[128];
if (ifname1 != NULL)
pstrcpy(ifname, sizeof(ifname), ifname1);
else
ifname[0] = '\0';
fd = tap_open(ifname, sizeof(ifname));
if (fd < 0)
return -1;
if (!setup_script || !strcmp(setup_script, "no"))
setup_script = "";
if (setup_script[0] != '\0') {
/* try to launch network init script */
pid = fork();
if (pid >= 0) {
if (pid == 0) {
int open_max = sysconf (_SC_OPEN_MAX), i;
for (i = 0; i < open_max; i++)
if (i != STDIN_FILENO &&
i != STDOUT_FILENO &&
i != STDERR_FILENO &&
i != fd)
close(i);
parg = args;
*parg++ = (char *)setup_script;
*parg++ = ifname;
*parg++ = NULL;
execv(setup_script, args);
_exit(1);
}
while (waitpid(pid, &status, 0) != pid);
if (!WIFEXITED(status) ||
WEXITSTATUS(status) != 0) {
fprintf(stderr, "%s: could not launch network script\n",
setup_script);
return -1;
}
}
}
s = net_tap_fd_init(vlan, fd);
if (!s)
return -1;
snprintf(s->vc->info_str, sizeof(s->vc->info_str),
"tap: ifname=%s setup_script=%s", ifname, setup_script);
return 0;
}
#endif /* !_WIN32 */
/* network connection */
typedef struct NetSocketState {
VLANClientState *vc;
int fd;
int state; /* 0 = getting length, 1 = getting data */
int index;
int packet_len;
uint8_t buf[4096];
struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
} NetSocketState;
typedef struct NetSocketListenState {
VLANState *vlan;
int fd;
} NetSocketListenState;
/* XXX: we consider we can send the whole packet without blocking */
static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
{
NetSocketState *s = opaque;
uint32_t len;
len = htonl(size);
send_all(s->fd, (const uint8_t *)&len, sizeof(len));
send_all(s->fd, buf, size);
}
static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
{
NetSocketState *s = opaque;
sendto(s->fd, buf, size, 0,
(struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
}
static void net_socket_send(void *opaque)
{
NetSocketState *s = opaque;
int l, size, err;
uint8_t buf1[4096];
const uint8_t *buf;
size = recv(s->fd, buf1, sizeof(buf1), 0);
if (size < 0) {
err = socket_error();
if (err != EWOULDBLOCK)
goto eoc;
} else if (size == 0) {
/* end of connection */
eoc:
qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
closesocket(s->fd);
return;
}
buf = buf1;
while (size > 0) {
/* reassemble a packet from the network */
switch(s->state) {
case 0:
l = 4 - s->index;
if (l > size)
l = size;
memcpy(s->buf + s->index, buf, l);
buf += l;
size -= l;
s->index += l;
if (s->index == 4) {
/* got length */
s->packet_len = ntohl(*(uint32_t *)s->buf);
s->index = 0;
s->state = 1;
}
break;
case 1:
l = s->packet_len - s->index;
if (l > size)
l = size;
memcpy(s->buf + s->index, buf, l);
s->index += l;
buf += l;
size -= l;
if (s->index >= s->packet_len) {
qemu_send_packet(s->vc, s->buf, s->packet_len);
s->index = 0;
s->state = 0;
}
break;
}
}
}
static void net_socket_send_dgram(void *opaque)
{
NetSocketState *s = opaque;
int size;
size = recv(s->fd, s->buf, sizeof(s->buf), 0);
if (size < 0)
return;
if (size == 0) {
/* end of connection */
qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
return;
}
qemu_send_packet(s->vc, s->buf, size);
}
static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
{
struct ip_mreq imr;
int fd;
int val, ret;
if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
inet_ntoa(mcastaddr->sin_addr),
(int)ntohl(mcastaddr->sin_addr.s_addr));
return -1;
}
fd = socket(PF_INET, SOCK_DGRAM, 0);
if (fd < 0) {
perror("socket(PF_INET, SOCK_DGRAM)");
return -1;
}
val = 1;
ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
(const char *)&val, sizeof(val));
if (ret < 0) {
perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
goto fail;
}
ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
if (ret < 0) {
perror("bind");
goto fail;
}
/* Add host to multicast group */
imr.imr_multiaddr = mcastaddr->sin_addr;
imr.imr_interface.s_addr = htonl(INADDR_ANY);
ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
(const char *)&imr, sizeof(struct ip_mreq));
if (ret < 0) {
perror("setsockopt(IP_ADD_MEMBERSHIP)");
goto fail;
}
/* Force mcast msgs to loopback (eg. several QEMUs in same host */
val = 1;
ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
(const char *)&val, sizeof(val));
if (ret < 0) {
perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
goto fail;
}
socket_set_nonblock(fd);
return fd;
fail:
if (fd >= 0)
closesocket(fd);
return -1;
}
static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
int is_connected)
{
struct sockaddr_in saddr;
int newfd;
socklen_t saddr_len;
NetSocketState *s;
/* fd passed: multicast: "learn" dgram_dst address from bound address and save it
* Because this may be "shared" socket from a "master" process, datagrams would be recv()
* by ONLY ONE process: we must "clone" this dgram socket --jjo
*/
if (is_connected) {
if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
/* must be bound */
if (saddr.sin_addr.s_addr==0) {
fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
fd);
return NULL;
}
/* clone dgram socket */
newfd = net_socket_mcast_create(&saddr);
if (newfd < 0) {
/* error already reported by net_socket_mcast_create() */
close(fd);
return NULL;
}
/* clone newfd to fd, close newfd */
dup2(newfd, fd);
close(newfd);
} else {
fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
fd, strerror(errno));
return NULL;
}
}
s = qemu_mallocz(sizeof(NetSocketState));
if (!s)
return NULL;
s->fd = fd;
s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
/* mcast: save bound address as dst */
if (is_connected) s->dgram_dst=saddr;
snprintf(s->vc->info_str, sizeof(s->vc->info_str),
"socket: fd=%d (%s mcast=%s:%d)",
fd, is_connected? "cloned" : "",
inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
return s;
}
static void net_socket_connect(void *opaque)
{
NetSocketState *s = opaque;
qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
}
static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
int is_connected)
{
NetSocketState *s;
s = qemu_mallocz(sizeof(NetSocketState));
if (!s)
return NULL;
s->fd = fd;
s->vc = qemu_new_vlan_client(vlan,
net_socket_receive, NULL, s);
snprintf(s->vc->info_str, sizeof(s->vc->info_str),
"socket: fd=%d", fd);
if (is_connected) {
net_socket_connect(s);
} else {
qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
}
return s;
}
static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
int is_connected)
{
int so_type=-1, optlen=sizeof(so_type);
if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
return NULL;
}
switch(so_type) {
case SOCK_DGRAM:
return net_socket_fd_init_dgram(vlan, fd, is_connected);
case SOCK_STREAM:
return net_socket_fd_init_stream(vlan, fd, is_connected);
default:
/* who knows ... this could be a eg. a pty, do warn and continue as stream */
fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
return net_socket_fd_init_stream(vlan, fd, is_connected);
}
return NULL;
}
static void net_socket_accept(void *opaque)
{
NetSocketListenState *s = opaque;
NetSocketState *s1;
struct sockaddr_in saddr;
socklen_t len;
int fd;
for(;;) {
len = sizeof(saddr);
fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
if (fd < 0 && errno != EINTR) {
return;
} else if (fd >= 0) {
break;
}
}
s1 = net_socket_fd_init(s->vlan, fd, 1);
if (!s1) {
closesocket(fd);
} else {
snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
"socket: connection from %s:%d",
inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
}
}
static int net_socket_listen_init(VLANState *vlan, const char *host_str)
{
NetSocketListenState *s;
int fd, val, ret;
struct sockaddr_in saddr;
if (parse_host_port(&saddr, host_str) < 0)
return -1;
s = qemu_mallocz(sizeof(NetSocketListenState));
if (!s)
return -1;
fd = socket(PF_INET, SOCK_STREAM, 0);
if (fd < 0) {
perror("socket");
return -1;
}
socket_set_nonblock(fd);
/* allow fast reuse */
val = 1;
setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
if (ret < 0) {
perror("bind");
return -1;
}
ret = listen(fd, 0);
if (ret < 0) {
perror("listen");
return -1;
}
s->vlan = vlan;
s->fd = fd;
qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
return 0;
}
static int net_socket_connect_init(VLANState *vlan, const char *host_str)
{
NetSocketState *s;
int fd, connected, ret, err;
struct sockaddr_in saddr;
if (parse_host_port(&saddr, host_str) < 0)
return -1;
fd = socket(PF_INET, SOCK_STREAM, 0);
if (fd < 0) {
perror("socket");
return -1;
}
socket_set_nonblock(fd);
connected = 0;
for(;;) {
ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
if (ret < 0) {
err = socket_error();
if (err == EINTR || err == EWOULDBLOCK) {
} else if (err == EINPROGRESS) {
break;
#ifdef _WIN32
} else if (err == WSAEALREADY) {
break;
#endif
} else {
perror("connect");
closesocket(fd);
return -1;
}
} else {
connected = 1;
break;
}
}
s = net_socket_fd_init(vlan, fd, connected);
if (!s)
return -1;
snprintf(s->vc->info_str, sizeof(s->vc->info_str),
"socket: connect to %s:%d",
inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
return 0;
}
static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
{
NetSocketState *s;
int fd;
struct sockaddr_in saddr;
if (parse_host_port(&saddr, host_str) < 0)
return -1;
fd = net_socket_mcast_create(&saddr);
if (fd < 0)
return -1;
s = net_socket_fd_init(vlan, fd, 0);
if (!s)
return -1;
s->dgram_dst = saddr;
snprintf(s->vc->info_str, sizeof(s->vc->info_str),
"socket: mcast=%s:%d",
inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
return 0;
}
static int get_param_value(char *buf, int buf_size,
const char *tag, const char *str)
{
const char *p;
char *q;
char option[128];
p = str;
for(;;) {
q = option;
while (*p != '\0' && *p != '=') {
if ((q - option) < sizeof(option) - 1)
*q++ = *p;
p++;
}
*q = '\0';
if (*p != '=')
break;
p++;
if (!strcmp(tag, option)) {
q = buf;
while (*p != '\0' && *p != ',') {
if ((q - buf) < buf_size - 1)
*q++ = *p;
p++;
}
*q = '\0';
return q - buf;
} else {
while (*p != '\0' && *p != ',') {
p++;
}
}
if (*p != ',')
break;
p++;
}
return 0;
}
static int net_client_init(const char *str)
{
const char *p;
char *q;
char device[64];
char buf[1024];
int vlan_id, ret;
VLANState *vlan;
p = str;
q = device;
while (*p != '\0' && *p != ',') {
if ((q - device) < sizeof(device) - 1)
*q++ = *p;
p++;
}
*q = '\0';
if (*p == ',')
p++;
vlan_id = 0;
if (get_param_value(buf, sizeof(buf), "vlan", p)) {
vlan_id = strtol(buf, NULL, 0);
}
vlan = qemu_find_vlan(vlan_id);
if (!vlan) {
fprintf(stderr, "Could not create vlan %d\n", vlan_id);
return -1;
}
if (!strcmp(device, "nic")) {
NICInfo *nd;
uint8_t *macaddr;
if (nb_nics >= MAX_NICS) {
fprintf(stderr, "Too Many NICs\n");
return -1;
}
nd = &nd_table[nb_nics];
macaddr = nd->macaddr;
macaddr[0] = 0x52;
macaddr[1] = 0x54;
macaddr[2] = 0x00;
macaddr[3] = 0x12;
macaddr[4] = 0x34;
macaddr[5] = 0x56 + nb_nics;
if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
if (parse_macaddr(macaddr, buf) < 0) {
fprintf(stderr, "invalid syntax for ethernet address\n");
return -1;
}
}
if (get_param_value(buf, sizeof(buf), "model", p)) {
nd->model = strdup(buf);
}
nd->vlan = vlan;
nb_nics++;
ret = 0;
} else
if (!strcmp(device, "none")) {
/* does nothing. It is needed to signal that no network cards
are wanted */
ret = 0;
} else
#ifdef CONFIG_SLIRP
if (!strcmp(device, "user")) {
if (get_param_value(buf, sizeof(buf), "hostname", p)) {
pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
}
ret = net_slirp_init(vlan);
} else
#endif
#ifdef _WIN32
if (!strcmp(device, "tap")) {
char ifname[64];
if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
fprintf(stderr, "tap: no interface name\n");
return -1;
}
ret = tap_win32_init(vlan, ifname);
} else
#else
if (!strcmp(device, "tap")) {
char ifname[64];
char setup_script[1024];
int fd;
if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
fd = strtol(buf, NULL, 0);
ret = -1;
if (net_tap_fd_init(vlan, fd))
ret = 0;
} else {
if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
ifname[0] = '\0';
}
if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
}
ret = net_tap_init(vlan, ifname, setup_script);
}
} else
#endif
if (!strcmp(device, "socket")) {
if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
int fd;
fd = strtol(buf, NULL, 0);
ret = -1;
if (net_socket_fd_init(vlan, fd, 1))
ret = 0;
} else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
ret = net_socket_listen_init(vlan, buf);
} else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
ret = net_socket_connect_init(vlan, buf);
} else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
ret = net_socket_mcast_init(vlan, buf);
} else {
fprintf(stderr, "Unknown socket options: %s\n", p);
return -1;
}
} else
{
fprintf(stderr, "Unknown network device: %s\n", device);
return -1;
}
if (ret < 0) {
fprintf(stderr, "Could not initialize device '%s'\n", device);
}
return ret;
}
void do_info_network(void)
{
VLANState *vlan;
VLANClientState *vc;
for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
term_printf("VLAN %d devices:\n", vlan->id);
for(vc = vlan->first_client; vc != NULL; vc = vc->next)
term_printf(" %s\n", vc->info_str);
}
}
/***********************************************************/
/* USB devices */
static USBPort *used_usb_ports;
static USBPort *free_usb_ports;
/* ??? Maybe change this to register a hub to keep track of the topology. */
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
usb_attachfn attach)
{
port->opaque = opaque;
port->index = index;
port->attach = attach;
port->next = free_usb_ports;
free_usb_ports = port;
}
static int usb_device_add(const char *devname)
{
const char *p;
USBDevice *dev;
USBPort *port;
if (!free_usb_ports)
return -1;
if (strstart(devname, "host:", &p)) {
dev = usb_host_device_open(p);
} else if (!strcmp(devname, "mouse")) {
dev = usb_mouse_init();
} else if (!strcmp(devname, "tablet")) {
dev = usb_tablet_init();
} else if (strstart(devname, "disk:", &p)) {
dev = usb_msd_init(p);
} else {
return -1;
}
if (!dev)
return -1;
/* Find a USB port to add the device to. */
port = free_usb_ports;
if (!port->next) {
USBDevice *hub;
/* Create a new hub and chain it on. */
free_usb_ports = NULL;
port->next = used_usb_ports;
used_usb_ports = port;
hub = usb_hub_init(VM_USB_HUB_SIZE);
usb_attach(port, hub);
port = free_usb_ports;
}
free_usb_ports = port->next;
port->next = used_usb_ports;
used_usb_ports = port;
usb_attach(port, dev);
return 0;
}
static int usb_device_del(const char *devname)
{
USBPort *port;
USBPort **lastp;
USBDevice *dev;
int bus_num, addr;
const char *p;
if (!used_usb_ports)
return -1;
p = strchr(devname, '.');
if (!p)
return -1;
bus_num = strtoul(devname, NULL, 0);
addr = strtoul(p + 1, NULL, 0);
if (bus_num != 0)
return -1;
lastp = &used_usb_ports;
port = used_usb_ports;
while (port && port->dev->addr != addr) {
lastp = &port->next;
port = port->next;
}
if (!port)
return -1;
dev = port->dev;
*lastp = port->next;
usb_attach(port, NULL);
dev->handle_destroy(dev);
port->next = free_usb_ports;
free_usb_ports = port;
return 0;
}
void do_usb_add(const char *devname)
{
int ret;
ret = usb_device_add(devname);
if (ret < 0)
term_printf("Could not add USB device '%s'\n", devname);
}
void do_usb_del(const char *devname)
{
int ret;
ret = usb_device_del(devname);
if (ret < 0)
term_printf("Could not remove USB device '%s'\n", devname);
}
void usb_info(void)
{
USBDevice *dev;
USBPort *port;
const char *speed_str;
if (!usb_enabled) {
term_printf("USB support not enabled\n");
return;
}
for (port = used_usb_ports; port; port = port->next) {
dev = port->dev;
if (!dev)
continue;
switch(dev->speed) {
case USB_SPEED_LOW:
speed_str = "1.5";
break;
case USB_SPEED_FULL:
speed_str = "12";
break;
case USB_SPEED_HIGH:
speed_str = "480";
break;
default:
speed_str = "?";
break;
}
term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
0, dev->addr, speed_str, dev->devname);
}
}
/***********************************************************/
/* PCMCIA/Cardbus */
static struct pcmcia_socket_entry_s {
struct pcmcia_socket_s *socket;
struct pcmcia_socket_entry_s *next;
} *pcmcia_sockets = 0;
void pcmcia_socket_register(struct pcmcia_socket_s *socket)
{
struct pcmcia_socket_entry_s *entry;
entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
entry->socket = socket;
entry->next = pcmcia_sockets;
pcmcia_sockets = entry;
}
void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
{
struct pcmcia_socket_entry_s *entry, **ptr;
ptr = &pcmcia_sockets;
for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
if (entry->socket == socket) {
*ptr = entry->next;
qemu_free(entry);
}
}
void pcmcia_info(void)
{
struct pcmcia_socket_entry_s *iter;
if (!pcmcia_sockets)
term_printf("No PCMCIA sockets\n");
for (iter = pcmcia_sockets; iter; iter = iter->next)
term_printf("%s: %s\n", iter->socket->slot_string,
iter->socket->attached ? iter->socket->card_string :
"Empty");
}
/***********************************************************/
/* dumb display */
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
{
}
static void dumb_resize(DisplayState *ds, int w, int h)
{
}
static void dumb_refresh(DisplayState *ds)
{
vga_hw_update();
}
void dumb_display_init(DisplayState *ds)
{
ds->data = NULL;
ds->linesize = 0;
ds->depth = 0;
ds->dpy_update = dumb_update;
ds->dpy_resize = dumb_resize;
ds->dpy_refresh = dumb_refresh;
}
/***********************************************************/
/* I/O handling */
#define MAX_IO_HANDLERS 64
typedef struct IOHandlerRecord {
int fd;
IOCanRWHandler *fd_read_poll;
IOHandler *fd_read;
IOHandler *fd_write;
int deleted;
void *opaque;
/* temporary data */
struct pollfd *ufd;
struct IOHandlerRecord *next;
} IOHandlerRecord;
static IOHandlerRecord *first_io_handler;
/* XXX: fd_read_poll should be suppressed, but an API change is
necessary in the character devices to suppress fd_can_read(). */
int qemu_set_fd_handler2(int fd,
IOCanRWHandler *fd_read_poll,
IOHandler *fd_read,
IOHandler *fd_write,
void *opaque)
{
IOHandlerRecord **pioh, *ioh;
if (!fd_read && !fd_write) {
pioh = &first_io_handler;
for(;;) {
ioh = *pioh;
if (ioh == NULL)
break;
if (ioh->fd == fd) {
ioh->deleted = 1;
break;
}
pioh = &ioh->next;
}
} else {
for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
if (ioh->fd == fd)
goto found;
}
ioh = qemu_mallocz(sizeof(IOHandlerRecord));
if (!ioh)
return -1;
ioh->next = first_io_handler;
first_io_handler = ioh;
found:
ioh->fd = fd;
ioh->fd_read_poll = fd_read_poll;
ioh->fd_read = fd_read;
ioh->fd_write = fd_write;
ioh->opaque = opaque;
ioh->deleted = 0;
}
return 0;
}
int qemu_set_fd_handler(int fd,
IOHandler *fd_read,
IOHandler *fd_write,
void *opaque)
{
return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
}
/***********************************************************/
/* Polling handling */
typedef struct PollingEntry {
PollingFunc *func;
void *opaque;
struct PollingEntry *next;
} PollingEntry;
static PollingEntry *first_polling_entry;
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
{
PollingEntry **ppe, *pe;
pe = qemu_mallocz(sizeof(PollingEntry));
if (!pe)
return -1;
pe->func = func;
pe->opaque = opaque;
for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
*ppe = pe;
return 0;
}
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
{
PollingEntry **ppe, *pe;
for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
pe = *ppe;
if (pe->func == func && pe->opaque == opaque) {
*ppe = pe->next;
qemu_free(pe);
break;
}
}
}
#ifdef _WIN32
/***********************************************************/
/* Wait objects support */
typedef struct WaitObjects {
int num;
HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
} WaitObjects;
static WaitObjects wait_objects = {0};
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
{
WaitObjects *w = &wait_objects;
if (w->num >= MAXIMUM_WAIT_OBJECTS)
return -1;
w->events[w->num] = handle;
w->func[w->num] = func;
w->opaque[w->num] = opaque;
w->num++;
return 0;
}
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
{
int i, found;
WaitObjects *w = &wait_objects;
found = 0;
for (i = 0; i < w->num; i++) {
if (w->events[i] == handle)
found = 1;
if (found) {
w->events[i] = w->events[i + 1];
w->func[i] = w->func[i + 1];
w->opaque[i] = w->opaque[i + 1];
}
}
if (found)
w->num--;
}
#endif
/***********************************************************/
/* savevm/loadvm support */
#define IO_BUF_SIZE 32768
struct QEMUFile {
FILE *outfile;
BlockDriverState *bs;
int is_file;
int is_writable;
int64_t base_offset;
int64_t buf_offset; /* start of buffer when writing, end of buffer
when reading */
int buf_index;
int buf_size; /* 0 when writing */
uint8_t buf[IO_BUF_SIZE];
};
QEMUFile *qemu_fopen(const char *filename, const char *mode)
{
QEMUFile *f;
f = qemu_mallocz(sizeof(QEMUFile));
if (!f)
return NULL;
if (!strcmp(mode, "wb")) {
f->is_writable = 1;
} else if (!strcmp(mode, "rb")) {
f->is_writable = 0;
} else {
goto fail;
}
f->outfile = fopen(filename, mode);
if (!f->outfile)
goto fail;
f->is_file = 1;
return f;
fail:
if (f->outfile)
fclose(f->outfile);
qemu_free(f);
return NULL;
}
QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
{
QEMUFile *f;
f = qemu_mallocz(sizeof(QEMUFile));
if (!f)
return NULL;
f->is_file = 0;
f->bs = bs;
f->is_writable = is_writable;
f->base_offset = offset;
return f;
}
void qemu_fflush(QEMUFile *f)
{
if (!f->is_writable)
return;
if (f->buf_index > 0) {
if (f->is_file) {
fseek(f->outfile, f->buf_offset, SEEK_SET);
fwrite(f->buf, 1, f->buf_index, f->outfile);
} else {
bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
f->buf, f->buf_index);
}
f->buf_offset += f->buf_index;
f->buf_index = 0;
}
}
static void qemu_fill_buffer(QEMUFile *f)
{
int len;
if (f->is_writable)
return;
if (f->is_file) {
fseek(f->outfile, f->buf_offset, SEEK_SET);
len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
if (len < 0)
len = 0;
} else {
len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
f->buf, IO_BUF_SIZE);
if (len < 0)
len = 0;
}
f->buf_index = 0;
f->buf_size = len;
f->buf_offset += len;
}
void qemu_fclose(QEMUFile *f)
{
if (f->is_writable)
qemu_fflush(f);
if (f->is_file) {
fclose(f->outfile);
}
qemu_free(f);
}
void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
{
int l;
while (size > 0) {
l = IO_BUF_SIZE - f->buf_index;
if (l > size)
l = size;
memcpy(f->buf + f->buf_index, buf, l);
f->buf_index += l;
buf += l;
size -= l;
if (f->buf_index >= IO_BUF_SIZE)
qemu_fflush(f);
}
}
void qemu_put_byte(QEMUFile *f, int v)
{
f->buf[f->buf_index++] = v;
if (f->buf_index >= IO_BUF_SIZE)
qemu_fflush(f);
}
int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
{
int size, l;
size = size1;
while (size > 0) {
l = f->buf_size - f->buf_index;
if (l == 0) {
qemu_fill_buffer(f);
l = f->buf_size - f->buf_index;
if (l == 0)
break;
}
if (l > size)
l = size;
memcpy(buf, f->buf + f->buf_index, l);
f->buf_index += l;
buf += l;
size -= l;
}
return size1 - size;
}
int qemu_get_byte(QEMUFile *f)
{
if (f->buf_index >= f->buf_size) {
qemu_fill_buffer(f);
if (f->buf_index >= f->buf_size)
return 0;
}
return f->buf[f->buf_index++];
}
int64_t qemu_ftell(QEMUFile *f)
{
return f->buf_offset - f->buf_size + f->buf_index;
}
int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
{
if (whence == SEEK_SET) {
/* nothing to do */
} else if (whence == SEEK_CUR) {
pos += qemu_ftell(f);
} else {
/* SEEK_END not supported */
return -1;
}
if (f->is_writable) {
qemu_fflush(f);
f->buf_offset = pos;
} else {
f->buf_offset = pos;
f->buf_index = 0;
f->buf_size = 0;
}
return pos;
}
void qemu_put_be16(QEMUFile *f, unsigned int v)
{
qemu_put_byte(f, v >> 8);
qemu_put_byte(f, v);
}
void qemu_put_be32(QEMUFile *f, unsigned int v)
{
qemu_put_byte(f, v >> 24);
qemu_put_byte(f, v >> 16);
qemu_put_byte(f, v >> 8);
qemu_put_byte(f, v);
}
void qemu_put_be64(QEMUFile *f, uint64_t v)
{
qemu_put_be32(f, v >> 32);
qemu_put_be32(f, v);
}
unsigned int qemu_get_be16(QEMUFile *f)
{
unsigned int v;
v = qemu_get_byte(f) << 8;
v |= qemu_get_byte(f);
return v;
}
unsigned int qemu_get_be32(QEMUFile *f)
{
unsigned int v;
v = qemu_get_byte(f) << 24;
v |= qemu_get_byte(f) << 16;
v |= qemu_get_byte(f) << 8;
v |= qemu_get_byte(f);
return v;
}
uint64_t qemu_get_be64(QEMUFile *f)
{
uint64_t v;
v = (uint64_t)qemu_get_be32(f) << 32;
v |= qemu_get_be32(f);
return v;
}
typedef struct SaveStateEntry {
char idstr[256];
int instance_id;
int version_id;
SaveStateHandler *save_state;
LoadStateHandler *load_state;
void *opaque;
struct SaveStateEntry *next;
} SaveStateEntry;
static SaveStateEntry *first_se;
int register_savevm(const char *idstr,
int instance_id,
int version_id,
SaveStateHandler *save_state,
LoadStateHandler *load_state,
void *opaque)
{
SaveStateEntry *se, **pse;
se = qemu_malloc(sizeof(SaveStateEntry));
if (!se)
return -1;
pstrcpy(se->idstr, sizeof(se->idstr), idstr);
se->instance_id = instance_id;
se->version_id = version_id;
se->save_state = save_state;
se->load_state = load_state;
se->opaque = opaque;
se->next = NULL;
/* add at the end of list */
pse = &first_se;
while (*pse != NULL)
pse = &(*pse)->next;
*pse = se;
return 0;
}
#define QEMU_VM_FILE_MAGIC 0x5145564d
#define QEMU_VM_FILE_VERSION 0x00000002
int qemu_savevm_state(QEMUFile *f)
{
SaveStateEntry *se;
int len, ret;
int64_t cur_pos, len_pos, total_len_pos;
qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
qemu_put_be32(f, QEMU_VM_FILE_VERSION);
total_len_pos = qemu_ftell(f);
qemu_put_be64(f, 0); /* total size */
for(se = first_se; se != NULL; se = se->next) {
/* ID string */
len = strlen(se->idstr);
qemu_put_byte(f, len);
qemu_put_buffer(f, se->idstr, len);
qemu_put_be32(f, se->instance_id);
qemu_put_be32(f, se->version_id);
/* record size: filled later */
len_pos = qemu_ftell(f);
qemu_put_be32(f, 0);
se->save_state(f, se->opaque);
/* fill record size */
cur_pos = qemu_ftell(f);
len = cur_pos - len_pos - 4;
qemu_fseek(f, len_pos, SEEK_SET);
qemu_put_be32(f, len);
qemu_fseek(f, cur_pos, SEEK_SET);
}
cur_pos = qemu_ftell(f);
qemu_fseek(f, total_len_pos, SEEK_SET);
qemu_put_be64(f, cur_pos - total_len_pos - 8);
qemu_fseek(f, cur_pos, SEEK_SET);
ret = 0;
return ret;
}
static SaveStateEntry *find_se(const char *idstr, int instance_id)
{
SaveStateEntry *se;
for(se = first_se; se != NULL; se = se->next) {
if (!strcmp(se->idstr, idstr) &&
instance_id == se->instance_id)
return se;
}
return NULL;
}
int qemu_loadvm_state(QEMUFile *f)
{
SaveStateEntry *se;
int len, ret, instance_id, record_len, version_id;
int64_t total_len, end_pos, cur_pos;
unsigned int v;
char idstr[256];
v = qemu_get_be32(f);
if (v != QEMU_VM_FILE_MAGIC)
goto fail;
v = qemu_get_be32(f);
if (v != QEMU_VM_FILE_VERSION) {
fail:
ret = -1;
goto the_end;
}
total_len = qemu_get_be64(f);
end_pos = total_len + qemu_ftell(f);
for(;;) {
if (qemu_ftell(f) >= end_pos)
break;
len = qemu_get_byte(f);
qemu_get_buffer(f, idstr, len);
idstr[len] = '\0';
instance_id = qemu_get_be32(f);
version_id = qemu_get_be32(f);
record_len = qemu_get_be32(f);
#if 0
printf("idstr=%s instance=0x%x version=%d len=%d\n",
idstr, instance_id, version_id, record_len);
#endif
cur_pos = qemu_ftell(f);
se = find_se(idstr, instance_id);
if (!se) {
fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
instance_id, idstr);
} else {
ret = se->load_state(f, se->opaque, version_id);
if (ret < 0) {
fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
instance_id, idstr);
}
}
/* always seek to exact end of record */
qemu_fseek(f, cur_pos + record_len, SEEK_SET);
}
ret = 0;
the_end:
return ret;
}
/* device can contain snapshots */
static int bdrv_can_snapshot(BlockDriverState *bs)
{
return (bs &&
!bdrv_is_removable(bs) &&
!bdrv_is_read_only(bs));
}
/* device must be snapshots in order to have a reliable snapshot */
static int bdrv_has_snapshot(BlockDriverState *bs)
{
return (bs &&
!bdrv_is_removable(bs) &&
!bdrv_is_read_only(bs));
}
static BlockDriverState *get_bs_snapshots(void)
{
BlockDriverState *bs;
int i;
if (bs_snapshots)
return bs_snapshots;
for(i = 0; i <= MAX_DISKS; i++) {
bs = bs_table[i];
if (bdrv_can_snapshot(bs))
goto ok;
}
return NULL;
ok:
bs_snapshots = bs;
return bs;
}
static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
const char *name)
{
QEMUSnapshotInfo *sn_tab, *sn;
int nb_sns, i, ret;
ret = -ENOENT;
nb_sns = bdrv_snapshot_list(bs, &sn_tab);
if (nb_sns < 0)
return ret;
for(i = 0; i < nb_sns; i++) {
sn = &sn_tab[i];
if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
*sn_info = *sn;
ret = 0;
break;
}
}
qemu_free(sn_tab);
return ret;
}
void do_savevm(const char *name)
{
BlockDriverState *bs, *bs1;
QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
int must_delete, ret, i;
BlockDriverInfo bdi1, *bdi = &bdi1;
QEMUFile *f;
int saved_vm_running;
#ifdef _WIN32
struct _timeb tb;
#else
struct timeval tv;
#endif
bs = get_bs_snapshots();
if (!bs) {
term_printf("No block device can accept snapshots\n");
return;
}
/* ??? Should this occur after vm_stop? */
qemu_aio_flush();
saved_vm_running = vm_running;
vm_stop(0);
must_delete = 0;
if (name) {
ret = bdrv_snapshot_find(bs, old_sn, name);
if (ret >= 0) {
must_delete = 1;
}
}
memset(sn, 0, sizeof(*sn));
if (must_delete) {
pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
} else {
if (name)
pstrcpy(sn->name, sizeof(sn->name), name);
}
/* fill auxiliary fields */
#ifdef _WIN32
_ftime(&tb);
sn->date_sec = tb.time;
sn->date_nsec = tb.millitm * 1000000;
#else
gettimeofday(&tv, NULL);
sn->date_sec = tv.tv_sec;
sn->date_nsec = tv.tv_usec * 1000;
#endif
sn->vm_clock_nsec = qemu_get_clock(vm_clock);
if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
term_printf("Device %s does not support VM state snapshots\n",
bdrv_get_device_name(bs));
goto the_end;
}
/* save the VM state */
f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
if (!f) {
term_printf("Could not open VM state file\n");
goto the_end;
}
ret = qemu_savevm_state(f);
sn->vm_state_size = qemu_ftell(f);
qemu_fclose(f);
if (ret < 0) {
term_printf("Error %d while writing VM\n", ret);
goto the_end;
}
/* create the snapshots */
for(i = 0; i < MAX_DISKS; i++) {
bs1 = bs_table[i];
if (bdrv_has_snapshot(bs1)) {
if (must_delete) {
ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
if (ret < 0) {
term_printf("Error while deleting snapshot on '%s'\n",
bdrv_get_device_name(bs1));
}
}
ret = bdrv_snapshot_create(bs1, sn);
if (ret < 0) {
term_printf("Error while creating snapshot on '%s'\n",
bdrv_get_device_name(bs1));
}
}
}
the_end:
if (saved_vm_running)
vm_start();
}
void do_loadvm(const char *name)
{
BlockDriverState *bs, *bs1;
BlockDriverInfo bdi1, *bdi = &bdi1;
QEMUFile *f;
int i, ret;
int saved_vm_running;
bs = get_bs_snapshots();
if (!bs) {
term_printf("No block device supports snapshots\n");
return;
}
/* Flush all IO requests so they don't interfere with the new state. */
qemu_aio_flush();
saved_vm_running = vm_running;
vm_stop(0);
for(i = 0; i <= MAX_DISKS; i++) {
bs1 = bs_table[i];
if (bdrv_has_snapshot(bs1)) {
ret = bdrv_snapshot_goto(bs1, name);
if (ret < 0) {
if (bs != bs1)
term_printf("Warning: ");
switch(ret) {
case -ENOTSUP:
term_printf("Snapshots not supported on device '%s'\n",
bdrv_get_device_name(bs1));
break;
case -ENOENT:
term_printf("Could not find snapshot '%s' on device '%s'\n",
name, bdrv_get_device_name(bs1));
break;
default:
term_printf("Error %d while activating snapshot on '%s'\n",
ret, bdrv_get_device_name(bs1));
break;
}
/* fatal on snapshot block device */
if (bs == bs1)
goto the_end;
}
}
}
if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
term_printf("Device %s does not support VM state snapshots\n",
bdrv_get_device_name(bs));
return;
}
/* restore the VM state */
f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
if (!f) {
term_printf("Could not open VM state file\n");
goto the_end;
}
ret = qemu_loadvm_state(f);
qemu_fclose(f);
if (ret < 0) {
term_printf("Error %d while loading VM state\n", ret);
}
the_end:
if (saved_vm_running)
vm_start();
}
void do_delvm(const char *name)
{
BlockDriverState *bs, *bs1;
int i, ret;
bs = get_bs_snapshots();
if (!bs) {
term_printf("No block device supports snapshots\n");
return;
}
for(i = 0; i <= MAX_DISKS; i++) {
bs1 = bs_table[i];
if (bdrv_has_snapshot(bs1)) {
ret = bdrv_snapshot_delete(bs1, name);
if (ret < 0) {
if (ret == -ENOTSUP)
term_printf("Snapshots not supported on device '%s'\n",
bdrv_get_device_name(bs1));
else
term_printf("Error %d while deleting snapshot on '%s'\n",
ret, bdrv_get_device_name(bs1));
}
}
}
}
void do_info_snapshots(void)
{
BlockDriverState *bs, *bs1;
QEMUSnapshotInfo *sn_tab, *sn;
int nb_sns, i;
char buf[256];
bs = get_bs_snapshots();
if (!bs) {
term_printf("No available block device supports snapshots\n");
return;
}
term_printf("Snapshot devices:");
for(i = 0; i <= MAX_DISKS; i++) {
bs1 = bs_table[i];
if (bdrv_has_snapshot(bs1)) {
if (bs == bs1)
term_printf(" %s", bdrv_get_device_name(bs1));
}
}
term_printf("\n");
nb_sns = bdrv_snapshot_list(bs, &sn_tab);
if (nb_sns < 0) {
term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
return;
}
term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
for(i = 0; i < nb_sns; i++) {
sn = &sn_tab[i];
term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
}
qemu_free(sn_tab);
}
/***********************************************************/
/* cpu save/restore */
#if defined(TARGET_I386)
static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
{
qemu_put_be32(f, dt->selector);
qemu_put_betl(f, dt->base);
qemu_put_be32(f, dt->limit);
qemu_put_be32(f, dt->flags);
}
static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
{
dt->selector = qemu_get_be32(f);
dt->base = qemu_get_betl(f);
dt->limit = qemu_get_be32(f);
dt->flags = qemu_get_be32(f);
}
void cpu_save(QEMUFile *f, void *opaque)
{
CPUState *env = opaque;
uint16_t fptag, fpus, fpuc, fpregs_format;
uint32_t hflags;
int i;
for(i = 0; i < CPU_NB_REGS; i++)
qemu_put_betls(f, &env->regs[i]);
qemu_put_betls(f, &env->eip);
qemu_put_betls(f, &env->eflags);
hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
qemu_put_be32s(f, &hflags);
/* FPU */
fpuc = env->fpuc;
fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
fptag = 0;
for(i = 0; i < 8; i++) {
fptag |= ((!env->fptags[i]) << i);
}
qemu_put_be16s(f, &fpuc);
qemu_put_be16s(f, &fpus);
qemu_put_be16s(f, &fptag);
#ifdef USE_X86LDOUBLE
fpregs_format = 0;
#else
fpregs_format = 1;
#endif
qemu_put_be16s(f, &fpregs_format);
for(i = 0; i < 8; i++) {
#ifdef USE_X86LDOUBLE
{
uint64_t mant;
uint16_t exp;
/* we save the real CPU data (in case of MMX usage only 'mant'
contains the MMX register */
cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
qemu_put_be64(f, mant);
qemu_put_be16(f, exp);
}
#else
/* if we use doubles for float emulation, we save the doubles to
avoid losing information in case of MMX usage. It can give
problems if the image is restored on a CPU where long
doubles are used instead. */
qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
#endif
}
for(i = 0; i < 6; i++)
cpu_put_seg(f, &env->segs[i]);
cpu_put_seg(f, &env->ldt);
cpu_put_seg(f, &env->tr);
cpu_put_seg(f, &env->gdt);
cpu_put_seg(f, &env->idt);
qemu_put_be32s(f, &env->sysenter_cs);
qemu_put_be32s(f, &env->sysenter_esp);
qemu_put_be32s(f, &env->sysenter_eip);
qemu_put_betls(f, &env->cr[0]);
qemu_put_betls(f, &env->cr[2]);
qemu_put_betls(f, &env->cr[3]);
qemu_put_betls(f, &env->cr[4]);
for(i = 0; i < 8; i++)
qemu_put_betls(f, &env->dr[i]);
/* MMU */
qemu_put_be32s(f, &env->a20_mask);
/* XMM */
qemu_put_be32s(f, &env->mxcsr);
for(i = 0; i < CPU_NB_REGS; i++) {
qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
}
#ifdef TARGET_X86_64
qemu_put_be64s(f, &env->efer);
qemu_put_be64s(f, &env->star);
qemu_put_be64s(f, &env->lstar);
qemu_put_be64s(f, &env->cstar);
qemu_put_be64s(f, &env->fmask);
qemu_put_be64s(f, &env->kernelgsbase);
#endif
qemu_put_be32s(f, &env->smbase);
}
#ifdef USE_X86LDOUBLE
/* XXX: add that in a FPU generic layer */
union x86_longdouble {
uint64_t mant;
uint16_t exp;
};
#define MANTD1(fp) (fp & ((1LL << 52) - 1))
#define EXPBIAS1 1023
#define EXPD1(fp) ((fp >> 52) & 0x7FF)
#define SIGND1(fp) ((fp >> 32) & 0x80000000)
static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
{
int e;
/* mantissa */
p->mant = (MANTD1(temp) << 11) | (1LL << 63);
/* exponent + sign */
e = EXPD1(temp) - EXPBIAS1 + 16383;
e |= SIGND1(temp) >> 16;
p->exp = e;
}
#endif
int cpu_load(QEMUFile *f, void *opaque, int version_id)
{
CPUState *env = opaque;
int i, guess_mmx;
uint32_t hflags;
uint16_t fpus, fpuc, fptag, fpregs_format;
if (version_id != 3 && version_id != 4)
return -EINVAL;
for(i = 0; i < CPU_NB_REGS; i++)
qemu_get_betls(f, &env->regs[i]);
qemu_get_betls(f, &env->eip);
qemu_get_betls(f, &env->eflags);
qemu_get_be32s(f, &hflags);
qemu_get_be16s(f, &fpuc);
qemu_get_be16s(f, &fpus);
qemu_get_be16s(f, &fptag);
qemu_get_be16s(f, &fpregs_format);
/* NOTE: we cannot always restore the FPU state if the image come
from a host with a different 'USE_X86LDOUBLE' define. We guess
if we are in an MMX state to restore correctly in that case. */
guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
for(i = 0; i < 8; i++) {
uint64_t mant;
uint16_t exp;
switch(fpregs_format) {
case 0:
mant = qemu_get_be64(f);
exp = qemu_get_be16(f);
#ifdef USE_X86LDOUBLE
env->fpregs[i].d = cpu_set_fp80(mant, exp);
#else
/* difficult case */
if (guess_mmx)
env->fpregs[i].mmx.MMX_Q(0) = mant;
else
env->fpregs[i].d = cpu_set_fp80(mant, exp);
#endif
break;
case 1:
mant = qemu_get_be64(f);
#ifdef USE_X86LDOUBLE
{
union x86_longdouble *p;
/* difficult case */
p = (void *)&env->fpregs[i];
if (guess_mmx) {
p->mant = mant;
p->exp = 0xffff;
} else {
fp64_to_fp80(p, mant);
}
}
#else
env->fpregs[i].mmx.MMX_Q(0) = mant;
#endif
break;
default:
return -EINVAL;
}
}
env->fpuc = fpuc;
/* XXX: restore FPU round state */
env->fpstt = (fpus >> 11) & 7;
env->fpus = fpus & ~0x3800;
fptag ^= 0xff;
for(i = 0; i < 8; i++) {
env->fptags[i] = (fptag >> i) & 1;
}
for(i = 0; i < 6; i++)
cpu_get_seg(f, &env->segs[i]);
cpu_get_seg(f, &env->ldt);
cpu_get_seg(f, &env->tr);
cpu_get_seg(f, &env->gdt);
cpu_get_seg(f, &env->idt);
qemu_get_be32s(f, &env->sysenter_cs);
qemu_get_be32s(f, &env->sysenter_esp);
qemu_get_be32s(f, &env->sysenter_eip);
qemu_get_betls(f, &env->cr[0]);
qemu_get_betls(f, &env->cr[2]);
qemu_get_betls(f, &env->cr[3]);
qemu_get_betls(f, &env->cr[4]);
for(i = 0; i < 8; i++)
qemu_get_betls(f, &env->dr[i]);
/* MMU */
qemu_get_be32s(f, &env->a20_mask);
qemu_get_be32s(f, &env->mxcsr);
for(i = 0; i < CPU_NB_REGS; i++) {
qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
}
#ifdef TARGET_X86_64
qemu_get_be64s(f, &env->efer);
qemu_get_be64s(f, &env->star);
qemu_get_be64s(f, &env->lstar);
qemu_get_be64s(f, &env->cstar);
qemu_get_be64s(f, &env->fmask);
qemu_get_be64s(f, &env->kernelgsbase);
#endif
if (version_id >= 4)
qemu_get_be32s(f, &env->smbase);
/* XXX: compute hflags from scratch, except for CPL and IIF */
env->hflags = hflags;
tlb_flush(env, 1);
return 0;
}
#elif defined(TARGET_PPC)
void cpu_save(QEMUFile *f, void *opaque)
{
}
int cpu_load(QEMUFile *f, void *opaque, int version_id)
{
return 0;
}
#elif defined(TARGET_MIPS)
void cpu_save(QEMUFile *f, void *opaque)
{
}
int cpu_load(QEMUFile *f, void *opaque, int version_id)
{
return 0;
}
#elif defined(TARGET_SPARC)
void cpu_save(QEMUFile *f, void *opaque)
{
CPUState *env = opaque;
int i;
uint32_t tmp;
for(i = 0; i < 8; i++)
qemu_put_betls(f, &env->gregs[i]);
for(i = 0; i < NWINDOWS * 16; i++)
qemu_put_betls(f, &env->regbase[i]);
/* FPU */
for(i = 0; i < TARGET_FPREGS; i++) {
union {
float32 f;
uint32_t i;
} u;
u.f = env->fpr[i];
qemu_put_be32(f, u.i);
}
qemu_put_betls(f, &env->pc);
qemu_put_betls(f, &env->npc);
qemu_put_betls(f, &env->y);
tmp = GET_PSR(env);
qemu_put_be32(f, tmp);
qemu_put_betls(f, &env->fsr);
qemu_put_betls(f, &env->tbr);
#ifndef TARGET_SPARC64
qemu_put_be32s(f, &env->wim);
/* MMU */
for(i = 0; i < 16; i++)
qemu_put_be32s(f, &env->mmuregs[i]);
#endif
}
int cpu_load(QEMUFile *f, void *opaque, int version_id)
{
CPUState *env = opaque;
int i;
uint32_t tmp;
for(i = 0; i < 8; i++)
qemu_get_betls(f, &env->gregs[i]);
for(i = 0; i < NWINDOWS * 16; i++)
qemu_get_betls(f, &env->regbase[i]);
/* FPU */
for(i = 0; i < TARGET_FPREGS; i++) {
union {
float32 f;
uint32_t i;
} u;
u.i = qemu_get_be32(f);
env->fpr[i] = u.f;
}
qemu_get_betls(f, &env->pc);
qemu_get_betls(f, &env->npc);
qemu_get_betls(f, &env->y);
tmp = qemu_get_be32(f);
env->cwp = 0; /* needed to ensure that the wrapping registers are
correctly updated */
PUT_PSR(env, tmp);
qemu_get_betls(f, &env->fsr);
qemu_get_betls(f, &env->tbr);
#ifndef TARGET_SPARC64
qemu_get_be32s(f, &env->wim);
/* MMU */
for(i = 0; i < 16; i++)
qemu_get_be32s(f, &env->mmuregs[i]);
#endif
tlb_flush(env, 1);
return 0;
}
#elif defined(TARGET_ARM)
void cpu_save(QEMUFile *f, void *opaque)
{
int i;
CPUARMState *env = (CPUARMState *)opaque;
for (i = 0; i < 16; i++) {
qemu_put_be32(f, env->regs[i]);
}
qemu_put_be32(f, cpsr_read(env));
qemu_put_be32(f, env->spsr);
for (i = 0; i < 6; i++) {
qemu_put_be32(f, env->banked_spsr[i]);
qemu_put_be32(f, env->banked_r13[i]);
qemu_put_be32(f, env->banked_r14[i]);
}
for (i = 0; i < 5; i++) {
qemu_put_be32(f, env->usr_regs[i]);
qemu_put_be32(f, env->fiq_regs[i]);
}
qemu_put_be32(f, env->cp15.c0_cpuid);
qemu_put_be32(f, env->cp15.c0_cachetype);
qemu_put_be32(f, env->cp15.c1_sys);
qemu_put_be32(f, env->cp15.c1_coproc);
qemu_put_be32(f, env->cp15.c2_base);
qemu_put_be32(f, env->cp15.c2_data);
qemu_put_be32(f, env->cp15.c2_insn);
qemu_put_be32(f, env->cp15.c3);
qemu_put_be32(f, env->cp15.c5_insn);
qemu_put_be32(f, env->cp15.c5_data);
for (i = 0; i < 8; i++) {
qemu_put_be32(f, env->cp15.c6_region[i]);
}
qemu_put_be32(f, env->cp15.c6_insn);
qemu_put_be32(f, env->cp15.c6_data);
qemu_put_be32(f, env->cp15.c9_insn);
qemu_put_be32(f, env->cp15.c9_data);
qemu_put_be32(f, env->cp15.c13_fcse);
qemu_put_be32(f, env->cp15.c13_context);
qemu_put_be32(f, env->cp15.c15_cpar);
qemu_put_be32(f, env->features);
if (arm_feature(env, ARM_FEATURE_VFP)) {
for (i = 0; i < 16; i++) {
CPU_DoubleU u;
u.d = env->vfp.regs[i];
qemu_put_be32(f, u.l.upper);
qemu_put_be32(f, u.l.lower);
}
for (i = 0; i < 16; i++) {
qemu_put_be32(f, env->vfp.xregs[i]);
}
/* TODO: Should use proper FPSCR access functions. */
qemu_put_be32(f, env->vfp.vec_len);
qemu_put_be32(f, env->vfp.vec_stride);
}
if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
for (i = 0; i < 16; i++) {
qemu_put_be64(f, env->iwmmxt.regs[i]);
}
for (i = 0; i < 16; i++) {
qemu_put_be32(f, env->iwmmxt.cregs[i]);
}
}
}
int cpu_load(QEMUFile *f, void *opaque, int version_id)
{
CPUARMState *env = (CPUARMState *)opaque;
int i;
if (version_id != 0)
return -EINVAL;
for (i = 0; i < 16; i++) {
env->regs[i] = qemu_get_be32(f);
}
cpsr_write(env, qemu_get_be32(f), 0xffffffff);
env->spsr = qemu_get_be32(f);
for (i = 0; i < 6; i++) {
env->banked_spsr[i] = qemu_get_be32(f);
env->banked_r13[i] = qemu_get_be32(f);
env->banked_r14[i] = qemu_get_be32(f);
}
for (i = 0; i < 5; i++) {
env->usr_regs[i] = qemu_get_be32(f);
env->fiq_regs[i] = qemu_get_be32(f);
}
env->cp15.c0_cpuid = qemu_get_be32(f);
env->cp15.c0_cachetype = qemu_get_be32(f);
env->cp15.c1_sys = qemu_get_be32(f);
env->cp15.c1_coproc = qemu_get_be32(f);
env->cp15.c2_base = qemu_get_be32(f);
env->cp15.c2_data = qemu_get_be32(f);
env->cp15.c2_insn = qemu_get_be32(f);
env->cp15.c3 = qemu_get_be32(f);
env->cp15.c5_insn = qemu_get_be32(f);
env->cp15.c5_data = qemu_get_be32(f);
for (i = 0; i < 8; i++) {
env->cp15.c6_region[i] = qemu_get_be32(f);
}
env->cp15.c6_insn = qemu_get_be32(f);
env->cp15.c6_data = qemu_get_be32(f);
env->cp15.c9_insn = qemu_get_be32(f);
env->cp15.c9_data = qemu_get_be32(f);
env->cp15.c13_fcse = qemu_get_be32(f);
env->cp15.c13_context = qemu_get_be32(f);
env->cp15.c15_cpar = qemu_get_be32(f);
env->features = qemu_get_be32(f);
if (arm_feature(env, ARM_FEATURE_VFP)) {
for (i = 0; i < 16; i++) {
CPU_DoubleU u;
u.l.upper = qemu_get_be32(f);
u.l.lower = qemu_get_be32(f);
env->vfp.regs[i] = u.d;
}
for (i = 0; i < 16; i++) {
env->vfp.xregs[i] = qemu_get_be32(f);
}
/* TODO: Should use proper FPSCR access functions. */
env->vfp.vec_len = qemu_get_be32(f);
env->vfp.vec_stride = qemu_get_be32(f);
}
if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
for (i = 0; i < 16; i++) {
env->iwmmxt.regs[i] = qemu_get_be64(f);
}
for (i = 0; i < 16; i++) {
env->iwmmxt.cregs[i] = qemu_get_be32(f);
}
}
return 0;
}
#else
#warning No CPU save/restore functions
#endif
/***********************************************************/
/* ram save/restore */
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
{
int v;
v = qemu_get_byte(f);
switch(v) {
case 0:
if (qemu_get_buffer(f, buf, len) != len)
return -EIO;
break;
case 1:
v = qemu_get_byte(f);
memset(buf, v, len);
break;
default:
return -EINVAL;
}
return 0;
}
static int ram_load_v1(QEMUFile *f, void *opaque)
{
int i, ret;
if (qemu_get_be32(f) != phys_ram_size)
return -EINVAL;
for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
if (ret)
return ret;
}
return 0;
}
#define BDRV_HASH_BLOCK_SIZE 1024
#define IOBUF_SIZE 4096
#define RAM_CBLOCK_MAGIC 0xfabe
typedef struct RamCompressState {
z_stream zstream;
QEMUFile *f;
uint8_t buf[IOBUF_SIZE];
} RamCompressState;
static int ram_compress_open(RamCompressState *s, QEMUFile *f)
{
int ret;
memset(s, 0, sizeof(*s));
s->f = f;
ret = deflateInit2(&s->zstream, 1,
Z_DEFLATED, 15,
9, Z_DEFAULT_STRATEGY);
if (ret != Z_OK)
return -1;
s->zstream.avail_out = IOBUF_SIZE;
s->zstream.next_out = s->buf;
return 0;
}
static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
{
qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
qemu_put_be16(s->f, len);
qemu_put_buffer(s->f, buf, len);
}
static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
{
int ret;
s->zstream.avail_in = len;
s->zstream.next_in = (uint8_t *)buf;
while (s->zstream.avail_in > 0) {
ret = deflate(&s->zstream, Z_NO_FLUSH);
if (ret != Z_OK)
return -1;
if (s->zstream.avail_out == 0) {
ram_put_cblock(s, s->buf, IOBUF_SIZE);
s->zstream.avail_out = IOBUF_SIZE;
s->zstream.next_out = s->buf;
}
}
return 0;
}
static void ram_compress_close(RamCompressState *s)
{
int len, ret;
/* compress last bytes */
for(;;) {
ret = deflate(&s->zstream, Z_FINISH);
if (ret == Z_OK || ret == Z_STREAM_END) {
len = IOBUF_SIZE - s->zstream.avail_out;
if (len > 0) {
ram_put_cblock(s, s->buf, len);
}
s->zstream.avail_out = IOBUF_SIZE;
s->zstream.next_out = s->buf;
if (ret == Z_STREAM_END)
break;
} else {
goto fail;
}
}
fail:
deflateEnd(&s->zstream);
}
typedef struct RamDecompressState {
z_stream zstream;
QEMUFile *f;
uint8_t buf[IOBUF_SIZE];
} RamDecompressState;
static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
{
int ret;
memset(s, 0, sizeof(*s));
s->f = f;
ret = inflateInit(&s->zstream);
if (ret != Z_OK)
return -1;
return 0;
}
static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
{
int ret, clen;
s->zstream.avail_out = len;
s->zstream.next_out = buf;
while (s->zstream.avail_out > 0) {
if (s->zstream.avail_in == 0) {
if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
return -1;
clen = qemu_get_be16(s->f);
if (clen > IOBUF_SIZE)
return -1;
qemu_get_buffer(s->f, s->buf, clen);
s->zstream.avail_in = clen;
s->zstream.next_in = s->buf;
}
ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
if (ret != Z_OK && ret != Z_STREAM_END) {
return -1;
}
}
return 0;
}
static void ram_decompress_close(RamDecompressState *s)
{
inflateEnd(&s->zstream);
}
static void ram_save(QEMUFile *f, void *opaque)
{
int i;
RamCompressState s1, *s = &s1;
uint8_t buf[10];
qemu_put_be32(f, phys_ram_size);
if (ram_compress_open(s, f) < 0)
return;
for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
#if 0
if (tight_savevm_enabled) {
int64_t sector_num;
int j;
/* find if the memory block is available on a virtual
block device */
sector_num = -1;
for(j = 0; j < MAX_DISKS; j++) {
if (bs_table[j]) {
sector_num = bdrv_hash_find(bs_table[j],
phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
if (sector_num >= 0)
break;
}
}
if (j == MAX_DISKS)
goto normal_compress;
buf[0] = 1;
buf[1] = j;
cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
ram_compress_buf(s, buf, 10);
} else
#endif
{
// normal_compress:
buf[0] = 0;
ram_compress_buf(s, buf, 1);
ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
}
}
ram_compress_close(s);
}
static int ram_load(QEMUFile *f, void *opaque, int version_id)
{
RamDecompressState s1, *s = &s1;
uint8_t buf[10];
int i;
if (version_id == 1)
return ram_load_v1(f, opaque);
if (version_id != 2)
return -EINVAL;
if (qemu_get_be32(f) != phys_ram_size)
return -EINVAL;
if (ram_decompress_open(s, f) < 0)
return -EINVAL;
for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
if (ram_decompress_buf(s, buf, 1) < 0) {
fprintf(stderr, "Error while reading ram block header\n");
goto error;
}
if (buf[0] == 0) {
if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
fprintf(stderr, "Error while reading ram block address=0x%08x", i);
goto error;
}
} else
#if 0
if (buf[0] == 1) {
int bs_index;
int64_t sector_num;
ram_decompress_buf(s, buf + 1, 9);
bs_index = buf[1];
sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
if (bs_index >= MAX_DISKS || bs_table[bs_index] == NULL) {
fprintf(stderr, "Invalid block device index %d\n", bs_index);
goto error;
}
if (bdrv_read(bs_table[bs_index], sector_num, phys_ram_base + i,
BDRV_HASH_BLOCK_SIZE / 512) < 0) {
fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
bs_index, sector_num);
goto error;
}
} else
#endif
{
error:
printf("Error block header\n");
return -EINVAL;
}
}
ram_decompress_close(s);
return 0;
}
/***********************************************************/
/* bottom halves (can be seen as timers which expire ASAP) */
struct QEMUBH {
QEMUBHFunc *cb;
void *opaque;
int scheduled;
QEMUBH *next;
};
static QEMUBH *first_bh = NULL;
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
{
QEMUBH *bh;
bh = qemu_mallocz(sizeof(QEMUBH));
if (!bh)
return NULL;
bh->cb = cb;
bh->opaque = opaque;
return bh;
}
int qemu_bh_poll(void)
{
QEMUBH *bh, **pbh;
int ret;
ret = 0;
for(;;) {
pbh = &first_bh;
bh = *pbh;
if (!bh)
break;
ret = 1;
*pbh = bh->next;
bh->scheduled = 0;
bh->cb(bh->opaque);
}
return ret;
}
void qemu_bh_schedule(QEMUBH *bh)
{
CPUState *env = cpu_single_env;
if (bh->scheduled)
return;
bh->scheduled = 1;
bh->next = first_bh;
first_bh = bh;
/* stop the currently executing CPU to execute the BH ASAP */
if (env) {
cpu_interrupt(env, CPU_INTERRUPT_EXIT);
}
}
void qemu_bh_cancel(QEMUBH *bh)
{
QEMUBH **pbh;
if (bh->scheduled) {
pbh = &first_bh;
while (*pbh != bh)
pbh = &(*pbh)->next;
*pbh = bh->next;
bh->scheduled = 0;
}
}
void qemu_bh_delete(QEMUBH *bh)
{
qemu_bh_cancel(bh);
qemu_free(bh);
}
/***********************************************************/
/* machine registration */
QEMUMachine *first_machine = NULL;
int qemu_register_machine(QEMUMachine *m)
{
QEMUMachine **pm;
pm = &first_machine;
while (*pm != NULL)
pm = &(*pm)->next;
m->next = NULL;
*pm = m;
return 0;
}
QEMUMachine *find_machine(const char *name)
{
QEMUMachine *m;
for(m = first_machine; m != NULL; m = m->next) {
if (!strcmp(m->name, name))
return m;
}
return NULL;
}
/***********************************************************/
/* main execution loop */
void gui_update(void *opaque)
{
display_state.dpy_refresh(&display_state);
qemu_mod_timer(gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
}
struct vm_change_state_entry {
VMChangeStateHandler *cb;
void *opaque;
LIST_ENTRY (vm_change_state_entry) entries;
};
static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
void *opaque)
{
VMChangeStateEntry *e;
e = qemu_mallocz(sizeof (*e));
if (!e)
return NULL;
e->cb = cb;
e->opaque = opaque;
LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
return e;
}
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
{
LIST_REMOVE (e, entries);
qemu_free (e);
}
static void vm_state_notify(int running)
{
VMChangeStateEntry *e;
for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
e->cb(e->opaque, running);
}
}
/* XXX: support several handlers */
static VMStopHandler *vm_stop_cb;
static void *vm_stop_opaque;
int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
{
vm_stop_cb = cb;
vm_stop_opaque = opaque;
return 0;
}
void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
{
vm_stop_cb = NULL;
}
void vm_start(void)
{
if (!vm_running) {
cpu_enable_ticks();
vm_running = 1;
vm_state_notify(1);
}
}
void vm_stop(int reason)
{
if (vm_running) {
cpu_disable_ticks();
vm_running = 0;
if (reason != 0) {
if (vm_stop_cb) {
vm_stop_cb(vm_stop_opaque, reason);
}
}
vm_state_notify(0);
}
}
/* reset/shutdown handler */
typedef struct QEMUResetEntry {
QEMUResetHandler *func;
void *opaque;
struct QEMUResetEntry *next;
} QEMUResetEntry;
static QEMUResetEntry *first_reset_entry;
static int reset_requested;
static int shutdown_requested;
static int powerdown_requested;
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
{
QEMUResetEntry **pre, *re;
pre = &first_reset_entry;
while (*pre != NULL)
pre = &(*pre)->next;
re = qemu_mallocz(sizeof(QEMUResetEntry));
re->func = func;
re->opaque = opaque;
re->next = NULL;
*pre = re;
}
static void qemu_system_reset(void)
{
QEMUResetEntry *re;
/* reset all devices */
for(re = first_reset_entry; re != NULL; re = re->next) {
re->func(re->opaque);
}
}
void qemu_system_reset_request(void)
{
if (no_reboot) {
shutdown_requested = 1;
} else {
reset_requested = 1;
}
if (cpu_single_env)
cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
}
void qemu_system_shutdown_request(void)
{
shutdown_requested = 1;
if (cpu_single_env)
cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
}
void qemu_system_powerdown_request(void)
{
powerdown_requested = 1;
if (cpu_single_env)
cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
}
void main_loop_wait(int timeout)
{
IOHandlerRecord *ioh;
fd_set rfds, wfds, xfds;
int ret, nfds;
#ifdef _WIN32
int ret2, i;
#endif
struct timeval tv;
PollingEntry *pe;
/* XXX: need to suppress polling by better using win32 events */
ret = 0;
for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
ret |= pe->func(pe->opaque);
}
#ifdef _WIN32
if (ret == 0) {
int err;
WaitObjects *w = &wait_objects;
ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
if (w->func[ret - WAIT_OBJECT_0])
w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
/* Check for additional signaled events */
for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
/* Check if event is signaled */
ret2 = WaitForSingleObject(w->events[i], 0);
if(ret2 == WAIT_OBJECT_0) {
if (w->func[i])
w->func[i](w->opaque[i]);
} else if (ret2 == WAIT_TIMEOUT) {
} else {
err = GetLastError();
fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
}
}
} else if (ret == WAIT_TIMEOUT) {
} else {
err = GetLastError();
fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
}
}
#endif
/* poll any events */
/* XXX: separate device handlers from system ones */
nfds = -1;
FD_ZERO(&rfds);
FD_ZERO(&wfds);
FD_ZERO(&xfds);
for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
if (ioh->deleted)
continue;
if (ioh->fd_read &&
(!ioh->fd_read_poll ||
ioh->fd_read_poll(ioh->opaque) != 0)) {
FD_SET(ioh->fd, &rfds);
if (ioh->fd > nfds)
nfds = ioh->fd;
}
if (ioh->fd_write) {
FD_SET(ioh->fd, &wfds);
if (ioh->fd > nfds)
nfds = ioh->fd;
}
}
tv.tv_sec = 0;
#ifdef _WIN32
tv.tv_usec = 0;
#else
tv.tv_usec = timeout * 1000;
#endif
#if defined(CONFIG_SLIRP)
if (slirp_inited) {
slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
}
#endif
ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
if (ret > 0) {
IOHandlerRecord **pioh;
for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
if (ioh->deleted)
continue;
if (FD_ISSET(ioh->fd, &rfds)) {
ioh->fd_read(ioh->opaque);
}
if (FD_ISSET(ioh->fd, &wfds)) {
ioh->fd_write(ioh->opaque);
}
}
/* remove deleted IO handlers */
pioh = &first_io_handler;
while (*pioh) {
ioh = *pioh;
if (ioh->deleted) {
*pioh = ioh->next;
qemu_free(ioh);
} else
pioh = &ioh->next;
}
}
#if defined(CONFIG_SLIRP)
if (slirp_inited) {
if (ret < 0) {
FD_ZERO(&rfds);
FD_ZERO(&wfds);
FD_ZERO(&xfds);
}
slirp_select_poll(&rfds, &wfds, &xfds);
}
#endif
qemu_aio_poll();
if (vm_running) {
qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
qemu_get_clock(vm_clock));
/* run dma transfers, if any */
DMA_run();
}
/* real time timers */
qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
qemu_get_clock(rt_clock));
/* Check bottom-halves last in case any of the earlier events triggered
them. */
qemu_bh_poll();
}
static CPUState *cur_cpu;
int main_loop(void)
{
int ret, timeout;
#ifdef CONFIG_PROFILER
int64_t ti;
#endif
CPUState *env;
cur_cpu = first_cpu;
for(;;) {
if (vm_running) {
env = cur_cpu;
for(;;) {
/* get next cpu */
env = env->next_cpu;
if (!env)
env = first_cpu;
#ifdef CONFIG_PROFILER
ti = profile_getclock();
#endif
ret = cpu_exec(env);
#ifdef CONFIG_PROFILER
qemu_time += profile_getclock() - ti;
#endif
if (ret == EXCP_HLT) {
/* Give the next CPU a chance to run. */
cur_cpu = env;
continue;
}
if (ret != EXCP_HALTED)
break;
/* all CPUs are halted ? */
if (env == cur_cpu)
break;
}
cur_cpu = env;
if (shutdown_requested) {
ret = EXCP_INTERRUPT;
break;
}
if (reset_requested) {
reset_requested = 0;
qemu_system_reset();
ret = EXCP_INTERRUPT;
}
if (powerdown_requested) {
powerdown_requested = 0;
qemu_system_powerdown();
ret = EXCP_INTERRUPT;
}
if (ret == EXCP_DEBUG) {
vm_stop(EXCP_DEBUG);
}
/* If all cpus are halted then wait until the next IRQ */
/* XXX: use timeout computed from timers */
if (ret == EXCP_HALTED)
timeout = 10;
else
timeout = 0;
} else {
timeout = 10;
}
#ifdef CONFIG_PROFILER
ti = profile_getclock();
#endif
main_loop_wait(timeout);
#ifdef CONFIG_PROFILER
dev_time += profile_getclock() - ti;
#endif
}
cpu_disable_ticks();
return ret;
}
void help(void)
{
printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
"usage: %s [options] [disk_image]\n"
"\n"
"'disk_image' is a raw hard image image for IDE hard disk 0\n"
"\n"
"Standard options:\n"
"-M machine select emulated machine (-M ? for list)\n"
"-cpu cpu select CPU (-cpu ? for list)\n"
"-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
"-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
"-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
"-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
"-mtdblock file use 'file' as on-board Flash memory image\n"
"-sd file use 'file' as SecureDigital card image\n"
"-pflash file use 'file' as a parallel flash image\n"
"-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
"-snapshot write to temporary files instead of disk image files\n"
#ifdef CONFIG_SDL
"-no-frame open SDL window without a frame and window decorations\n"
"-no-quit disable SDL window close capability\n"
#endif
#ifdef TARGET_I386
"-no-fd-bootchk disable boot signature checking for floppy disks\n"
#endif
"-m megs set virtual RAM size to megs MB [default=%d]\n"
"-smp n set the number of CPUs to 'n' [default=1]\n"
"-nographic disable graphical output and redirect serial I/Os to console\n"
"-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
#ifndef _WIN32
"-k language use keyboard layout (for example \"fr\" for French)\n"
#endif
#ifdef HAS_AUDIO
"-audio-help print list of audio drivers and their options\n"
"-soundhw c1,... enable audio support\n"
" and only specified sound cards (comma separated list)\n"
" use -soundhw ? to get the list of supported cards\n"
" use -soundhw all to enable all of them\n"
#endif
"-localtime set the real time clock to local time [default=utc]\n"
"-full-screen start in full screen\n"
#ifdef TARGET_I386
"-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
#endif
"-usb enable the USB driver (will be the default soon)\n"
"-usbdevice name add the host or guest USB device 'name'\n"
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
"-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
#endif
"-name string set the name of the guest\n"
"\n"
"Network options:\n"
"-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
" create a new Network Interface Card and connect it to VLAN 'n'\n"
#ifdef CONFIG_SLIRP
"-net user[,vlan=n][,hostname=host]\n"
" connect the user mode network stack to VLAN 'n' and send\n"
" hostname 'host' to DHCP clients\n"
#endif
#ifdef _WIN32
"-net tap[,vlan=n],ifname=name\n"
" connect the host TAP network interface to VLAN 'n'\n"
#else
"-net tap[,vlan=n][,fd=h][,ifname=name][,script=file]\n"
" connect the host TAP network interface to VLAN 'n' and use\n"
" the network script 'file' (default=%s);\n"
" use 'script=no' to disable script execution;\n"
" use 'fd=h' to connect to an already opened TAP interface\n"
#endif
"-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
" connect the vlan 'n' to another VLAN using a socket connection\n"
"-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
" connect the vlan 'n' to multicast maddr and port\n"
"-net none use it alone to have zero network devices; if no -net option\n"
" is provided, the default is '-net nic -net user'\n"
"\n"
#ifdef CONFIG_SLIRP
"-tftp dir allow tftp access to files in dir [-net user]\n"
"-bootp file advertise file in BOOTP replies\n"
#ifndef _WIN32
"-smb dir allow SMB access to files in 'dir' [-net user]\n"
#endif
"-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
" redirect TCP or UDP connections from host to guest [-net user]\n"
#endif
"\n"
"Linux boot specific:\n"
"-kernel bzImage use 'bzImage' as kernel image\n"
"-append cmdline use 'cmdline' as kernel command line\n"
"-initrd file use 'file' as initial ram disk\n"
"\n"
"Debug/Expert options:\n"
"-monitor dev redirect the monitor to char device 'dev'\n"
"-serial dev redirect the serial port to char device 'dev'\n"
"-parallel dev redirect the parallel port to char device 'dev'\n"
"-pidfile file Write PID to 'file'\n"
"-S freeze CPU at startup (use 'c' to start execution)\n"
"-s wait gdb connection to port\n"
"-p port set gdb connection port [default=%s]\n"
"-d item1,... output log to %s (use -d ? for a list of log items)\n"
"-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
" translation (t=none or lba) (usually qemu can guess them)\n"
"-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
#ifdef USE_KQEMU
"-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
"-no-kqemu disable KQEMU kernel module usage\n"
#endif
#ifdef USE_CODE_COPY
"-no-code-copy disable code copy acceleration\n"
#endif
#ifdef TARGET_I386
"-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
" (default is CL-GD5446 PCI VGA)\n"
"-no-acpi disable ACPI\n"
#endif
"-no-reboot exit instead of rebooting\n"
"-loadvm file start right away with a saved state (loadvm in monitor)\n"
"-vnc display start a VNC server on display\n"
#ifndef _WIN32
"-daemonize daemonize QEMU after initializing\n"
#endif
"-option-rom rom load a file, rom, into the option ROM space\n"
#ifdef TARGET_SPARC
"-prom-env variable=value set OpenBIOS nvram variables\n"
#endif
"\n"
"During emulation, the following keys are useful:\n"
"ctrl-alt-f toggle full screen\n"
"ctrl-alt-n switch to virtual console 'n'\n"
"ctrl-alt toggle mouse and keyboard grab\n"
"\n"
"When using -nographic, press 'ctrl-a h' to get some help.\n"
,
"qemu",
DEFAULT_RAM_SIZE,
#ifndef _WIN32
DEFAULT_NETWORK_SCRIPT,
#endif
DEFAULT_GDBSTUB_PORT,
"/tmp/qemu.log");
exit(1);
}
#define HAS_ARG 0x0001
enum {
QEMU_OPTION_h,
QEMU_OPTION_M,
QEMU_OPTION_cpu,
QEMU_OPTION_fda,
QEMU_OPTION_fdb,
QEMU_OPTION_hda,
QEMU_OPTION_hdb,
QEMU_OPTION_hdc,
QEMU_OPTION_hdd,
QEMU_OPTION_cdrom,
QEMU_OPTION_mtdblock,
QEMU_OPTION_sd,
QEMU_OPTION_pflash,
QEMU_OPTION_boot,
QEMU_OPTION_snapshot,
#ifdef TARGET_I386
QEMU_OPTION_no_fd_bootchk,
#endif
QEMU_OPTION_m,
QEMU_OPTION_nographic,
QEMU_OPTION_portrait,
#ifdef HAS_AUDIO
QEMU_OPTION_audio_help,
QEMU_OPTION_soundhw,
#endif
QEMU_OPTION_net,
QEMU_OPTION_tftp,
QEMU_OPTION_bootp,
QEMU_OPTION_smb,
QEMU_OPTION_redir,
QEMU_OPTION_kernel,
QEMU_OPTION_append,
QEMU_OPTION_initrd,
QEMU_OPTION_S,
QEMU_OPTION_s,
QEMU_OPTION_p,
QEMU_OPTION_d,
QEMU_OPTION_hdachs,
QEMU_OPTION_L,
QEMU_OPTION_no_code_copy,
QEMU_OPTION_k,
QEMU_OPTION_localtime,
QEMU_OPTION_cirrusvga,
QEMU_OPTION_vmsvga,
QEMU_OPTION_g,
QEMU_OPTION_std_vga,
QEMU_OPTION_echr,
QEMU_OPTION_monitor,
QEMU_OPTION_serial,
QEMU_OPTION_parallel,
QEMU_OPTION_loadvm,
QEMU_OPTION_full_screen,
QEMU_OPTION_no_frame,
QEMU_OPTION_no_quit,
QEMU_OPTION_pidfile,
QEMU_OPTION_no_kqemu,
QEMU_OPTION_kernel_kqemu,
QEMU_OPTION_win2k_hack,
QEMU_OPTION_usb,
QEMU_OPTION_usbdevice,
QEMU_OPTION_smp,
QEMU_OPTION_vnc,
QEMU_OPTION_no_acpi,
QEMU_OPTION_no_reboot,
QEMU_OPTION_show_cursor,
QEMU_OPTION_daemonize,
QEMU_OPTION_option_rom,
QEMU_OPTION_semihosting,
QEMU_OPTION_name,
QEMU_OPTION_prom_env,
};
typedef struct QEMUOption {
const char *name;
int flags;
int index;
} QEMUOption;
const QEMUOption qemu_options[] = {
{ "h", 0, QEMU_OPTION_h },
{ "help", 0, QEMU_OPTION_h },
{ "M", HAS_ARG, QEMU_OPTION_M },
{ "cpu", HAS_ARG, QEMU_OPTION_cpu },
{ "fda", HAS_ARG, QEMU_OPTION_fda },
{ "fdb", HAS_ARG, QEMU_OPTION_fdb },
{ "hda", HAS_ARG, QEMU_OPTION_hda },
{ "hdb", HAS_ARG, QEMU_OPTION_hdb },
{ "hdc", HAS_ARG, QEMU_OPTION_hdc },
{ "hdd", HAS_ARG, QEMU_OPTION_hdd },
{ "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
{ "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
{ "sd", HAS_ARG, QEMU_OPTION_sd },
{ "pflash", HAS_ARG, QEMU_OPTION_pflash },
{ "boot", HAS_ARG, QEMU_OPTION_boot },
{ "snapshot", 0, QEMU_OPTION_snapshot },
#ifdef TARGET_I386
{ "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
#endif
{ "m", HAS_ARG, QEMU_OPTION_m },
{ "nographic", 0, QEMU_OPTION_nographic },
{ "portrait", 0, QEMU_OPTION_portrait },
{ "k", HAS_ARG, QEMU_OPTION_k },
#ifdef HAS_AUDIO
{ "audio-help", 0, QEMU_OPTION_audio_help },
{ "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
#endif
{ "net", HAS_ARG, QEMU_OPTION_net},
#ifdef CONFIG_SLIRP
{ "tftp", HAS_ARG, QEMU_OPTION_tftp },
{ "bootp", HAS_ARG, QEMU_OPTION_bootp },
#ifndef _WIN32
{ "smb", HAS_ARG, QEMU_OPTION_smb },
#endif
{ "redir", HAS_ARG, QEMU_OPTION_redir },
#endif
{ "kernel", HAS_ARG, QEMU_OPTION_kernel },
{ "append", HAS_ARG, QEMU_OPTION_append },
{ "initrd", HAS_ARG, QEMU_OPTION_initrd },
{ "S", 0, QEMU_OPTION_S },
{ "s", 0, QEMU_OPTION_s },
{ "p", HAS_ARG, QEMU_OPTION_p },
{ "d", HAS_ARG, QEMU_OPTION_d },
{ "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
{ "L", HAS_ARG, QEMU_OPTION_L },
{ "no-code-copy", 0, QEMU_OPTION_no_code_copy },
#ifdef USE_KQEMU
{ "no-kqemu", 0, QEMU_OPTION_no_kqemu },
{ "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
#endif
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
{ "g", 1, QEMU_OPTION_g },
#endif
{ "localtime", 0, QEMU_OPTION_localtime },
{ "std-vga", 0, QEMU_OPTION_std_vga },
{ "echr", 1, QEMU_OPTION_echr },
{ "monitor", 1, QEMU_OPTION_monitor },
{ "serial", 1, QEMU_OPTION_serial },
{ "parallel", 1, QEMU_OPTION_parallel },
{ "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
{ "full-screen", 0, QEMU_OPTION_full_screen },
#ifdef CONFIG_SDL
{ "no-frame", 0, QEMU_OPTION_no_frame },
{ "no-quit", 0, QEMU_OPTION_no_quit },
#endif
{ "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
{ "win2k-hack", 0, QEMU_OPTION_win2k_hack },
{ "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
{ "smp", HAS_ARG, QEMU_OPTION_smp },
{ "vnc", HAS_ARG, QEMU_OPTION_vnc },
/* temporary options */
{ "usb", 0, QEMU_OPTION_usb },
{ "cirrusvga", 0, QEMU_OPTION_cirrusvga },
{ "vmwarevga", 0, QEMU_OPTION_vmsvga },
{ "no-acpi", 0, QEMU_OPTION_no_acpi },
{ "no-reboot", 0, QEMU_OPTION_no_reboot },
{ "show-cursor", 0, QEMU_OPTION_show_cursor },
{ "daemonize", 0, QEMU_OPTION_daemonize },
{ "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
#if defined(TARGET_ARM)
{ "semihosting", 0, QEMU_OPTION_semihosting },
#endif
{ "name", HAS_ARG, QEMU_OPTION_name },
#if defined(TARGET_SPARC)
{ "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
#endif
{ NULL },
};
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
/* this stack is only used during signal handling */
#define SIGNAL_STACK_SIZE 32768
static uint8_t *signal_stack;
#endif
/* password input */
int qemu_key_check(BlockDriverState *bs, const char *name)
{
char password[256];
int i;
if (!bdrv_is_encrypted(bs))
return 0;
term_printf("%s is encrypted.\n", name);
for(i = 0; i < 3; i++) {
monitor_readline("Password: ", 1, password, sizeof(password));
if (bdrv_set_key(bs, password) == 0)
return 0;
term_printf("invalid password\n");
}
return -EPERM;
}
static BlockDriverState *get_bdrv(int index)
{
BlockDriverState *bs;
if (index < 4) {
bs = bs_table[index];
} else if (index < 6) {
bs = fd_table[index - 4];
} else {
bs = NULL;
}
return bs;
}
static void read_passwords(void)
{
BlockDriverState *bs;
int i;
for(i = 0; i < 6; i++) {
bs = get_bdrv(i);
if (bs)
qemu_key_check(bs, bdrv_get_device_name(bs));
}
}
/* XXX: currently we cannot use simultaneously different CPUs */
void register_machines(void)
{
#if defined(TARGET_I386)
qemu_register_machine(&pc_machine);
qemu_register_machine(&isapc_machine);
#elif defined(TARGET_PPC)
qemu_register_machine(&heathrow_machine);
qemu_register_machine(&core99_machine);
qemu_register_machine(&prep_machine);
qemu_register_machine(&ref405ep_machine);
qemu_register_machine(&taihu_machine);
#elif defined(TARGET_MIPS)
qemu_register_machine(&mips_machine);
qemu_register_machine(&mips_malta_machine);
qemu_register_machine(&mips_pica61_machine);
#elif defined(TARGET_SPARC)
#ifdef TARGET_SPARC64
qemu_register_machine(&sun4u_machine);
#else
qemu_register_machine(&ss5_machine);
qemu_register_machine(&ss10_machine);
#endif
#elif defined(TARGET_ARM)
qemu_register_machine(&integratorcp_machine);
qemu_register_machine(&versatilepb_machine);
qemu_register_machine(&versatileab_machine);
qemu_register_machine(&realview_machine);
qemu_register_machine(&akitapda_machine);
qemu_register_machine(&spitzpda_machine);
qemu_register_machine(&borzoipda_machine);
qemu_register_machine(&terrierpda_machine);
#elif defined(TARGET_SH4)
qemu_register_machine(&shix_machine);
#elif defined(TARGET_ALPHA)
/* XXX: TODO */
#elif defined(TARGET_M68K)
qemu_register_machine(&an5206_machine);
#else
#error unsupported CPU
#endif
}
#ifdef HAS_AUDIO
struct soundhw soundhw[] = {
#ifdef HAS_AUDIO_CHOICE
#ifdef TARGET_I386
{
"pcspk",
"PC speaker",
0,
1,
{ .init_isa = pcspk_audio_init }
},
#endif
{
"sb16",
"Creative Sound Blaster 16",
0,
1,
{ .init_isa = SB16_init }
},
#ifdef CONFIG_ADLIB
{
"adlib",
#ifdef HAS_YMF262
"Yamaha YMF262 (OPL3)",
#else
"Yamaha YM3812 (OPL2)",
#endif
0,
1,
{ .init_isa = Adlib_init }
},
#endif
#ifdef CONFIG_GUS
{
"gus",
"Gravis Ultrasound GF1",
0,
1,
{ .init_isa = GUS_init }
},
#endif
{
"es1370",
"ENSONIQ AudioPCI ES1370",
0,
0,
{ .init_pci = es1370_init }
},
#endif
{ NULL, NULL, 0, 0, { NULL } }
};
static void select_soundhw (const char *optarg)
{
struct soundhw *c;
if (*optarg == '?') {
show_valid_cards:
printf ("Valid sound card names (comma separated):\n");
for (c = soundhw; c->name; ++c) {
printf ("%-11s %s\n", c->name, c->descr);
}
printf ("\n-soundhw all will enable all of the above\n");
exit (*optarg != '?');
}
else {
size_t l;
const char *p;
char *e;
int bad_card = 0;
if (!strcmp (optarg, "all")) {
for (c = soundhw; c->name; ++c) {
c->enabled = 1;
}
return;
}
p = optarg;
while (*p) {
e = strchr (p, ',');
l = !e ? strlen (p) : (size_t) (e - p);
for (c = soundhw; c->name; ++c) {
if (!strncmp (c->name, p, l)) {
c->enabled = 1;
break;
}
}
if (!c->name) {
if (l > 80) {
fprintf (stderr,
"Unknown sound card name (too big to show)\n");
}
else {
fprintf (stderr, "Unknown sound card name `%.*s'\n",
(int) l, p);
}
bad_card = 1;
}
p += l + (e != NULL);
}
if (bad_card)
goto show_valid_cards;
}
}
#endif
#ifdef _WIN32
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
{
exit(STATUS_CONTROL_C_EXIT);
return TRUE;
}
#endif
#define MAX_NET_CLIENTS 32
int main(int argc, char **argv)
{
#ifdef CONFIG_GDBSTUB
int use_gdbstub;
const char *gdbstub_port;
#endif
int i, cdrom_index, pflash_index;
int snapshot, linux_boot;
const char *initrd_filename;
const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
const char *pflash_filename[MAX_PFLASH];
const char *sd_filename;
const char *mtd_filename;
const char *kernel_filename, *kernel_cmdline;
DisplayState *ds = &display_state;
int cyls, heads, secs, translation;
char net_clients[MAX_NET_CLIENTS][256];
int nb_net_clients;
int optind;
const char *r, *optarg;
CharDriverState *monitor_hd;
char monitor_device[128];
char serial_devices[MAX_SERIAL_PORTS][128];
int serial_device_index;
char parallel_devices[MAX_PARALLEL_PORTS][128];
int parallel_device_index;
const char *loadvm = NULL;
QEMUMachine *machine;
const char *cpu_model;
char usb_devices[MAX_USB_CMDLINE][128];
int usb_devices_index;
int fds[2];
const char *pid_file = NULL;
LIST_INIT (&vm_change_state_head);
#ifndef _WIN32
{
struct sigaction act;
sigfillset(&act.sa_mask);
act.sa_flags = 0;
act.sa_handler = SIG_IGN;
sigaction(SIGPIPE, &act, NULL);
}
#else
SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
/* Note: cpu_interrupt() is currently not SMP safe, so we force
QEMU to run on a single CPU */
{
HANDLE h;
DWORD mask, smask;
int i;
h = GetCurrentProcess();
if (GetProcessAffinityMask(h, &mask, &smask)) {
for(i = 0; i < 32; i++) {
if (mask & (1 << i))
break;
}
if (i != 32) {
mask = 1 << i;
SetProcessAffinityMask(h, mask);
}
}
}
#endif
register_machines();
machine = first_machine;
cpu_model = NULL;
initrd_filename = NULL;
for(i = 0; i < MAX_FD; i++)
fd_filename[i] = NULL;
for(i = 0; i < MAX_DISKS; i++)
hd_filename[i] = NULL;
for(i = 0; i < MAX_PFLASH; i++)
pflash_filename[i] = NULL;
pflash_index = 0;
sd_filename = NULL;
mtd_filename = NULL;
ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
vga_ram_size = VGA_RAM_SIZE;
#ifdef CONFIG_GDBSTUB
use_gdbstub = 0;
gdbstub_port = DEFAULT_GDBSTUB_PORT;
#endif
snapshot = 0;
nographic = 0;
kernel_filename = NULL;
kernel_cmdline = "";
#ifdef TARGET_PPC
cdrom_index = 1;
#else
cdrom_index = 2;
#endif
cyls = heads = secs = 0;
translation = BIOS_ATA_TRANSLATION_AUTO;
pstrcpy(monitor_device, sizeof(monitor_device), "vc");
pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
for(i = 1; i < MAX_SERIAL_PORTS; i++)
serial_devices[i][0] = '\0';
serial_device_index = 0;
pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
for(i = 1; i < MAX_PARALLEL_PORTS; i++)
parallel_devices[i][0] = '\0';
parallel_device_index = 0;
usb_devices_index = 0;
nb_net_clients = 0;
nb_nics = 0;
/* default mac address of the first network interface */
optind = 1;
for(;;) {
if (optind >= argc)
break;
r = argv[optind];
if (r[0] != '-') {
hd_filename[0] = argv[optind++];
} else {
const QEMUOption *popt;
optind++;
/* Treat --foo the same as -foo. */
if (r[1] == '-')
r++;
popt = qemu_options;
for(;;) {
if (!popt->name) {
fprintf(stderr, "%s: invalid option -- '%s'\n",
argv[0], r);
exit(1);
}
if (!strcmp(popt->name, r + 1))
break;
popt++;
}
if (popt->flags & HAS_ARG) {
if (optind >= argc) {
fprintf(stderr, "%s: option '%s' requires an argument\n",
argv[0], r);
exit(1);
}
optarg = argv[optind++];
} else {
optarg = NULL;
}
switch(popt->index) {
case QEMU_OPTION_M:
machine = find_machine(optarg);
if (!machine) {
QEMUMachine *m;
printf("Supported machines are:\n");
for(m = first_machine; m != NULL; m = m->next) {
printf("%-10s %s%s\n",
m->name, m->desc,
m == first_machine ? " (default)" : "");
}
exit(1);
}
break;
case QEMU_OPTION_cpu:
/* hw initialization will check this */
if (optarg[0] == '?') {
#if defined(TARGET_PPC)
ppc_cpu_list(stdout, &fprintf);
#elif defined(TARGET_ARM)
arm_cpu_list();
#elif defined(TARGET_MIPS)
mips_cpu_list(stdout, &fprintf);
#elif defined(TARGET_SPARC)
sparc_cpu_list(stdout, &fprintf);
#endif
exit(1);
} else {
cpu_model = optarg;
}
break;
case QEMU_OPTION_initrd:
initrd_filename = optarg;
break;
case QEMU_OPTION_hda:
case QEMU_OPTION_hdb:
case QEMU_OPTION_hdc:
case QEMU_OPTION_hdd:
{
int hd_index;
hd_index = popt->index - QEMU_OPTION_hda;
hd_filename[hd_index] = optarg;
if (hd_index == cdrom_index)
cdrom_index = -1;
}
break;
case QEMU_OPTION_mtdblock:
mtd_filename = optarg;
break;
case QEMU_OPTION_sd:
sd_filename = optarg;
break;
case QEMU_OPTION_pflash:
if (pflash_index >= MAX_PFLASH) {
fprintf(stderr, "qemu: too many parallel flash images\n");
exit(1);
}
pflash_filename[pflash_index++] = optarg;
break;
case QEMU_OPTION_snapshot:
snapshot = 1;
break;
case QEMU_OPTION_hdachs:
{
const char *p;
p = optarg;
cyls = strtol(p, (char **)&p, 0);
if (cyls < 1 || cyls > 16383)
goto chs_fail;
if (*p != ',')
goto chs_fail;
p++;
heads = strtol(p, (char **)&p, 0);
if (heads < 1 || heads > 16)
goto chs_fail;
if (*p != ',')
goto chs_fail;
p++;
secs = strtol(p, (char **)&p, 0);
if (secs < 1 || secs > 63)
goto chs_fail;
if (*p == ',') {
p++;
if (!strcmp(p, "none"))
translation = BIOS_ATA_TRANSLATION_NONE;
else if (!strcmp(p, "lba"))
translation = BIOS_ATA_TRANSLATION_LBA;
else if (!strcmp(p, "auto"))
translation = BIOS_ATA_TRANSLATION_AUTO;
else
goto chs_fail;
} else if (*p != '\0') {
chs_fail:
fprintf(stderr, "qemu: invalid physical CHS format\n");
exit(1);
}
}
break;
case QEMU_OPTION_nographic:
pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "null");
pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
nographic = 1;
break;
case QEMU_OPTION_portrait:
graphic_rotate = 1;
break;
case QEMU_OPTION_kernel:
kernel_filename = optarg;
break;
case QEMU_OPTION_append:
kernel_cmdline = optarg;
break;
case QEMU_OPTION_cdrom:
if (cdrom_index >= 0) {
hd_filename[cdrom_index] = optarg;
}
break;
case QEMU_OPTION_boot:
boot_device = optarg[0];
if (boot_device != 'a' &&
#if defined(TARGET_SPARC) || defined(TARGET_I386)
// Network boot
boot_device != 'n' &&
#endif
boot_device != 'c' && boot_device != 'd') {
fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
exit(1);
}
break;
case QEMU_OPTION_fda:
fd_filename[0] = optarg;
break;
case QEMU_OPTION_fdb:
fd_filename[1] = optarg;
break;
#ifdef TARGET_I386
case QEMU_OPTION_no_fd_bootchk:
fd_bootchk = 0;
break;
#endif
case QEMU_OPTION_no_code_copy:
code_copy_enabled = 0;
break;
case QEMU_OPTION_net:
if (nb_net_clients >= MAX_NET_CLIENTS) {
fprintf(stderr, "qemu: too many network clients\n");
exit(1);
}
pstrcpy(net_clients[nb_net_clients],
sizeof(net_clients[0]),
optarg);
nb_net_clients++;
break;
#ifdef CONFIG_SLIRP
case QEMU_OPTION_tftp:
tftp_prefix = optarg;
break;
case QEMU_OPTION_bootp:
bootp_filename = optarg;
break;
#ifndef _WIN32
case QEMU_OPTION_smb:
net_slirp_smb(optarg);
break;
#endif
case QEMU_OPTION_redir:
net_slirp_redir(optarg);
break;
#endif
#ifdef HAS_AUDIO
case QEMU_OPTION_audio_help:
AUD_help ();
exit (0);
break;
case QEMU_OPTION_soundhw:
select_soundhw (optarg);
break;
#endif
case QEMU_OPTION_h:
help();
break;
case QEMU_OPTION_m:
ram_size = atoi(optarg) * 1024 * 1024;
if (ram_size <= 0)
help();
if (ram_size > PHYS_RAM_MAX_SIZE) {
fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
PHYS_RAM_MAX_SIZE / (1024 * 1024));
exit(1);
}
break;
case QEMU_OPTION_d:
{
int mask;
CPULogItem *item;
mask = cpu_str_to_log_mask(optarg);
if (!mask) {
printf("Log items (comma separated):\n");
for(item = cpu_log_items; item->mask != 0; item++) {
printf("%-10s %s\n", item->name, item->help);
}
exit(1);
}
cpu_set_log(mask);
}
break;
#ifdef CONFIG_GDBSTUB
case QEMU_OPTION_s:
use_gdbstub = 1;
break;
case QEMU_OPTION_p:
gdbstub_port = optarg;
break;
#endif
case QEMU_OPTION_L:
bios_dir = optarg;
break;
case QEMU_OPTION_S:
autostart = 0;
break;
case QEMU_OPTION_k:
keyboard_layout = optarg;
break;
case QEMU_OPTION_localtime:
rtc_utc = 0;
break;
case QEMU_OPTION_cirrusvga:
cirrus_vga_enabled = 1;
vmsvga_enabled = 0;
break;
case QEMU_OPTION_vmsvga:
cirrus_vga_enabled = 0;
vmsvga_enabled = 1;
break;
case QEMU_OPTION_std_vga:
cirrus_vga_enabled = 0;
vmsvga_enabled = 0;
break;
case QEMU_OPTION_g:
{
const char *p;
int w, h, depth;
p = optarg;
w = strtol(p, (char **)&p, 10);
if (w <= 0) {
graphic_error:
fprintf(stderr, "qemu: invalid resolution or depth\n");
exit(1);
}
if (*p != 'x')
goto graphic_error;
p++;
h = strtol(p, (char **)&p, 10);
if (h <= 0)
goto graphic_error;
if (*p == 'x') {
p++;
depth = strtol(p, (char **)&p, 10);
if (depth != 8 && depth != 15 && depth != 16 &&
depth != 24 && depth != 32)
goto graphic_error;
} else if (*p == '\0') {
depth = graphic_depth;
} else {
goto graphic_error;
}
graphic_width = w;
graphic_height = h;
graphic_depth = depth;
}
break;
case QEMU_OPTION_echr:
{
char *r;
term_escape_char = strtol(optarg, &r, 0);
if (r == optarg)
printf("Bad argument to echr\n");
break;
}
case QEMU_OPTION_monitor:
pstrcpy(monitor_device, sizeof(monitor_device), optarg);
break;
case QEMU_OPTION_serial:
if (serial_device_index >= MAX_SERIAL_PORTS) {
fprintf(stderr, "qemu: too many serial ports\n");
exit(1);
}
pstrcpy(serial_devices[serial_device_index],
sizeof(serial_devices[0]), optarg);
serial_device_index++;
break;
case QEMU_OPTION_parallel:
if (parallel_device_index >= MAX_PARALLEL_PORTS) {
fprintf(stderr, "qemu: too many parallel ports\n");
exit(1);
}
pstrcpy(parallel_devices[parallel_device_index],
sizeof(parallel_devices[0]), optarg);
parallel_device_index++;
break;
case QEMU_OPTION_loadvm:
loadvm = optarg;
break;
case QEMU_OPTION_full_screen:
full_screen = 1;
break;
#ifdef CONFIG_SDL
case QEMU_OPTION_no_frame:
no_frame = 1;
break;
case QEMU_OPTION_no_quit:
no_quit = 1;
break;
#endif
case QEMU_OPTION_pidfile:
pid_file = optarg;
break;
#ifdef TARGET_I386
case QEMU_OPTION_win2k_hack:
win2k_install_hack = 1;
break;
#endif
#ifdef USE_KQEMU
case QEMU_OPTION_no_kqemu:
kqemu_allowed = 0;
break;
case QEMU_OPTION_kernel_kqemu:
kqemu_allowed = 2;
break;
#endif
case QEMU_OPTION_usb:
usb_enabled = 1;
break;
case QEMU_OPTION_usbdevice:
usb_enabled = 1;
if (usb_devices_index >= MAX_USB_CMDLINE) {
fprintf(stderr, "Too many USB devices\n");
exit(1);
}
pstrcpy(usb_devices[usb_devices_index],
sizeof(usb_devices[usb_devices_index]),
optarg);
usb_devices_index++;
break;
case QEMU_OPTION_smp:
smp_cpus = atoi(optarg);
if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
fprintf(stderr, "Invalid number of CPUs\n");
exit(1);
}
break;
case QEMU_OPTION_vnc:
vnc_display = optarg;
break;
case QEMU_OPTION_no_acpi:
acpi_enabled = 0;
break;
case QEMU_OPTION_no_reboot:
no_reboot = 1;
break;
case QEMU_OPTION_show_cursor:
cursor_hide = 0;
break;
case QEMU_OPTION_daemonize:
daemonize = 1;
break;
case QEMU_OPTION_option_rom:
if (nb_option_roms >= MAX_OPTION_ROMS) {
fprintf(stderr, "Too many option ROMs\n");
exit(1);
}
option_rom[nb_option_roms] = optarg;
nb_option_roms++;
break;
case QEMU_OPTION_semihosting:
semihosting_enabled = 1;
break;
case QEMU_OPTION_name:
qemu_name = optarg;
break;
#ifdef TARGET_SPARC
case QEMU_OPTION_prom_env:
if (nb_prom_envs >= MAX_PROM_ENVS) {
fprintf(stderr, "Too many prom variables\n");
exit(1);
}
prom_envs[nb_prom_envs] = optarg;
nb_prom_envs++;
break;
#endif
}
}
}
#ifndef _WIN32
if (daemonize && !nographic && vnc_display == NULL) {
fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
daemonize = 0;
}
if (daemonize) {
pid_t pid;
if (pipe(fds) == -1)
exit(1);
pid = fork();
if (pid > 0) {
uint8_t status;
ssize_t len;
close(fds[1]);
again:
len = read(fds[0], &status, 1);
if (len == -1 && (errno == EINTR))
goto again;
if (len != 1)
exit(1);
else if (status == 1) {
fprintf(stderr, "Could not acquire pidfile\n");
exit(1);
} else
exit(0);
} else if (pid < 0)
exit(1);
setsid();
pid = fork();
if (pid > 0)
exit(0);
else if (pid < 0)
exit(1);
umask(027);
chdir("/");
signal(SIGTSTP, SIG_IGN);
signal(SIGTTOU, SIG_IGN);
signal(SIGTTIN, SIG_IGN);
}
#endif
if (pid_file && qemu_create_pidfile(pid_file) != 0) {
if (daemonize) {
uint8_t status = 1;
write(fds[1], &status, 1);
} else
fprintf(stderr, "Could not acquire pid file\n");
exit(1);
}
#ifdef USE_KQEMU
if (smp_cpus > 1)
kqemu_allowed = 0;
#endif
linux_boot = (kernel_filename != NULL);
if (!linux_boot &&
boot_device != 'n' &&
hd_filename[0] == '\0' &&
(cdrom_index >= 0 && hd_filename[cdrom_index] == '\0') &&
fd_filename[0] == '\0')
help();
/* boot to floppy or the default cd if no hard disk defined yet */
if (hd_filename[0] == '\0' && boot_device == 'c') {
if (fd_filename[0] != '\0')
boot_device = 'a';
else
boot_device = 'd';
}
setvbuf(stdout, NULL, _IOLBF, 0);
init_timers();
init_timer_alarm();
qemu_aio_init();
#ifdef _WIN32
socket_init();
#endif
/* init network clients */
if (nb_net_clients == 0) {
/* if no clients, we use a default config */
pstrcpy(net_clients[0], sizeof(net_clients[0]),
"nic");
pstrcpy(net_clients[1], sizeof(net_clients[0]),
"user");
nb_net_clients = 2;
}
for(i = 0;i < nb_net_clients; i++) {
if (net_client_init(net_clients[i]) < 0)
exit(1);
}
#ifdef TARGET_I386
if (boot_device == 'n') {
for (i = 0; i < nb_nics; i++) {
const char *model = nd_table[i].model;
char buf[1024];
if (model == NULL)
model = "ne2k_pci";
snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
if (get_image_size(buf) > 0) {
option_rom[nb_option_roms] = strdup(buf);
nb_option_roms++;
break;
}
}
if (i == nb_nics) {
fprintf(stderr, "No valid PXE rom found for network device\n");
exit(1);
}
boot_device = 'c'; /* to prevent confusion by the BIOS */
}
#endif
/* init the memory */
phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
phys_ram_base = qemu_vmalloc(phys_ram_size);
if (!phys_ram_base) {
fprintf(stderr, "Could not allocate physical memory\n");
exit(1);
}
/* we always create the cdrom drive, even if no disk is there */
bdrv_init();
if (cdrom_index >= 0) {
bs_table[cdrom_index] = bdrv_new("cdrom");
bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
}
/* open the virtual block devices */
for(i = 0; i < MAX_DISKS; i++) {
if (hd_filename[i]) {
if (!bs_table[i]) {
char buf[64];
snprintf(buf, sizeof(buf), "hd%c", i + 'a');
bs_table[i] = bdrv_new(buf);
}
if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
hd_filename[i]);
exit(1);
}
if (i == 0 && cyls != 0) {
bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
bdrv_set_translation_hint(bs_table[i], translation);
}
}
}
/* we always create at least one floppy disk */
fd_table[0] = bdrv_new("fda");
bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
for(i = 0; i < MAX_FD; i++) {
if (fd_filename[i]) {
if (!fd_table[i]) {
char buf[64];
snprintf(buf, sizeof(buf), "fd%c", i + 'a');
fd_table[i] = bdrv_new(buf);
bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
}
if (fd_filename[i][0] != '\0') {
if (bdrv_open(fd_table[i], fd_filename[i],
snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
fd_filename[i]);
exit(1);
}
}
}
}
/* Open the virtual parallel flash block devices */
for(i = 0; i < MAX_PFLASH; i++) {
if (pflash_filename[i]) {
if (!pflash_table[i]) {
char buf[64];
snprintf(buf, sizeof(buf), "fl%c", i + 'a');
pflash_table[i] = bdrv_new(buf);
}
if (bdrv_open(pflash_table[i], pflash_filename[i],
snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
fprintf(stderr, "qemu: could not open flash image '%s'\n",
pflash_filename[i]);
exit(1);
}
}
}
sd_bdrv = bdrv_new ("sd");
/* FIXME: This isn't really a floppy, but it's a reasonable
approximation. */
bdrv_set_type_hint(sd_bdrv, BDRV_TYPE_FLOPPY);
if (sd_filename) {
if (bdrv_open(sd_bdrv, sd_filename,
snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
fprintf(stderr, "qemu: could not open SD card image %s\n",
sd_filename);
} else
qemu_key_check(sd_bdrv, sd_filename);
}
if (mtd_filename) {
mtd_bdrv = bdrv_new ("mtd");
if (bdrv_open(mtd_bdrv, mtd_filename,
snapshot ? BDRV_O_SNAPSHOT : 0) < 0 ||
qemu_key_check(mtd_bdrv, mtd_filename)) {
fprintf(stderr, "qemu: could not open Flash image %s\n",
mtd_filename);
bdrv_delete(mtd_bdrv);
mtd_bdrv = 0;
}
}
register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
init_ioports();
/* terminal init */
if (nographic) {
dumb_display_init(ds);
} else if (vnc_display != NULL) {
vnc_display_init(ds, vnc_display);
} else {
#if defined(CONFIG_SDL)
sdl_display_init(ds, full_screen, no_frame);
#elif defined(CONFIG_COCOA)
cocoa_display_init(ds, full_screen);
#else
dumb_display_init(ds);
#endif
}
/* Maintain compatibility with multiple stdio monitors */
if (!strcmp(monitor_device,"stdio")) {
for (i = 0; i < MAX_SERIAL_PORTS; i++) {
if (!strcmp(serial_devices[i],"mon:stdio")) {
monitor_device[0] = '\0';
break;
} else if (!strcmp(serial_devices[i],"stdio")) {
monitor_device[0] = '\0';
pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
break;
}
}
}
if (monitor_device[0] != '\0') {
monitor_hd = qemu_chr_open(monitor_device);
if (!monitor_hd) {
fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
exit(1);
}
monitor_init(monitor_hd, !nographic);
}
for(i = 0; i < MAX_SERIAL_PORTS; i++) {
const char *devname = serial_devices[i];
if (devname[0] != '\0' && strcmp(devname, "none")) {
serial_hds[i] = qemu_chr_open(devname);
if (!serial_hds[i]) {
fprintf(stderr, "qemu: could not open serial device '%s'\n",
devname);
exit(1);
}
if (!strcmp(devname, "vc"))
qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
}
}
for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
const char *devname = parallel_devices[i];
if (devname[0] != '\0' && strcmp(devname, "none")) {
parallel_hds[i] = qemu_chr_open(devname);
if (!parallel_hds[i]) {
fprintf(stderr, "qemu: could not open parallel device '%s'\n",
devname);
exit(1);
}
if (!strcmp(devname, "vc"))
qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
}
}
machine->init(ram_size, vga_ram_size, boot_device,
ds, fd_filename, snapshot,
kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
/* init USB devices */
if (usb_enabled) {
for(i = 0; i < usb_devices_index; i++) {
if (usb_device_add(usb_devices[i]) < 0) {
fprintf(stderr, "Warning: could not add USB device %s\n",
usb_devices[i]);
}
}
}
gui_timer = qemu_new_timer(rt_clock, gui_update, NULL);
qemu_mod_timer(gui_timer, qemu_get_clock(rt_clock));
#ifdef CONFIG_GDBSTUB
if (use_gdbstub) {
/* XXX: use standard host:port notation and modify options
accordingly. */
if (gdbserver_start(gdbstub_port) < 0) {
fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
gdbstub_port);
exit(1);
}
} else
#endif
if (loadvm)
do_loadvm(loadvm);
{
/* XXX: simplify init */
read_passwords();
if (autostart) {
vm_start();
}
}
if (daemonize) {
uint8_t status = 0;
ssize_t len;
int fd;
again1:
len = write(fds[1], &status, 1);
if (len == -1 && (errno == EINTR))
goto again1;
if (len != 1)
exit(1);
fd = open("/dev/null", O_RDWR);
if (fd == -1)
exit(1);
dup2(fd, 0);
dup2(fd, 1);
dup2(fd, 2);
close(fd);
}
main_loop();
quit_timers();
return 0;
}