296 lines
8.3 KiB
Bash
Executable File
296 lines
8.3 KiB
Bash
Executable File
#!/bin/bash
|
|
#
|
|
# Test cases for different refcount_bits values
|
|
#
|
|
# Copyright (C) 2015 Red Hat, Inc.
|
|
#
|
|
# This program is free software; you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation; either version 2 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
#
|
|
|
|
# creator
|
|
owner=mreitz@redhat.com
|
|
|
|
seq="$(basename $0)"
|
|
echo "QA output created by $seq"
|
|
|
|
here="$PWD"
|
|
status=1 # failure is the default!
|
|
|
|
_cleanup()
|
|
{
|
|
_cleanup_test_img
|
|
}
|
|
trap "_cleanup; exit \$status" 0 1 2 3 15
|
|
|
|
# get standard environment, filters and checks
|
|
. ./common.rc
|
|
. ./common.filter
|
|
|
|
# This tests qcow2-specific low-level functionality
|
|
_supported_fmt qcow2
|
|
_supported_proto file
|
|
_supported_os Linux
|
|
# This test will set refcount_bits on its own which would conflict with the
|
|
# manual setting; compat will be overridden as well
|
|
_unsupported_imgopts refcount_bits 'compat=0.10'
|
|
|
|
function print_refcount_bits()
|
|
{
|
|
$QEMU_IMG info "$TEST_IMG" | sed -n '/refcount bits:/ s/^ *//p'
|
|
}
|
|
|
|
echo
|
|
echo '=== refcount_bits limits ==='
|
|
echo
|
|
|
|
# Must be positive (non-zero)
|
|
IMGOPTS="$IMGOPTS,refcount_bits=0" _make_test_img 64M
|
|
# Must be positive (non-negative)
|
|
IMGOPTS="$IMGOPTS,refcount_bits=-1" _make_test_img 64M
|
|
# May not exceed 64
|
|
IMGOPTS="$IMGOPTS,refcount_bits=128" _make_test_img 64M
|
|
# Must be a power of two
|
|
IMGOPTS="$IMGOPTS,refcount_bits=42" _make_test_img 64M
|
|
|
|
# 1 is the minimum
|
|
IMGOPTS="$IMGOPTS,refcount_bits=1" _make_test_img 64M
|
|
print_refcount_bits
|
|
|
|
# 64 is the maximum
|
|
IMGOPTS="$IMGOPTS,refcount_bits=64" _make_test_img 64M
|
|
print_refcount_bits
|
|
|
|
# 16 is the default
|
|
_make_test_img 64M
|
|
print_refcount_bits
|
|
|
|
echo
|
|
echo '=== refcount_bits and compat=0.10 ==='
|
|
echo
|
|
|
|
# Should work
|
|
IMGOPTS="$IMGOPTS,compat=0.10,refcount_bits=16" _make_test_img 64M
|
|
print_refcount_bits
|
|
|
|
# Should not work
|
|
IMGOPTS="$IMGOPTS,compat=0.10,refcount_bits=1" _make_test_img 64M
|
|
IMGOPTS="$IMGOPTS,compat=0.10,refcount_bits=64" _make_test_img 64M
|
|
|
|
|
|
echo
|
|
echo '=== Snapshot limit on refcount_bits=1 ==='
|
|
echo
|
|
|
|
IMGOPTS="$IMGOPTS,refcount_bits=1" _make_test_img 64M
|
|
print_refcount_bits
|
|
|
|
$QEMU_IO -c 'write 0 512' "$TEST_IMG" | _filter_qemu_io
|
|
|
|
# Should fail for now; in the future, this might be supported by automatically
|
|
# copying all clusters with overflowing refcount
|
|
$QEMU_IMG snapshot -c foo "$TEST_IMG"
|
|
|
|
# The new L1 table could/should be leaked
|
|
_check_test_img
|
|
|
|
echo
|
|
echo '=== Snapshot limit on refcount_bits=2 ==='
|
|
echo
|
|
|
|
IMGOPTS="$IMGOPTS,refcount_bits=2" _make_test_img 64M
|
|
print_refcount_bits
|
|
|
|
$QEMU_IO -c 'write 0 512' "$TEST_IMG" | _filter_qemu_io
|
|
|
|
# Should succeed
|
|
$QEMU_IMG snapshot -c foo "$TEST_IMG"
|
|
$QEMU_IMG snapshot -c bar "$TEST_IMG"
|
|
# Should fail (4th reference)
|
|
$QEMU_IMG snapshot -c baz "$TEST_IMG"
|
|
|
|
# The new L1 table could/should be leaked
|
|
_check_test_img
|
|
|
|
echo
|
|
echo '=== Compressed clusters with refcount_bits=1 ==='
|
|
echo
|
|
|
|
IMGOPTS="$IMGOPTS,refcount_bits=1" _make_test_img 64M
|
|
print_refcount_bits
|
|
|
|
# Both should fit into a single host cluster; instead of failing to increase the
|
|
# refcount of that cluster, qemu should just allocate a new cluster and make
|
|
# this operation succeed
|
|
$QEMU_IO -c 'write -P 0 -c 0 64k' \
|
|
-c 'write -P 1 -c 64k 64k' \
|
|
"$TEST_IMG" | _filter_qemu_io
|
|
|
|
_check_test_img
|
|
|
|
echo
|
|
echo '=== MSb set in 64 bit refcount ==='
|
|
echo
|
|
|
|
IMGOPTS="$IMGOPTS,refcount_bits=64" _make_test_img 64M
|
|
print_refcount_bits
|
|
|
|
$QEMU_IO -c 'write 0 512' "$TEST_IMG" | _filter_qemu_io
|
|
|
|
# Set the MSb in the refblock entry of the data cluster
|
|
poke_file "$TEST_IMG" $((0x20028)) "\x80\x00\x00\x00\x00\x00\x00\x00"
|
|
|
|
# Clear OFLAG_COPIED in the L2 entry of the data cluster
|
|
poke_file "$TEST_IMG" $((0x40000)) "\x00\x00\x00\x00\x00\x05\x00\x00"
|
|
|
|
# Try to write to that cluster (should work, even though the MSb is set)
|
|
$QEMU_IO -c 'write 0 512' "$TEST_IMG" | _filter_qemu_io
|
|
|
|
echo
|
|
echo '=== Snapshot on maximum 64 bit refcount value ==='
|
|
echo
|
|
|
|
IMGOPTS="$IMGOPTS,refcount_bits=64" _make_test_img 64M
|
|
print_refcount_bits
|
|
|
|
$QEMU_IO -c 'write 0 512' "$TEST_IMG" | _filter_qemu_io
|
|
|
|
# Set the refblock entry to the maximum value possible
|
|
poke_file "$TEST_IMG" $((0x20028)) "\xff\xff\xff\xff\xff\xff\xff\xff"
|
|
|
|
# Clear OFLAG_COPIED in the L2 entry of the data cluster
|
|
poke_file "$TEST_IMG" $((0x40000)) "\x00\x00\x00\x00\x00\x05\x00\x00"
|
|
|
|
# Try a snapshot (should correctly identify the overflow; may work in the future
|
|
# by falling back to COW)
|
|
$QEMU_IMG snapshot -c foo "$TEST_IMG"
|
|
|
|
# The new L1 table could/should be leaked; and obviously the data cluster is
|
|
# leaked (refcount=UINT64_MAX reference=1)
|
|
_check_test_img
|
|
|
|
echo
|
|
echo '=== Amend from refcount_bits=16 to refcount_bits=1 ==='
|
|
echo
|
|
|
|
_make_test_img 64M
|
|
print_refcount_bits
|
|
|
|
$QEMU_IO -c 'write 16M 32M' "$TEST_IMG" | _filter_qemu_io
|
|
$QEMU_IMG amend -o refcount_bits=1 "$TEST_IMG"
|
|
_check_test_img
|
|
print_refcount_bits
|
|
|
|
echo
|
|
echo '=== Amend from refcount_bits=1 to refcount_bits=64 ==='
|
|
echo
|
|
|
|
$QEMU_IMG amend -o refcount_bits=64 "$TEST_IMG"
|
|
_check_test_img
|
|
print_refcount_bits
|
|
|
|
echo
|
|
echo '=== Amend to compat=0.10 ==='
|
|
echo
|
|
|
|
# Should not work because refcount_bits needs to be 16 for compat=0.10
|
|
$QEMU_IMG amend -o compat=0.10 "$TEST_IMG"
|
|
print_refcount_bits
|
|
# Should work
|
|
$QEMU_IMG amend -o compat=0.10,refcount_bits=16 "$TEST_IMG"
|
|
_check_test_img
|
|
print_refcount_bits
|
|
|
|
# Get back to compat=1.1 and refcount_bits=16
|
|
$QEMU_IMG amend -o compat=1.1 "$TEST_IMG"
|
|
print_refcount_bits
|
|
# Should not work
|
|
$QEMU_IMG amend -o refcount_bits=32,compat=0.10 "$TEST_IMG"
|
|
print_refcount_bits
|
|
|
|
echo
|
|
echo '=== Amend with snapshot ==='
|
|
echo
|
|
|
|
$QEMU_IMG snapshot -c foo "$TEST_IMG"
|
|
# Just to have different refcounts across the image
|
|
$QEMU_IO -c 'write 0 16M' "$TEST_IMG" | _filter_qemu_io
|
|
|
|
# Should not work (may work in the future by first decreasing all refcounts so
|
|
# they fit into the target range by copying them)
|
|
$QEMU_IMG amend -o refcount_bits=1 "$TEST_IMG"
|
|
_check_test_img
|
|
print_refcount_bits
|
|
|
|
# Should work
|
|
$QEMU_IMG amend -o refcount_bits=2 "$TEST_IMG"
|
|
_check_test_img
|
|
print_refcount_bits
|
|
|
|
echo
|
|
echo '=== Testing too many references for check ==='
|
|
echo
|
|
|
|
IMGOPTS="$IMGOPTS,refcount_bits=1" _make_test_img 64M
|
|
print_refcount_bits
|
|
|
|
# This cluster should be created at 0x50000
|
|
$QEMU_IO -c 'write 0 64k' "$TEST_IMG" | _filter_qemu_io
|
|
# Now make the second L2 entry (the L2 table should be at 0x40000) point to that
|
|
# cluster, so we have two references
|
|
poke_file "$TEST_IMG" $((0x40008)) "\x80\x00\x00\x00\x00\x05\x00\x00"
|
|
|
|
# This should say "please use amend"
|
|
_check_test_img -r all
|
|
|
|
# So we do that
|
|
$QEMU_IMG amend -o refcount_bits=2 "$TEST_IMG"
|
|
print_refcount_bits
|
|
|
|
# And try again
|
|
_check_test_img -r all
|
|
|
|
echo
|
|
echo '=== Multiple walks necessary during amend ==='
|
|
echo
|
|
|
|
IMGOPTS="$IMGOPTS,refcount_bits=1,cluster_size=512" _make_test_img 64k
|
|
|
|
# Cluster 0 is the image header, clusters 1 to 4 are used by the L1 table, a
|
|
# single L2 table, the reftable and a single refblock. This creates 58 data
|
|
# clusters (actually, the L2 table is created here, too), so in total there are
|
|
# then 63 used clusters in the image. With a refcount width of 64, one refblock
|
|
# describes 64 clusters (512 bytes / 64 bits/entry = 64 entries), so this will
|
|
# make the first refblock in the amended image have exactly one free entry.
|
|
$QEMU_IO -c "write 0 $((58 * 512))" "$TEST_IMG" | _filter_qemu_io
|
|
|
|
# Now change the refcount width; since the first new refblock will have exactly
|
|
# one free entry, that entry will be used to store its own reference. No other
|
|
# refblocks are needed, so then the new reftable will be allocated; since the
|
|
# first new refblock is completely filled up, this will require a new refblock
|
|
# which is why the refcount width changing function will need to run through
|
|
# everything one more time until the allocations are stable.
|
|
# Having more walks than usual should be visible as regressing progress (from
|
|
# 66.67 % (2/3 walks) to 50.00 % (2/4 walks)).
|
|
$QEMU_IMG amend -o refcount_bits=64 -p "$TEST_IMG" | tr '\r' '\n' \
|
|
| grep -A 1 '66.67'
|
|
print_refcount_bits
|
|
|
|
_check_test_img
|
|
|
|
|
|
# success, all done
|
|
echo '*** done'
|
|
rm -f $seq.full
|
|
status=0
|