qemu-e2k/accel/hvf/hvf-accel-ops.c
Alexander Graf bac969ef30 hvf: Simplify post reset/init/loadvm hooks
The hooks we have that call us after reset, init and loadvm really all
just want to say "The reference of all register state is in the QEMU
vcpu struct, please push it".

We already have a working pushing mechanism though called cpu->vcpu_dirty,
so we can just reuse that for all of the above, syncing state properly the
next time we actually execute a vCPU.

This fixes PSCI resets on ARM, as they modify CPU state even after the
post init call has completed, but before we execute the vCPU again.

To also make the scheme work for x86, we have to make sure we don't
move stale eflags into our env when the vcpu state is dirty.

Signed-off-by: Alexander Graf <agraf@csgraf.de>
Reviewed-by: Roman Bolshakov <r.bolshakov@yadro.com>
Tested-by: Roman Bolshakov <r.bolshakov@yadro.com>
Reviewed-by: Sergio Lopez <slp@redhat.com>
Message-id: 20210519202253.76782-13-agraf@csgraf.de
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2021-06-03 16:43:27 +01:00

472 lines
12 KiB
C

/*
* Copyright 2008 IBM Corporation
* 2008 Red Hat, Inc.
* Copyright 2011 Intel Corporation
* Copyright 2016 Veertu, Inc.
* Copyright 2017 The Android Open Source Project
*
* QEMU Hypervisor.framework support
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*
* This file contain code under public domain from the hvdos project:
* https://github.com/mist64/hvdos
*
* Parts Copyright (c) 2011 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "exec/address-spaces.h"
#include "exec/exec-all.h"
#include "sysemu/cpus.h"
#include "sysemu/hvf.h"
#include "sysemu/hvf_int.h"
#include "sysemu/runstate.h"
#include "qemu/guest-random.h"
HVFState *hvf_state;
/* Memory slots */
hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t size)
{
hvf_slot *slot;
int x;
for (x = 0; x < hvf_state->num_slots; ++x) {
slot = &hvf_state->slots[x];
if (slot->size && start < (slot->start + slot->size) &&
(start + size) > slot->start) {
return slot;
}
}
return NULL;
}
struct mac_slot {
int present;
uint64_t size;
uint64_t gpa_start;
uint64_t gva;
};
struct mac_slot mac_slots[32];
static int do_hvf_set_memory(hvf_slot *slot, hv_memory_flags_t flags)
{
struct mac_slot *macslot;
hv_return_t ret;
macslot = &mac_slots[slot->slot_id];
if (macslot->present) {
if (macslot->size != slot->size) {
macslot->present = 0;
ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
assert_hvf_ok(ret);
}
}
if (!slot->size) {
return 0;
}
macslot->present = 1;
macslot->gpa_start = slot->start;
macslot->size = slot->size;
ret = hv_vm_map(slot->mem, slot->start, slot->size, flags);
assert_hvf_ok(ret);
return 0;
}
static void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
{
hvf_slot *mem;
MemoryRegion *area = section->mr;
bool writeable = !area->readonly && !area->rom_device;
hv_memory_flags_t flags;
if (!memory_region_is_ram(area)) {
if (writeable) {
return;
} else if (!memory_region_is_romd(area)) {
/*
* If the memory device is not in romd_mode, then we actually want
* to remove the hvf memory slot so all accesses will trap.
*/
add = false;
}
}
mem = hvf_find_overlap_slot(
section->offset_within_address_space,
int128_get64(section->size));
if (mem && add) {
if (mem->size == int128_get64(section->size) &&
mem->start == section->offset_within_address_space &&
mem->mem == (memory_region_get_ram_ptr(area) +
section->offset_within_region)) {
return; /* Same region was attempted to register, go away. */
}
}
/* Region needs to be reset. set the size to 0 and remap it. */
if (mem) {
mem->size = 0;
if (do_hvf_set_memory(mem, 0)) {
error_report("Failed to reset overlapping slot");
abort();
}
}
if (!add) {
return;
}
if (area->readonly ||
(!memory_region_is_ram(area) && memory_region_is_romd(area))) {
flags = HV_MEMORY_READ | HV_MEMORY_EXEC;
} else {
flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
}
/* Now make a new slot. */
int x;
for (x = 0; x < hvf_state->num_slots; ++x) {
mem = &hvf_state->slots[x];
if (!mem->size) {
break;
}
}
if (x == hvf_state->num_slots) {
error_report("No free slots");
abort();
}
mem->size = int128_get64(section->size);
mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
mem->start = section->offset_within_address_space;
mem->region = area;
if (do_hvf_set_memory(mem, flags)) {
error_report("Error registering new memory slot");
abort();
}
}
static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
{
if (!cpu->vcpu_dirty) {
hvf_get_registers(cpu);
cpu->vcpu_dirty = true;
}
}
static void hvf_cpu_synchronize_state(CPUState *cpu)
{
if (!cpu->vcpu_dirty) {
run_on_cpu(cpu, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
}
}
static void do_hvf_cpu_synchronize_set_dirty(CPUState *cpu,
run_on_cpu_data arg)
{
/* QEMU state is the reference, push it to HVF now and on next entry */
cpu->vcpu_dirty = true;
}
static void hvf_cpu_synchronize_post_reset(CPUState *cpu)
{
run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
}
static void hvf_cpu_synchronize_post_init(CPUState *cpu)
{
run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
}
static void hvf_cpu_synchronize_pre_loadvm(CPUState *cpu)
{
run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
}
static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
{
hvf_slot *slot;
slot = hvf_find_overlap_slot(
section->offset_within_address_space,
int128_get64(section->size));
/* protect region against writes; begin tracking it */
if (on) {
slot->flags |= HVF_SLOT_LOG;
hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size,
HV_MEMORY_READ);
/* stop tracking region*/
} else {
slot->flags &= ~HVF_SLOT_LOG;
hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size,
HV_MEMORY_READ | HV_MEMORY_WRITE);
}
}
static void hvf_log_start(MemoryListener *listener,
MemoryRegionSection *section, int old, int new)
{
if (old != 0) {
return;
}
hvf_set_dirty_tracking(section, 1);
}
static void hvf_log_stop(MemoryListener *listener,
MemoryRegionSection *section, int old, int new)
{
if (new != 0) {
return;
}
hvf_set_dirty_tracking(section, 0);
}
static void hvf_log_sync(MemoryListener *listener,
MemoryRegionSection *section)
{
/*
* sync of dirty pages is handled elsewhere; just make sure we keep
* tracking the region.
*/
hvf_set_dirty_tracking(section, 1);
}
static void hvf_region_add(MemoryListener *listener,
MemoryRegionSection *section)
{
hvf_set_phys_mem(section, true);
}
static void hvf_region_del(MemoryListener *listener,
MemoryRegionSection *section)
{
hvf_set_phys_mem(section, false);
}
static MemoryListener hvf_memory_listener = {
.priority = 10,
.region_add = hvf_region_add,
.region_del = hvf_region_del,
.log_start = hvf_log_start,
.log_stop = hvf_log_stop,
.log_sync = hvf_log_sync,
};
static void dummy_signal(int sig)
{
}
bool hvf_allowed;
static int hvf_accel_init(MachineState *ms)
{
int x;
hv_return_t ret;
HVFState *s;
ret = hv_vm_create(HV_VM_DEFAULT);
assert_hvf_ok(ret);
s = g_new0(HVFState, 1);
s->num_slots = 32;
for (x = 0; x < s->num_slots; ++x) {
s->slots[x].size = 0;
s->slots[x].slot_id = x;
}
hvf_state = s;
memory_listener_register(&hvf_memory_listener, &address_space_memory);
return 0;
}
static void hvf_accel_class_init(ObjectClass *oc, void *data)
{
AccelClass *ac = ACCEL_CLASS(oc);
ac->name = "HVF";
ac->init_machine = hvf_accel_init;
ac->allowed = &hvf_allowed;
}
static const TypeInfo hvf_accel_type = {
.name = TYPE_HVF_ACCEL,
.parent = TYPE_ACCEL,
.class_init = hvf_accel_class_init,
};
static void hvf_type_init(void)
{
type_register_static(&hvf_accel_type);
}
type_init(hvf_type_init);
static void hvf_vcpu_destroy(CPUState *cpu)
{
hv_return_t ret = hv_vcpu_destroy(cpu->hvf->fd);
assert_hvf_ok(ret);
hvf_arch_vcpu_destroy(cpu);
g_free(cpu->hvf);
cpu->hvf = NULL;
}
static int hvf_init_vcpu(CPUState *cpu)
{
int r;
cpu->hvf = g_malloc0(sizeof(*cpu->hvf));
/* init cpu signals */
sigset_t set;
struct sigaction sigact;
memset(&sigact, 0, sizeof(sigact));
sigact.sa_handler = dummy_signal;
sigaction(SIG_IPI, &sigact, NULL);
pthread_sigmask(SIG_BLOCK, NULL, &set);
sigdelset(&set, SIG_IPI);
r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf->fd, HV_VCPU_DEFAULT);
cpu->vcpu_dirty = 1;
assert_hvf_ok(r);
return hvf_arch_init_vcpu(cpu);
}
/*
* The HVF-specific vCPU thread function. This one should only run when the host
* CPU supports the VMX "unrestricted guest" feature.
*/
static void *hvf_cpu_thread_fn(void *arg)
{
CPUState *cpu = arg;
int r;
assert(hvf_enabled());
rcu_register_thread();
qemu_mutex_lock_iothread();
qemu_thread_get_self(cpu->thread);
cpu->thread_id = qemu_get_thread_id();
cpu->can_do_io = 1;
current_cpu = cpu;
hvf_init_vcpu(cpu);
/* signal CPU creation */
cpu_thread_signal_created(cpu);
qemu_guest_random_seed_thread_part2(cpu->random_seed);
do {
if (cpu_can_run(cpu)) {
r = hvf_vcpu_exec(cpu);
if (r == EXCP_DEBUG) {
cpu_handle_guest_debug(cpu);
}
}
qemu_wait_io_event(cpu);
} while (!cpu->unplug || cpu_can_run(cpu));
hvf_vcpu_destroy(cpu);
cpu_thread_signal_destroyed(cpu);
qemu_mutex_unlock_iothread();
rcu_unregister_thread();
return NULL;
}
static void hvf_start_vcpu_thread(CPUState *cpu)
{
char thread_name[VCPU_THREAD_NAME_SIZE];
/*
* HVF currently does not support TCG, and only runs in
* unrestricted-guest mode.
*/
assert(hvf_enabled());
cpu->thread = g_malloc0(sizeof(QemuThread));
cpu->halt_cond = g_malloc0(sizeof(QemuCond));
qemu_cond_init(cpu->halt_cond);
snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF",
cpu->cpu_index);
qemu_thread_create(cpu->thread, thread_name, hvf_cpu_thread_fn,
cpu, QEMU_THREAD_JOINABLE);
}
static void hvf_accel_ops_class_init(ObjectClass *oc, void *data)
{
AccelOpsClass *ops = ACCEL_OPS_CLASS(oc);
ops->create_vcpu_thread = hvf_start_vcpu_thread;
ops->synchronize_post_reset = hvf_cpu_synchronize_post_reset;
ops->synchronize_post_init = hvf_cpu_synchronize_post_init;
ops->synchronize_state = hvf_cpu_synchronize_state;
ops->synchronize_pre_loadvm = hvf_cpu_synchronize_pre_loadvm;
};
static const TypeInfo hvf_accel_ops_type = {
.name = ACCEL_OPS_NAME("hvf"),
.parent = TYPE_ACCEL_OPS,
.class_init = hvf_accel_ops_class_init,
.abstract = true,
};
static void hvf_accel_ops_register_types(void)
{
type_register_static(&hvf_accel_ops_type);
}
type_init(hvf_accel_ops_register_types);