qemu-e2k/target/cris/op_helper.c
Richard Henderson dbefca236a target/cris: Use env_cpu, env_archcpu
Cleanup in the boilerplate that each target must define.
Replace cris_env_get_cpu with env_archcpu.  The combination
CPU(cris_env_get_cpu) should have used ENV_GET_CPU to begin;
use env_cpu now.

Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2019-06-10 07:03:34 -07:00

582 lines
15 KiB
C

/*
* CRIS helper routines
*
* Copyright (c) 2007 AXIS Communications
* Written by Edgar E. Iglesias
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "mmu.h"
#include "exec/helper-proto.h"
#include "qemu/host-utils.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
//#define CRIS_OP_HELPER_DEBUG
#ifdef CRIS_OP_HELPER_DEBUG
#define D(x) x
#define D_LOG(...) qemu_log(__VA_ARGS__)
#else
#define D(x)
#define D_LOG(...) do { } while (0)
#endif
void helper_raise_exception(CPUCRISState *env, uint32_t index)
{
CPUState *cs = env_cpu(env);
cs->exception_index = index;
cpu_loop_exit(cs);
}
void helper_tlb_flush_pid(CPUCRISState *env, uint32_t pid)
{
#if !defined(CONFIG_USER_ONLY)
pid &= 0xff;
if (pid != (env->pregs[PR_PID] & 0xff)) {
cris_mmu_flush_pid(env, env->pregs[PR_PID]);
}
#endif
}
void helper_spc_write(CPUCRISState *env, uint32_t new_spc)
{
#if !defined(CONFIG_USER_ONLY)
CPUState *cs = env_cpu(env);
tlb_flush_page(cs, env->pregs[PR_SPC]);
tlb_flush_page(cs, new_spc);
#endif
}
/* Used by the tlb decoder. */
#define EXTRACT_FIELD(src, start, end) \
(((src) >> start) & ((1 << (end - start + 1)) - 1))
void helper_movl_sreg_reg(CPUCRISState *env, uint32_t sreg, uint32_t reg)
{
uint32_t srs;
srs = env->pregs[PR_SRS];
srs &= 3;
env->sregs[srs][sreg] = env->regs[reg];
#if !defined(CONFIG_USER_ONLY)
if (srs == 1 || srs == 2) {
if (sreg == 6) {
/* Writes to tlb-hi write to mm_cause as a side effect. */
env->sregs[SFR_RW_MM_TLB_HI] = env->regs[reg];
env->sregs[SFR_R_MM_CAUSE] = env->regs[reg];
} else if (sreg == 5) {
uint32_t set;
uint32_t idx;
uint32_t lo, hi;
uint32_t vaddr;
int tlb_v;
idx = set = env->sregs[SFR_RW_MM_TLB_SEL];
set >>= 4;
set &= 3;
idx &= 15;
/* We've just made a write to tlb_lo. */
lo = env->sregs[SFR_RW_MM_TLB_LO];
/* Writes are done via r_mm_cause. */
hi = env->sregs[SFR_R_MM_CAUSE];
vaddr = EXTRACT_FIELD(env->tlbsets[srs - 1][set][idx].hi, 13, 31);
vaddr <<= TARGET_PAGE_BITS;
tlb_v = EXTRACT_FIELD(env->tlbsets[srs - 1][set][idx].lo, 3, 3);
env->tlbsets[srs - 1][set][idx].lo = lo;
env->tlbsets[srs - 1][set][idx].hi = hi;
D_LOG("tlb flush vaddr=%x v=%d pc=%x\n",
vaddr, tlb_v, env->pc);
if (tlb_v) {
tlb_flush_page(env_cpu(env), vaddr);
}
}
}
#endif
}
void helper_movl_reg_sreg(CPUCRISState *env, uint32_t reg, uint32_t sreg)
{
uint32_t srs;
env->pregs[PR_SRS] &= 3;
srs = env->pregs[PR_SRS];
#if !defined(CONFIG_USER_ONLY)
if (srs == 1 || srs == 2) {
uint32_t set;
uint32_t idx;
uint32_t lo, hi;
idx = set = env->sregs[SFR_RW_MM_TLB_SEL];
set >>= 4;
set &= 3;
idx &= 15;
/* Update the mirror regs. */
hi = env->tlbsets[srs - 1][set][idx].hi;
lo = env->tlbsets[srs - 1][set][idx].lo;
env->sregs[SFR_RW_MM_TLB_HI] = hi;
env->sregs[SFR_RW_MM_TLB_LO] = lo;
}
#endif
env->regs[reg] = env->sregs[srs][sreg];
}
static void cris_ccs_rshift(CPUCRISState *env)
{
uint32_t ccs;
/* Apply the ccs shift. */
ccs = env->pregs[PR_CCS];
ccs = (ccs & 0xc0000000) | ((ccs & 0x0fffffff) >> 10);
if (ccs & U_FLAG) {
/* Enter user mode. */
env->ksp = env->regs[R_SP];
env->regs[R_SP] = env->pregs[PR_USP];
}
env->pregs[PR_CCS] = ccs;
}
void helper_rfe(CPUCRISState *env)
{
int rflag = env->pregs[PR_CCS] & R_FLAG;
D_LOG("rfe: erp=%x pid=%x ccs=%x btarget=%x\n",
env->pregs[PR_ERP], env->pregs[PR_PID],
env->pregs[PR_CCS],
env->btarget);
cris_ccs_rshift(env);
/* RFE sets the P_FLAG only if the R_FLAG is not set. */
if (!rflag) {
env->pregs[PR_CCS] |= P_FLAG;
}
}
void helper_rfn(CPUCRISState *env)
{
int rflag = env->pregs[PR_CCS] & R_FLAG;
D_LOG("rfn: erp=%x pid=%x ccs=%x btarget=%x\n",
env->pregs[PR_ERP], env->pregs[PR_PID],
env->pregs[PR_CCS],
env->btarget);
cris_ccs_rshift(env);
/* Set the P_FLAG only if the R_FLAG is not set. */
if (!rflag) {
env->pregs[PR_CCS] |= P_FLAG;
}
/* Always set the M flag. */
env->pregs[PR_CCS] |= M_FLAG_V32;
}
uint32_t helper_btst(CPUCRISState *env, uint32_t t0, uint32_t t1, uint32_t ccs)
{
/* FIXME: clean this up. */
/*
* des ref:
* The N flag is set according to the selected bit in the dest reg.
* The Z flag is set if the selected bit and all bits to the right are
* zero.
* The X flag is cleared.
* Other flags are left untouched.
* The destination reg is not affected.
*/
unsigned int fz, sbit, bset, mask, masked_t0;
sbit = t1 & 31;
bset = !!(t0 & (1 << sbit));
mask = sbit == 31 ? -1 : (1 << (sbit + 1)) - 1;
masked_t0 = t0 & mask;
fz = !(masked_t0 | bset);
/* Clear the X, N and Z flags. */
ccs = ccs & ~(X_FLAG | N_FLAG | Z_FLAG);
if (env->pregs[PR_VR] < 32) {
ccs &= ~(V_FLAG | C_FLAG);
}
/* Set the N and Z flags accordingly. */
ccs |= (bset << 3) | (fz << 2);
return ccs;
}
static inline uint32_t evaluate_flags_writeback(CPUCRISState *env,
uint32_t flags, uint32_t ccs)
{
unsigned int x, z, mask;
/* Extended arithmetics, leave the z flag alone. */
x = env->cc_x;
mask = env->cc_mask | X_FLAG;
if (x) {
z = flags & Z_FLAG;
mask = mask & ~z;
}
flags &= mask;
/* all insn clear the x-flag except setf or clrf. */
ccs &= ~mask;
ccs |= flags;
return ccs;
}
uint32_t helper_evaluate_flags_muls(CPUCRISState *env,
uint32_t ccs, uint32_t res, uint32_t mof)
{
uint32_t flags = 0;
int64_t tmp;
int dneg;
dneg = ((int32_t)res) < 0;
tmp = mof;
tmp <<= 32;
tmp |= res;
if (tmp == 0) {
flags |= Z_FLAG;
} else if (tmp < 0) {
flags |= N_FLAG;
}
if ((dneg && mof != -1) || (!dneg && mof != 0)) {
flags |= V_FLAG;
}
return evaluate_flags_writeback(env, flags, ccs);
}
uint32_t helper_evaluate_flags_mulu(CPUCRISState *env,
uint32_t ccs, uint32_t res, uint32_t mof)
{
uint32_t flags = 0;
uint64_t tmp;
tmp = mof;
tmp <<= 32;
tmp |= res;
if (tmp == 0) {
flags |= Z_FLAG;
} else if (tmp >> 63) {
flags |= N_FLAG;
}
if (mof) {
flags |= V_FLAG;
}
return evaluate_flags_writeback(env, flags, ccs);
}
uint32_t helper_evaluate_flags_mcp(CPUCRISState *env, uint32_t ccs,
uint32_t src, uint32_t dst, uint32_t res)
{
uint32_t flags = 0;
src = src & 0x80000000;
dst = dst & 0x80000000;
if ((res & 0x80000000L) != 0L) {
flags |= N_FLAG;
if (!src && !dst) {
flags |= V_FLAG;
} else if (src & dst) {
flags |= R_FLAG;
}
} else {
if (res == 0L) {
flags |= Z_FLAG;
}
if (src & dst) {
flags |= V_FLAG;
}
if (dst | src) {
flags |= R_FLAG;
}
}
return evaluate_flags_writeback(env, flags, ccs);
}
uint32_t helper_evaluate_flags_alu_4(CPUCRISState *env, uint32_t ccs,
uint32_t src, uint32_t dst, uint32_t res)
{
uint32_t flags = 0;
src = src & 0x80000000;
dst = dst & 0x80000000;
if ((res & 0x80000000L) != 0L) {
flags |= N_FLAG;
if (!src && !dst) {
flags |= V_FLAG;
} else if (src & dst) {
flags |= C_FLAG;
}
} else {
if (res == 0L) {
flags |= Z_FLAG;
}
if (src & dst) {
flags |= V_FLAG;
}
if (dst | src) {
flags |= C_FLAG;
}
}
return evaluate_flags_writeback(env, flags, ccs);
}
uint32_t helper_evaluate_flags_sub_4(CPUCRISState *env, uint32_t ccs,
uint32_t src, uint32_t dst, uint32_t res)
{
uint32_t flags = 0;
src = (~src) & 0x80000000;
dst = dst & 0x80000000;
if ((res & 0x80000000L) != 0L) {
flags |= N_FLAG;
if (!src && !dst) {
flags |= V_FLAG;
} else if (src & dst) {
flags |= C_FLAG;
}
} else {
if (res == 0L) {
flags |= Z_FLAG;
}
if (src & dst) {
flags |= V_FLAG;
}
if (dst | src) {
flags |= C_FLAG;
}
}
flags ^= C_FLAG;
return evaluate_flags_writeback(env, flags, ccs);
}
uint32_t helper_evaluate_flags_move_4(CPUCRISState *env,
uint32_t ccs, uint32_t res)
{
uint32_t flags = 0;
if ((int32_t)res < 0) {
flags |= N_FLAG;
} else if (res == 0L) {
flags |= Z_FLAG;
}
return evaluate_flags_writeback(env, flags, ccs);
}
uint32_t helper_evaluate_flags_move_2(CPUCRISState *env,
uint32_t ccs, uint32_t res)
{
uint32_t flags = 0;
if ((int16_t)res < 0L) {
flags |= N_FLAG;
} else if (res == 0) {
flags |= Z_FLAG;
}
return evaluate_flags_writeback(env, flags, ccs);
}
/*
* TODO: This is expensive. We could split things up and only evaluate part of
* CCR on a need to know basis. For now, we simply re-evaluate everything.
*/
void helper_evaluate_flags(CPUCRISState *env)
{
uint32_t src, dst, res;
uint32_t flags = 0;
src = env->cc_src;
dst = env->cc_dest;
res = env->cc_result;
if (env->cc_op == CC_OP_SUB || env->cc_op == CC_OP_CMP) {
src = ~src;
}
/*
* Now, evaluate the flags. This stuff is based on
* Per Zander's CRISv10 simulator.
*/
switch (env->cc_size) {
case 1:
if ((res & 0x80L) != 0L) {
flags |= N_FLAG;
if (((src & 0x80L) == 0L) && ((dst & 0x80L) == 0L)) {
flags |= V_FLAG;
} else if (((src & 0x80L) != 0L) && ((dst & 0x80L) != 0L)) {
flags |= C_FLAG;
}
} else {
if ((res & 0xFFL) == 0L) {
flags |= Z_FLAG;
}
if (((src & 0x80L) != 0L) && ((dst & 0x80L) != 0L)) {
flags |= V_FLAG;
}
if ((dst & 0x80L) != 0L || (src & 0x80L) != 0L) {
flags |= C_FLAG;
}
}
break;
case 2:
if ((res & 0x8000L) != 0L) {
flags |= N_FLAG;
if (((src & 0x8000L) == 0L) && ((dst & 0x8000L) == 0L)) {
flags |= V_FLAG;
} else if (((src & 0x8000L) != 0L) && ((dst & 0x8000L) != 0L)) {
flags |= C_FLAG;
}
} else {
if ((res & 0xFFFFL) == 0L) {
flags |= Z_FLAG;
}
if (((src & 0x8000L) != 0L) && ((dst & 0x8000L) != 0L)) {
flags |= V_FLAG;
}
if ((dst & 0x8000L) != 0L || (src & 0x8000L) != 0L) {
flags |= C_FLAG;
}
}
break;
case 4:
if ((res & 0x80000000L) != 0L) {
flags |= N_FLAG;
if (((src & 0x80000000L) == 0L) && ((dst & 0x80000000L) == 0L)) {
flags |= V_FLAG;
} else if (((src & 0x80000000L) != 0L) &&
((dst & 0x80000000L) != 0L)) {
flags |= C_FLAG;
}
} else {
if (res == 0L) {
flags |= Z_FLAG;
}
if (((src & 0x80000000L) != 0L) && ((dst & 0x80000000L) != 0L)) {
flags |= V_FLAG;
}
if ((dst & 0x80000000L) != 0L || (src & 0x80000000L) != 0L) {
flags |= C_FLAG;
}
}
break;
default:
break;
}
if (env->cc_op == CC_OP_SUB || env->cc_op == CC_OP_CMP) {
flags ^= C_FLAG;
}
env->pregs[PR_CCS] = evaluate_flags_writeback(env, flags,
env->pregs[PR_CCS]);
}
void helper_top_evaluate_flags(CPUCRISState *env)
{
switch (env->cc_op) {
case CC_OP_MCP:
env->pregs[PR_CCS]
= helper_evaluate_flags_mcp(env, env->pregs[PR_CCS],
env->cc_src, env->cc_dest,
env->cc_result);
break;
case CC_OP_MULS:
env->pregs[PR_CCS]
= helper_evaluate_flags_muls(env, env->pregs[PR_CCS],
env->cc_result, env->pregs[PR_MOF]);
break;
case CC_OP_MULU:
env->pregs[PR_CCS]
= helper_evaluate_flags_mulu(env, env->pregs[PR_CCS],
env->cc_result, env->pregs[PR_MOF]);
break;
case CC_OP_MOVE:
case CC_OP_AND:
case CC_OP_OR:
case CC_OP_XOR:
case CC_OP_ASR:
case CC_OP_LSR:
case CC_OP_LSL:
switch (env->cc_size) {
case 4:
env->pregs[PR_CCS] =
helper_evaluate_flags_move_4(env,
env->pregs[PR_CCS],
env->cc_result);
break;
case 2:
env->pregs[PR_CCS] =
helper_evaluate_flags_move_2(env,
env->pregs[PR_CCS],
env->cc_result);
break;
default:
helper_evaluate_flags(env);
break;
}
break;
case CC_OP_FLAGS:
/* live. */
break;
case CC_OP_SUB:
case CC_OP_CMP:
if (env->cc_size == 4) {
env->pregs[PR_CCS] =
helper_evaluate_flags_sub_4(env,
env->pregs[PR_CCS],
env->cc_src, env->cc_dest,
env->cc_result);
} else {
helper_evaluate_flags(env);
}
break;
default:
switch (env->cc_size) {
case 4:
env->pregs[PR_CCS] =
helper_evaluate_flags_alu_4(env,
env->pregs[PR_CCS],
env->cc_src, env->cc_dest,
env->cc_result);
break;
default:
helper_evaluate_flags(env);
break;
}
break;
}
}