qemu-e2k/tcg/loongarch64/tcg-target.c.inc
Richard Henderson 10e1fd2784 tcg/loongarch64: Use tcg_use_softmmu
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2023-10-22 16:32:28 -07:00

2397 lines
71 KiB
C++

/*
* Tiny Code Generator for QEMU
*
* Copyright (c) 2021 WANG Xuerui <git@xen0n.name>
*
* Based on tcg/riscv/tcg-target.c.inc
*
* Copyright (c) 2018 SiFive, Inc
* Copyright (c) 2008-2009 Arnaud Patard <arnaud.patard@rtp-net.org>
* Copyright (c) 2009 Aurelien Jarno <aurelien@aurel32.net>
* Copyright (c) 2008 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "../tcg-ldst.c.inc"
#include <asm/hwcap.h>
bool use_lsx_instructions;
#ifdef CONFIG_DEBUG_TCG
static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
"zero",
"ra",
"tp",
"sp",
"a0",
"a1",
"a2",
"a3",
"a4",
"a5",
"a6",
"a7",
"t0",
"t1",
"t2",
"t3",
"t4",
"t5",
"t6",
"t7",
"t8",
"r21", /* reserved in the LP64* ABI, hence no ABI name */
"s9",
"s0",
"s1",
"s2",
"s3",
"s4",
"s5",
"s6",
"s7",
"s8",
"vr0",
"vr1",
"vr2",
"vr3",
"vr4",
"vr5",
"vr6",
"vr7",
"vr8",
"vr9",
"vr10",
"vr11",
"vr12",
"vr13",
"vr14",
"vr15",
"vr16",
"vr17",
"vr18",
"vr19",
"vr20",
"vr21",
"vr22",
"vr23",
"vr24",
"vr25",
"vr26",
"vr27",
"vr28",
"vr29",
"vr30",
"vr31",
};
#endif
static const int tcg_target_reg_alloc_order[] = {
/* Registers preserved across calls */
/* TCG_REG_S0 reserved for TCG_AREG0 */
TCG_REG_S1,
TCG_REG_S2,
TCG_REG_S3,
TCG_REG_S4,
TCG_REG_S5,
TCG_REG_S6,
TCG_REG_S7,
TCG_REG_S8,
TCG_REG_S9,
/* Registers (potentially) clobbered across calls */
TCG_REG_T0,
TCG_REG_T1,
TCG_REG_T2,
TCG_REG_T3,
TCG_REG_T4,
TCG_REG_T5,
TCG_REG_T6,
TCG_REG_T7,
TCG_REG_T8,
/* Argument registers, opposite order of allocation. */
TCG_REG_A7,
TCG_REG_A6,
TCG_REG_A5,
TCG_REG_A4,
TCG_REG_A3,
TCG_REG_A2,
TCG_REG_A1,
TCG_REG_A0,
/* Vector registers */
TCG_REG_V0, TCG_REG_V1, TCG_REG_V2, TCG_REG_V3,
TCG_REG_V4, TCG_REG_V5, TCG_REG_V6, TCG_REG_V7,
TCG_REG_V8, TCG_REG_V9, TCG_REG_V10, TCG_REG_V11,
TCG_REG_V12, TCG_REG_V13, TCG_REG_V14, TCG_REG_V15,
TCG_REG_V16, TCG_REG_V17, TCG_REG_V18, TCG_REG_V19,
TCG_REG_V20, TCG_REG_V21, TCG_REG_V22, TCG_REG_V23,
/* V24 - V31 are caller-saved, and skipped. */
};
static const int tcg_target_call_iarg_regs[] = {
TCG_REG_A0,
TCG_REG_A1,
TCG_REG_A2,
TCG_REG_A3,
TCG_REG_A4,
TCG_REG_A5,
TCG_REG_A6,
TCG_REG_A7,
};
static TCGReg tcg_target_call_oarg_reg(TCGCallReturnKind kind, int slot)
{
tcg_debug_assert(kind == TCG_CALL_RET_NORMAL);
tcg_debug_assert(slot >= 0 && slot <= 1);
return TCG_REG_A0 + slot;
}
#define TCG_GUEST_BASE_REG TCG_REG_S1
#define TCG_CT_CONST_ZERO 0x100
#define TCG_CT_CONST_S12 0x200
#define TCG_CT_CONST_S32 0x400
#define TCG_CT_CONST_U12 0x800
#define TCG_CT_CONST_C12 0x1000
#define TCG_CT_CONST_WSZ 0x2000
#define TCG_CT_CONST_VCMP 0x4000
#define TCG_CT_CONST_VADD 0x8000
#define ALL_GENERAL_REGS MAKE_64BIT_MASK(0, 32)
#define ALL_VECTOR_REGS MAKE_64BIT_MASK(32, 32)
static inline tcg_target_long sextreg(tcg_target_long val, int pos, int len)
{
return sextract64(val, pos, len);
}
/* test if a constant matches the constraint */
static bool tcg_target_const_match(int64_t val, TCGType type, int ct, int vece)
{
if (ct & TCG_CT_CONST) {
return true;
}
if ((ct & TCG_CT_CONST_ZERO) && val == 0) {
return true;
}
if ((ct & TCG_CT_CONST_S12) && val == sextreg(val, 0, 12)) {
return true;
}
if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) {
return true;
}
if ((ct & TCG_CT_CONST_U12) && val >= 0 && val <= 0xfff) {
return true;
}
if ((ct & TCG_CT_CONST_C12) && ~val >= 0 && ~val <= 0xfff) {
return true;
}
if ((ct & TCG_CT_CONST_WSZ) && val == (type == TCG_TYPE_I32 ? 32 : 64)) {
return true;
}
int64_t vec_val = sextract64(val, 0, 8 << vece);
if ((ct & TCG_CT_CONST_VCMP) && -0x10 <= vec_val && vec_val <= 0x1f) {
return true;
}
if ((ct & TCG_CT_CONST_VADD) && -0x1f <= vec_val && vec_val <= 0x1f) {
return true;
}
return false;
}
/*
* Relocations
*/
/*
* Relocation records defined in LoongArch ELF psABI v1.00 is way too
* complicated; a whopping stack machine is needed to stuff the fields, at
* the very least one SOP_PUSH and one SOP_POP (of the correct format) are
* needed.
*
* Hence, define our own simpler relocation types. Numbers are chosen as to
* not collide with potential future additions to the true ELF relocation
* type enum.
*/
/* Field Sk16, shifted right by 2; suitable for conditional jumps */
#define R_LOONGARCH_BR_SK16 256
/* Field Sd10k16, shifted right by 2; suitable for B and BL */
#define R_LOONGARCH_BR_SD10K16 257
static bool reloc_br_sk16(tcg_insn_unit *src_rw, const tcg_insn_unit *target)
{
const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw);
intptr_t offset = (intptr_t)target - (intptr_t)src_rx;
tcg_debug_assert((offset & 3) == 0);
offset >>= 2;
if (offset == sextreg(offset, 0, 16)) {
*src_rw = deposit64(*src_rw, 10, 16, offset);
return true;
}
return false;
}
static bool reloc_br_sd10k16(tcg_insn_unit *src_rw,
const tcg_insn_unit *target)
{
const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw);
intptr_t offset = (intptr_t)target - (intptr_t)src_rx;
tcg_debug_assert((offset & 3) == 0);
offset >>= 2;
if (offset == sextreg(offset, 0, 26)) {
*src_rw = deposit64(*src_rw, 0, 10, offset >> 16); /* slot d10 */
*src_rw = deposit64(*src_rw, 10, 16, offset); /* slot k16 */
return true;
}
return false;
}
static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
intptr_t value, intptr_t addend)
{
tcg_debug_assert(addend == 0);
switch (type) {
case R_LOONGARCH_BR_SK16:
return reloc_br_sk16(code_ptr, (tcg_insn_unit *)value);
case R_LOONGARCH_BR_SD10K16:
return reloc_br_sd10k16(code_ptr, (tcg_insn_unit *)value);
default:
g_assert_not_reached();
}
}
#include "tcg-insn-defs.c.inc"
/*
* TCG intrinsics
*/
static void tcg_out_mb(TCGContext *s, TCGArg a0)
{
/* Baseline LoongArch only has the full barrier, unfortunately. */
tcg_out_opc_dbar(s, 0);
}
static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
{
if (ret == arg) {
return true;
}
switch (type) {
case TCG_TYPE_I32:
case TCG_TYPE_I64:
/*
* Conventional register-register move used in LoongArch is
* `or dst, src, zero`.
*/
tcg_out_opc_or(s, ret, arg, TCG_REG_ZERO);
break;
default:
g_assert_not_reached();
}
return true;
}
/* Loads a 32-bit immediate into rd, sign-extended. */
static void tcg_out_movi_i32(TCGContext *s, TCGReg rd, int32_t val)
{
tcg_target_long lo = sextreg(val, 0, 12);
tcg_target_long hi12 = sextreg(val, 12, 20);
/* Single-instruction cases. */
if (hi12 == 0) {
/* val fits in uimm12: ori rd, zero, val */
tcg_out_opc_ori(s, rd, TCG_REG_ZERO, val);
return;
}
if (hi12 == sextreg(lo, 12, 20)) {
/* val fits in simm12: addi.w rd, zero, val */
tcg_out_opc_addi_w(s, rd, TCG_REG_ZERO, val);
return;
}
/* High bits must be set; load with lu12i.w + optional ori. */
tcg_out_opc_lu12i_w(s, rd, hi12);
if (lo != 0) {
tcg_out_opc_ori(s, rd, rd, lo & 0xfff);
}
}
static void tcg_out_movi(TCGContext *s, TCGType type, TCGReg rd,
tcg_target_long val)
{
/*
* LoongArch conventionally loads 64-bit immediates in at most 4 steps,
* with dedicated instructions for filling the respective bitfields
* below:
*
* 6 5 4 3
* 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2
* +-----------------------+---------------------------------------+...
* | hi52 | hi32 |
* +-----------------------+---------------------------------------+...
* 3 2 1
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* ...+-------------------------------------+-------------------------+
* | hi12 | lo |
* ...+-------------------------------------+-------------------------+
*
* Check if val belong to one of the several fast cases, before falling
* back to the slow path.
*/
intptr_t pc_offset;
tcg_target_long val_lo, val_hi, pc_hi, offset_hi;
tcg_target_long hi12, hi32, hi52;
/* Value fits in signed i32. */
if (type == TCG_TYPE_I32 || val == (int32_t)val) {
tcg_out_movi_i32(s, rd, val);
return;
}
/* PC-relative cases. */
pc_offset = tcg_pcrel_diff(s, (void *)val);
if (pc_offset == sextreg(pc_offset, 0, 22) && (pc_offset & 3) == 0) {
/* Single pcaddu2i. */
tcg_out_opc_pcaddu2i(s, rd, pc_offset >> 2);
return;
}
if (pc_offset == (int32_t)pc_offset) {
/* Offset within 32 bits; load with pcalau12i + ori. */
val_lo = sextreg(val, 0, 12);
val_hi = val >> 12;
pc_hi = (val - pc_offset) >> 12;
offset_hi = val_hi - pc_hi;
tcg_debug_assert(offset_hi == sextreg(offset_hi, 0, 20));
tcg_out_opc_pcalau12i(s, rd, offset_hi);
if (val_lo != 0) {
tcg_out_opc_ori(s, rd, rd, val_lo & 0xfff);
}
return;
}
hi12 = sextreg(val, 12, 20);
hi32 = sextreg(val, 32, 20);
hi52 = sextreg(val, 52, 12);
/* Single cu52i.d case. */
if ((hi52 != 0) && (ctz64(val) >= 52)) {
tcg_out_opc_cu52i_d(s, rd, TCG_REG_ZERO, hi52);
return;
}
/* Slow path. Initialize the low 32 bits, then concat high bits. */
tcg_out_movi_i32(s, rd, val);
/* Load hi32 and hi52 explicitly when they are unexpected values. */
if (hi32 != sextreg(hi12, 20, 20)) {
tcg_out_opc_cu32i_d(s, rd, hi32);
}
if (hi52 != sextreg(hi32, 20, 12)) {
tcg_out_opc_cu52i_d(s, rd, rd, hi52);
}
}
static void tcg_out_addi(TCGContext *s, TCGType type, TCGReg rd,
TCGReg rs, tcg_target_long imm)
{
tcg_target_long lo12 = sextreg(imm, 0, 12);
tcg_target_long hi16 = sextreg(imm - lo12, 16, 16);
/*
* Note that there's a hole in between hi16 and lo12:
*
* 3 2 1 0
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* ...+-------------------------------+-------+-----------------------+
* | hi16 | | lo12 |
* ...+-------------------------------+-------+-----------------------+
*
* For bits within that hole, it's more efficient to use LU12I and ADD.
*/
if (imm == (hi16 << 16) + lo12) {
if (hi16) {
tcg_out_opc_addu16i_d(s, rd, rs, hi16);
rs = rd;
}
if (type == TCG_TYPE_I32) {
tcg_out_opc_addi_w(s, rd, rs, lo12);
} else if (lo12) {
tcg_out_opc_addi_d(s, rd, rs, lo12);
} else {
tcg_out_mov(s, type, rd, rs);
}
} else {
tcg_out_movi(s, type, TCG_REG_TMP0, imm);
if (type == TCG_TYPE_I32) {
tcg_out_opc_add_w(s, rd, rs, TCG_REG_TMP0);
} else {
tcg_out_opc_add_d(s, rd, rs, TCG_REG_TMP0);
}
}
}
static bool tcg_out_xchg(TCGContext *s, TCGType type, TCGReg r1, TCGReg r2)
{
return false;
}
static void tcg_out_addi_ptr(TCGContext *s, TCGReg rd, TCGReg rs,
tcg_target_long imm)
{
/* This function is only used for passing structs by reference. */
g_assert_not_reached();
}
static void tcg_out_ext8u(TCGContext *s, TCGReg ret, TCGReg arg)
{
tcg_out_opc_andi(s, ret, arg, 0xff);
}
static void tcg_out_ext16u(TCGContext *s, TCGReg ret, TCGReg arg)
{
tcg_out_opc_bstrpick_w(s, ret, arg, 0, 15);
}
static void tcg_out_ext32u(TCGContext *s, TCGReg ret, TCGReg arg)
{
tcg_out_opc_bstrpick_d(s, ret, arg, 0, 31);
}
static void tcg_out_ext8s(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
{
tcg_out_opc_sext_b(s, ret, arg);
}
static void tcg_out_ext16s(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
{
tcg_out_opc_sext_h(s, ret, arg);
}
static void tcg_out_ext32s(TCGContext *s, TCGReg ret, TCGReg arg)
{
tcg_out_opc_addi_w(s, ret, arg, 0);
}
static void tcg_out_exts_i32_i64(TCGContext *s, TCGReg ret, TCGReg arg)
{
if (ret != arg) {
tcg_out_ext32s(s, ret, arg);
}
}
static void tcg_out_extu_i32_i64(TCGContext *s, TCGReg ret, TCGReg arg)
{
tcg_out_ext32u(s, ret, arg);
}
static void tcg_out_extrl_i64_i32(TCGContext *s, TCGReg ret, TCGReg arg)
{
tcg_out_ext32s(s, ret, arg);
}
static void tcg_out_clzctz(TCGContext *s, LoongArchInsn opc,
TCGReg a0, TCGReg a1, TCGReg a2,
bool c2, bool is_32bit)
{
if (c2) {
/*
* Fast path: semantics already satisfied due to constraint and
* insn behavior, single instruction is enough.
*/
tcg_debug_assert(a2 == (is_32bit ? 32 : 64));
/* all clz/ctz insns belong to DJ-format */
tcg_out32(s, encode_dj_insn(opc, a0, a1));
return;
}
tcg_out32(s, encode_dj_insn(opc, TCG_REG_TMP0, a1));
/* a0 = a1 ? REG_TMP0 : a2 */
tcg_out_opc_maskeqz(s, TCG_REG_TMP0, TCG_REG_TMP0, a1);
tcg_out_opc_masknez(s, a0, a2, a1);
tcg_out_opc_or(s, a0, TCG_REG_TMP0, a0);
}
#define SETCOND_INV TCG_TARGET_NB_REGS
#define SETCOND_NEZ (SETCOND_INV << 1)
#define SETCOND_FLAGS (SETCOND_INV | SETCOND_NEZ)
static int tcg_out_setcond_int(TCGContext *s, TCGCond cond, TCGReg ret,
TCGReg arg1, tcg_target_long arg2, bool c2)
{
int flags = 0;
switch (cond) {
case TCG_COND_EQ: /* -> NE */
case TCG_COND_GE: /* -> LT */
case TCG_COND_GEU: /* -> LTU */
case TCG_COND_GT: /* -> LE */
case TCG_COND_GTU: /* -> LEU */
cond = tcg_invert_cond(cond);
flags ^= SETCOND_INV;
break;
default:
break;
}
switch (cond) {
case TCG_COND_LE:
case TCG_COND_LEU:
/*
* If we have a constant input, the most efficient way to implement
* LE is by adding 1 and using LT. Watch out for wrap around for LEU.
* We don't need to care for this for LE because the constant input
* is still constrained to int32_t, and INT32_MAX+1 is representable
* in the 64-bit temporary register.
*/
if (c2) {
if (cond == TCG_COND_LEU) {
/* unsigned <= -1 is true */
if (arg2 == -1) {
tcg_out_movi(s, TCG_TYPE_REG, ret, !(flags & SETCOND_INV));
return ret;
}
cond = TCG_COND_LTU;
} else {
cond = TCG_COND_LT;
}
arg2 += 1;
} else {
TCGReg tmp = arg2;
arg2 = arg1;
arg1 = tmp;
cond = tcg_swap_cond(cond); /* LE -> GE */
cond = tcg_invert_cond(cond); /* GE -> LT */
flags ^= SETCOND_INV;
}
break;
default:
break;
}
switch (cond) {
case TCG_COND_NE:
flags |= SETCOND_NEZ;
if (!c2) {
tcg_out_opc_xor(s, ret, arg1, arg2);
} else if (arg2 == 0) {
ret = arg1;
} else if (arg2 >= 0 && arg2 <= 0xfff) {
tcg_out_opc_xori(s, ret, arg1, arg2);
} else {
tcg_out_addi(s, TCG_TYPE_REG, ret, arg1, -arg2);
}
break;
case TCG_COND_LT:
case TCG_COND_LTU:
if (c2) {
if (arg2 >= -0x800 && arg2 <= 0x7ff) {
if (cond == TCG_COND_LT) {
tcg_out_opc_slti(s, ret, arg1, arg2);
} else {
tcg_out_opc_sltui(s, ret, arg1, arg2);
}
break;
}
tcg_out_movi(s, TCG_TYPE_REG, TCG_REG_TMP0, arg2);
arg2 = TCG_REG_TMP0;
}
if (cond == TCG_COND_LT) {
tcg_out_opc_slt(s, ret, arg1, arg2);
} else {
tcg_out_opc_sltu(s, ret, arg1, arg2);
}
break;
default:
g_assert_not_reached();
break;
}
return ret | flags;
}
static void tcg_out_setcond(TCGContext *s, TCGCond cond, TCGReg ret,
TCGReg arg1, tcg_target_long arg2, bool c2)
{
int tmpflags = tcg_out_setcond_int(s, cond, ret, arg1, arg2, c2);
if (tmpflags != ret) {
TCGReg tmp = tmpflags & ~SETCOND_FLAGS;
switch (tmpflags & SETCOND_FLAGS) {
case SETCOND_INV:
/* Intermediate result is boolean: simply invert. */
tcg_out_opc_xori(s, ret, tmp, 1);
break;
case SETCOND_NEZ:
/* Intermediate result is zero/non-zero: test != 0. */
tcg_out_opc_sltu(s, ret, TCG_REG_ZERO, tmp);
break;
case SETCOND_NEZ | SETCOND_INV:
/* Intermediate result is zero/non-zero: test == 0. */
tcg_out_opc_sltui(s, ret, tmp, 1);
break;
default:
g_assert_not_reached();
}
}
}
static void tcg_out_movcond(TCGContext *s, TCGCond cond, TCGReg ret,
TCGReg c1, tcg_target_long c2, bool const2,
TCGReg v1, TCGReg v2)
{
int tmpflags = tcg_out_setcond_int(s, cond, TCG_REG_TMP0, c1, c2, const2);
TCGReg t;
/* Standardize the test below to t != 0. */
if (tmpflags & SETCOND_INV) {
t = v1, v1 = v2, v2 = t;
}
t = tmpflags & ~SETCOND_FLAGS;
if (v1 == TCG_REG_ZERO) {
tcg_out_opc_masknez(s, ret, v2, t);
} else if (v2 == TCG_REG_ZERO) {
tcg_out_opc_maskeqz(s, ret, v1, t);
} else {
tcg_out_opc_masknez(s, TCG_REG_TMP2, v2, t); /* t ? 0 : v2 */
tcg_out_opc_maskeqz(s, TCG_REG_TMP1, v1, t); /* t ? v1 : 0 */
tcg_out_opc_or(s, ret, TCG_REG_TMP1, TCG_REG_TMP2);
}
}
/*
* Branch helpers
*/
static const struct {
LoongArchInsn op;
bool swap;
} tcg_brcond_to_loongarch[] = {
[TCG_COND_EQ] = { OPC_BEQ, false },
[TCG_COND_NE] = { OPC_BNE, false },
[TCG_COND_LT] = { OPC_BGT, true },
[TCG_COND_GE] = { OPC_BLE, true },
[TCG_COND_LE] = { OPC_BLE, false },
[TCG_COND_GT] = { OPC_BGT, false },
[TCG_COND_LTU] = { OPC_BGTU, true },
[TCG_COND_GEU] = { OPC_BLEU, true },
[TCG_COND_LEU] = { OPC_BLEU, false },
[TCG_COND_GTU] = { OPC_BGTU, false }
};
static void tcg_out_brcond(TCGContext *s, TCGCond cond, TCGReg arg1,
TCGReg arg2, TCGLabel *l)
{
LoongArchInsn op = tcg_brcond_to_loongarch[cond].op;
tcg_debug_assert(op != 0);
if (tcg_brcond_to_loongarch[cond].swap) {
TCGReg t = arg1;
arg1 = arg2;
arg2 = t;
}
/* all conditional branch insns belong to DJSk16-format */
tcg_out_reloc(s, s->code_ptr, R_LOONGARCH_BR_SK16, l, 0);
tcg_out32(s, encode_djsk16_insn(op, arg1, arg2, 0));
}
static void tcg_out_call_int(TCGContext *s, const tcg_insn_unit *arg, bool tail)
{
TCGReg link = tail ? TCG_REG_ZERO : TCG_REG_RA;
ptrdiff_t offset = tcg_pcrel_diff(s, arg);
tcg_debug_assert((offset & 3) == 0);
if (offset == sextreg(offset, 0, 28)) {
/* short jump: +/- 256MiB */
if (tail) {
tcg_out_opc_b(s, offset >> 2);
} else {
tcg_out_opc_bl(s, offset >> 2);
}
} else if (offset == sextreg(offset, 0, 38)) {
/* long jump: +/- 256GiB */
tcg_target_long lo = sextreg(offset, 0, 18);
tcg_target_long hi = offset - lo;
tcg_out_opc_pcaddu18i(s, TCG_REG_TMP0, hi >> 18);
tcg_out_opc_jirl(s, link, TCG_REG_TMP0, lo >> 2);
} else {
/* far jump: 64-bit */
tcg_target_long lo = sextreg((tcg_target_long)arg, 0, 18);
tcg_target_long hi = (tcg_target_long)arg - lo;
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_TMP0, hi);
tcg_out_opc_jirl(s, link, TCG_REG_TMP0, lo >> 2);
}
}
static void tcg_out_call(TCGContext *s, const tcg_insn_unit *arg,
const TCGHelperInfo *info)
{
tcg_out_call_int(s, arg, false);
}
/*
* Load/store helpers
*/
static void tcg_out_ldst(TCGContext *s, LoongArchInsn opc, TCGReg data,
TCGReg addr, intptr_t offset)
{
intptr_t imm12 = sextreg(offset, 0, 12);
if (offset != imm12) {
intptr_t diff = tcg_pcrel_diff(s, (void *)offset);
if (addr == TCG_REG_ZERO && diff == (int32_t)diff) {
imm12 = sextreg(diff, 0, 12);
tcg_out_opc_pcaddu12i(s, TCG_REG_TMP2, (diff - imm12) >> 12);
} else {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_TMP2, offset - imm12);
if (addr != TCG_REG_ZERO) {
tcg_out_opc_add_d(s, TCG_REG_TMP2, TCG_REG_TMP2, addr);
}
}
addr = TCG_REG_TMP2;
}
switch (opc) {
case OPC_LD_B:
case OPC_LD_BU:
case OPC_LD_H:
case OPC_LD_HU:
case OPC_LD_W:
case OPC_LD_WU:
case OPC_LD_D:
case OPC_ST_B:
case OPC_ST_H:
case OPC_ST_W:
case OPC_ST_D:
tcg_out32(s, encode_djsk12_insn(opc, data, addr, imm12));
break;
default:
g_assert_not_reached();
}
}
static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg arg,
TCGReg arg1, intptr_t arg2)
{
bool is_32bit = type == TCG_TYPE_I32;
tcg_out_ldst(s, is_32bit ? OPC_LD_W : OPC_LD_D, arg, arg1, arg2);
}
static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
TCGReg arg1, intptr_t arg2)
{
bool is_32bit = type == TCG_TYPE_I32;
tcg_out_ldst(s, is_32bit ? OPC_ST_W : OPC_ST_D, arg, arg1, arg2);
}
static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
TCGReg base, intptr_t ofs)
{
if (val == 0) {
tcg_out_st(s, type, TCG_REG_ZERO, base, ofs);
return true;
}
return false;
}
/*
* Load/store helpers for SoftMMU, and qemu_ld/st implementations
*/
static bool tcg_out_goto(TCGContext *s, const tcg_insn_unit *target)
{
tcg_out_opc_b(s, 0);
return reloc_br_sd10k16(s->code_ptr - 1, target);
}
static const TCGLdstHelperParam ldst_helper_param = {
.ntmp = 1, .tmp = { TCG_REG_TMP0 }
};
static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
{
MemOp opc = get_memop(l->oi);
/* resolve label address */
if (!reloc_br_sk16(l->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) {
return false;
}
tcg_out_ld_helper_args(s, l, &ldst_helper_param);
tcg_out_call_int(s, qemu_ld_helpers[opc & MO_SIZE], false);
tcg_out_ld_helper_ret(s, l, false, &ldst_helper_param);
return tcg_out_goto(s, l->raddr);
}
static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
{
MemOp opc = get_memop(l->oi);
/* resolve label address */
if (!reloc_br_sk16(l->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) {
return false;
}
tcg_out_st_helper_args(s, l, &ldst_helper_param);
tcg_out_call_int(s, qemu_st_helpers[opc & MO_SIZE], false);
return tcg_out_goto(s, l->raddr);
}
typedef struct {
TCGReg base;
TCGReg index;
TCGAtomAlign aa;
} HostAddress;
bool tcg_target_has_memory_bswap(MemOp memop)
{
return false;
}
/* We expect to use a 12-bit negative offset from ENV. */
#define MIN_TLB_MASK_TABLE_OFS -(1 << 11)
/*
* For system-mode, perform the TLB load and compare.
* For user-mode, perform any required alignment tests.
* In both cases, return a TCGLabelQemuLdst structure if the slow path
* is required and fill in @h with the host address for the fast path.
*/
static TCGLabelQemuLdst *prepare_host_addr(TCGContext *s, HostAddress *h,
TCGReg addr_reg, MemOpIdx oi,
bool is_ld)
{
TCGType addr_type = s->addr_type;
TCGLabelQemuLdst *ldst = NULL;
MemOp opc = get_memop(oi);
MemOp a_bits;
h->aa = atom_and_align_for_opc(s, opc, MO_ATOM_IFALIGN, false);
a_bits = h->aa.align;
if (tcg_use_softmmu) {
unsigned s_bits = opc & MO_SIZE;
int mem_index = get_mmuidx(oi);
int fast_ofs = tlb_mask_table_ofs(s, mem_index);
int mask_ofs = fast_ofs + offsetof(CPUTLBDescFast, mask);
int table_ofs = fast_ofs + offsetof(CPUTLBDescFast, table);
ldst = new_ldst_label(s);
ldst->is_ld = is_ld;
ldst->oi = oi;
ldst->addrlo_reg = addr_reg;
tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TMP0, TCG_AREG0, mask_ofs);
tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TMP1, TCG_AREG0, table_ofs);
tcg_out_opc_srli_d(s, TCG_REG_TMP2, addr_reg,
s->page_bits - CPU_TLB_ENTRY_BITS);
tcg_out_opc_and(s, TCG_REG_TMP2, TCG_REG_TMP2, TCG_REG_TMP0);
tcg_out_opc_add_d(s, TCG_REG_TMP2, TCG_REG_TMP2, TCG_REG_TMP1);
/* Load the tlb comparator and the addend. */
QEMU_BUILD_BUG_ON(HOST_BIG_ENDIAN);
tcg_out_ld(s, addr_type, TCG_REG_TMP0, TCG_REG_TMP2,
is_ld ? offsetof(CPUTLBEntry, addr_read)
: offsetof(CPUTLBEntry, addr_write));
tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TMP2, TCG_REG_TMP2,
offsetof(CPUTLBEntry, addend));
/*
* For aligned accesses, we check the first byte and include the
* alignment bits within the address. For unaligned access, we
* check that we don't cross pages using the address of the last
* byte of the access.
*/
if (a_bits < s_bits) {
unsigned a_mask = (1u << a_bits) - 1;
unsigned s_mask = (1u << s_bits) - 1;
tcg_out_addi(s, addr_type, TCG_REG_TMP1, addr_reg, s_mask - a_mask);
} else {
tcg_out_mov(s, addr_type, TCG_REG_TMP1, addr_reg);
}
tcg_out_opc_bstrins_d(s, TCG_REG_TMP1, TCG_REG_ZERO,
a_bits, s->page_bits - 1);
/* Compare masked address with the TLB entry. */
ldst->label_ptr[0] = s->code_ptr;
tcg_out_opc_bne(s, TCG_REG_TMP0, TCG_REG_TMP1, 0);
h->index = TCG_REG_TMP2;
} else {
if (a_bits) {
ldst = new_ldst_label(s);
ldst->is_ld = is_ld;
ldst->oi = oi;
ldst->addrlo_reg = addr_reg;
/*
* Without micro-architecture details, we don't know which of
* bstrpick or andi is faster, so use bstrpick as it's not
* constrained by imm field width. Not to say alignments >= 2^12
* are going to happen any time soon.
*/
tcg_out_opc_bstrpick_d(s, TCG_REG_TMP1, addr_reg, 0, a_bits - 1);
ldst->label_ptr[0] = s->code_ptr;
tcg_out_opc_bne(s, TCG_REG_TMP1, TCG_REG_ZERO, 0);
}
h->index = guest_base ? TCG_GUEST_BASE_REG : TCG_REG_ZERO;
}
if (addr_type == TCG_TYPE_I32) {
h->base = TCG_REG_TMP0;
tcg_out_ext32u(s, h->base, addr_reg);
} else {
h->base = addr_reg;
}
return ldst;
}
static void tcg_out_qemu_ld_indexed(TCGContext *s, MemOp opc, TCGType type,
TCGReg rd, HostAddress h)
{
/* Byte swapping is left to middle-end expansion. */
tcg_debug_assert((opc & MO_BSWAP) == 0);
switch (opc & MO_SSIZE) {
case MO_UB:
tcg_out_opc_ldx_bu(s, rd, h.base, h.index);
break;
case MO_SB:
tcg_out_opc_ldx_b(s, rd, h.base, h.index);
break;
case MO_UW:
tcg_out_opc_ldx_hu(s, rd, h.base, h.index);
break;
case MO_SW:
tcg_out_opc_ldx_h(s, rd, h.base, h.index);
break;
case MO_UL:
if (type == TCG_TYPE_I64) {
tcg_out_opc_ldx_wu(s, rd, h.base, h.index);
break;
}
/* fallthrough */
case MO_SL:
tcg_out_opc_ldx_w(s, rd, h.base, h.index);
break;
case MO_UQ:
tcg_out_opc_ldx_d(s, rd, h.base, h.index);
break;
default:
g_assert_not_reached();
}
}
static void tcg_out_qemu_ld(TCGContext *s, TCGReg data_reg, TCGReg addr_reg,
MemOpIdx oi, TCGType data_type)
{
TCGLabelQemuLdst *ldst;
HostAddress h;
ldst = prepare_host_addr(s, &h, addr_reg, oi, true);
tcg_out_qemu_ld_indexed(s, get_memop(oi), data_type, data_reg, h);
if (ldst) {
ldst->type = data_type;
ldst->datalo_reg = data_reg;
ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
}
}
static void tcg_out_qemu_st_indexed(TCGContext *s, MemOp opc,
TCGReg rd, HostAddress h)
{
/* Byte swapping is left to middle-end expansion. */
tcg_debug_assert((opc & MO_BSWAP) == 0);
switch (opc & MO_SIZE) {
case MO_8:
tcg_out_opc_stx_b(s, rd, h.base, h.index);
break;
case MO_16:
tcg_out_opc_stx_h(s, rd, h.base, h.index);
break;
case MO_32:
tcg_out_opc_stx_w(s, rd, h.base, h.index);
break;
case MO_64:
tcg_out_opc_stx_d(s, rd, h.base, h.index);
break;
default:
g_assert_not_reached();
}
}
static void tcg_out_qemu_st(TCGContext *s, TCGReg data_reg, TCGReg addr_reg,
MemOpIdx oi, TCGType data_type)
{
TCGLabelQemuLdst *ldst;
HostAddress h;
ldst = prepare_host_addr(s, &h, addr_reg, oi, false);
tcg_out_qemu_st_indexed(s, get_memop(oi), data_reg, h);
if (ldst) {
ldst->type = data_type;
ldst->datalo_reg = data_reg;
ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
}
}
static void tcg_out_qemu_ldst_i128(TCGContext *s, TCGReg data_lo, TCGReg data_hi,
TCGReg addr_reg, MemOpIdx oi, bool is_ld)
{
TCGLabelQemuLdst *ldst;
HostAddress h;
ldst = prepare_host_addr(s, &h, addr_reg, oi, is_ld);
if (h.aa.atom == MO_128) {
/*
* Use VLDX/VSTX when 128-bit atomicity is required.
* If address is aligned to 16-bytes, the 128-bit load/store is atomic.
*/
if (is_ld) {
tcg_out_opc_vldx(s, TCG_VEC_TMP0, h.base, h.index);
tcg_out_opc_vpickve2gr_d(s, data_lo, TCG_VEC_TMP0, 0);
tcg_out_opc_vpickve2gr_d(s, data_hi, TCG_VEC_TMP0, 1);
} else {
tcg_out_opc_vinsgr2vr_d(s, TCG_VEC_TMP0, data_lo, 0);
tcg_out_opc_vinsgr2vr_d(s, TCG_VEC_TMP0, data_hi, 1);
tcg_out_opc_vstx(s, TCG_VEC_TMP0, h.base, h.index);
}
} else {
/* Otherwise use a pair of LD/ST. */
tcg_out_opc_add_d(s, TCG_REG_TMP0, h.base, h.index);
if (is_ld) {
tcg_out_opc_ld_d(s, data_lo, TCG_REG_TMP0, 0);
tcg_out_opc_ld_d(s, data_hi, TCG_REG_TMP0, 8);
} else {
tcg_out_opc_st_d(s, data_lo, TCG_REG_TMP0, 0);
tcg_out_opc_st_d(s, data_hi, TCG_REG_TMP0, 8);
}
}
if (ldst) {
ldst->type = TCG_TYPE_I128;
ldst->datalo_reg = data_lo;
ldst->datahi_reg = data_hi;
ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
}
}
/*
* Entry-points
*/
static const tcg_insn_unit *tb_ret_addr;
static void tcg_out_exit_tb(TCGContext *s, uintptr_t a0)
{
/* Reuse the zeroing that exists for goto_ptr. */
if (a0 == 0) {
tcg_out_call_int(s, tcg_code_gen_epilogue, true);
} else {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_A0, a0);
tcg_out_call_int(s, tb_ret_addr, true);
}
}
static void tcg_out_goto_tb(TCGContext *s, int which)
{
/*
* Direct branch, or load indirect address, to be patched
* by tb_target_set_jmp_target. Check indirect load offset
* in range early, regardless of direct branch distance,
* via assert within tcg_out_opc_pcaddu2i.
*/
uintptr_t i_addr = get_jmp_target_addr(s, which);
intptr_t i_disp = tcg_pcrel_diff(s, (void *)i_addr);
set_jmp_insn_offset(s, which);
tcg_out_opc_pcaddu2i(s, TCG_REG_TMP0, i_disp >> 2);
/* Finish the load and indirect branch. */
tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TMP0, TCG_REG_TMP0, 0);
tcg_out_opc_jirl(s, TCG_REG_ZERO, TCG_REG_TMP0, 0);
set_jmp_reset_offset(s, which);
}
void tb_target_set_jmp_target(const TranslationBlock *tb, int n,
uintptr_t jmp_rx, uintptr_t jmp_rw)
{
uintptr_t d_addr = tb->jmp_target_addr[n];
ptrdiff_t d_disp = (ptrdiff_t)(d_addr - jmp_rx) >> 2;
tcg_insn_unit insn;
/* Either directly branch, or load slot address for indirect branch. */
if (d_disp == sextreg(d_disp, 0, 26)) {
insn = encode_sd10k16_insn(OPC_B, d_disp);
} else {
uintptr_t i_addr = (uintptr_t)&tb->jmp_target_addr[n];
intptr_t i_disp = i_addr - jmp_rx;
insn = encode_dsj20_insn(OPC_PCADDU2I, TCG_REG_TMP0, i_disp >> 2);
}
qatomic_set((tcg_insn_unit *)jmp_rw, insn);
flush_idcache_range(jmp_rx, jmp_rw, 4);
}
static void tcg_out_op(TCGContext *s, TCGOpcode opc,
const TCGArg args[TCG_MAX_OP_ARGS],
const int const_args[TCG_MAX_OP_ARGS])
{
TCGArg a0 = args[0];
TCGArg a1 = args[1];
TCGArg a2 = args[2];
TCGArg a3 = args[3];
int c2 = const_args[2];
switch (opc) {
case INDEX_op_mb:
tcg_out_mb(s, a0);
break;
case INDEX_op_goto_ptr:
tcg_out_opc_jirl(s, TCG_REG_ZERO, a0, 0);
break;
case INDEX_op_br:
tcg_out_reloc(s, s->code_ptr, R_LOONGARCH_BR_SD10K16, arg_label(a0),
0);
tcg_out_opc_b(s, 0);
break;
case INDEX_op_brcond_i32:
case INDEX_op_brcond_i64:
tcg_out_brcond(s, a2, a0, a1, arg_label(args[3]));
break;
case INDEX_op_extrh_i64_i32:
tcg_out_opc_srai_d(s, a0, a1, 32);
break;
case INDEX_op_not_i32:
case INDEX_op_not_i64:
tcg_out_opc_nor(s, a0, a1, TCG_REG_ZERO);
break;
case INDEX_op_nor_i32:
case INDEX_op_nor_i64:
if (c2) {
tcg_out_opc_ori(s, a0, a1, a2);
tcg_out_opc_nor(s, a0, a0, TCG_REG_ZERO);
} else {
tcg_out_opc_nor(s, a0, a1, a2);
}
break;
case INDEX_op_andc_i32:
case INDEX_op_andc_i64:
if (c2) {
/* guaranteed to fit due to constraint */
tcg_out_opc_andi(s, a0, a1, ~a2);
} else {
tcg_out_opc_andn(s, a0, a1, a2);
}
break;
case INDEX_op_orc_i32:
case INDEX_op_orc_i64:
if (c2) {
/* guaranteed to fit due to constraint */
tcg_out_opc_ori(s, a0, a1, ~a2);
} else {
tcg_out_opc_orn(s, a0, a1, a2);
}
break;
case INDEX_op_and_i32:
case INDEX_op_and_i64:
if (c2) {
tcg_out_opc_andi(s, a0, a1, a2);
} else {
tcg_out_opc_and(s, a0, a1, a2);
}
break;
case INDEX_op_or_i32:
case INDEX_op_or_i64:
if (c2) {
tcg_out_opc_ori(s, a0, a1, a2);
} else {
tcg_out_opc_or(s, a0, a1, a2);
}
break;
case INDEX_op_xor_i32:
case INDEX_op_xor_i64:
if (c2) {
tcg_out_opc_xori(s, a0, a1, a2);
} else {
tcg_out_opc_xor(s, a0, a1, a2);
}
break;
case INDEX_op_extract_i32:
tcg_out_opc_bstrpick_w(s, a0, a1, a2, a2 + args[3] - 1);
break;
case INDEX_op_extract_i64:
tcg_out_opc_bstrpick_d(s, a0, a1, a2, a2 + args[3] - 1);
break;
case INDEX_op_deposit_i32:
tcg_out_opc_bstrins_w(s, a0, a2, args[3], args[3] + args[4] - 1);
break;
case INDEX_op_deposit_i64:
tcg_out_opc_bstrins_d(s, a0, a2, args[3], args[3] + args[4] - 1);
break;
case INDEX_op_bswap16_i32:
case INDEX_op_bswap16_i64:
tcg_out_opc_revb_2h(s, a0, a1);
if (a2 & TCG_BSWAP_OS) {
tcg_out_ext16s(s, TCG_TYPE_REG, a0, a0);
} else if ((a2 & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) {
tcg_out_ext16u(s, a0, a0);
}
break;
case INDEX_op_bswap32_i32:
/* All 32-bit values are computed sign-extended in the register. */
a2 = TCG_BSWAP_OS;
/* fallthrough */
case INDEX_op_bswap32_i64:
tcg_out_opc_revb_2w(s, a0, a1);
if (a2 & TCG_BSWAP_OS) {
tcg_out_ext32s(s, a0, a0);
} else if ((a2 & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) {
tcg_out_ext32u(s, a0, a0);
}
break;
case INDEX_op_bswap64_i64:
tcg_out_opc_revb_d(s, a0, a1);
break;
case INDEX_op_clz_i32:
tcg_out_clzctz(s, OPC_CLZ_W, a0, a1, a2, c2, true);
break;
case INDEX_op_clz_i64:
tcg_out_clzctz(s, OPC_CLZ_D, a0, a1, a2, c2, false);
break;
case INDEX_op_ctz_i32:
tcg_out_clzctz(s, OPC_CTZ_W, a0, a1, a2, c2, true);
break;
case INDEX_op_ctz_i64:
tcg_out_clzctz(s, OPC_CTZ_D, a0, a1, a2, c2, false);
break;
case INDEX_op_shl_i32:
if (c2) {
tcg_out_opc_slli_w(s, a0, a1, a2 & 0x1f);
} else {
tcg_out_opc_sll_w(s, a0, a1, a2);
}
break;
case INDEX_op_shl_i64:
if (c2) {
tcg_out_opc_slli_d(s, a0, a1, a2 & 0x3f);
} else {
tcg_out_opc_sll_d(s, a0, a1, a2);
}
break;
case INDEX_op_shr_i32:
if (c2) {
tcg_out_opc_srli_w(s, a0, a1, a2 & 0x1f);
} else {
tcg_out_opc_srl_w(s, a0, a1, a2);
}
break;
case INDEX_op_shr_i64:
if (c2) {
tcg_out_opc_srli_d(s, a0, a1, a2 & 0x3f);
} else {
tcg_out_opc_srl_d(s, a0, a1, a2);
}
break;
case INDEX_op_sar_i32:
if (c2) {
tcg_out_opc_srai_w(s, a0, a1, a2 & 0x1f);
} else {
tcg_out_opc_sra_w(s, a0, a1, a2);
}
break;
case INDEX_op_sar_i64:
if (c2) {
tcg_out_opc_srai_d(s, a0, a1, a2 & 0x3f);
} else {
tcg_out_opc_sra_d(s, a0, a1, a2);
}
break;
case INDEX_op_rotl_i32:
/* transform into equivalent rotr/rotri */
if (c2) {
tcg_out_opc_rotri_w(s, a0, a1, (32 - a2) & 0x1f);
} else {
tcg_out_opc_sub_w(s, TCG_REG_TMP0, TCG_REG_ZERO, a2);
tcg_out_opc_rotr_w(s, a0, a1, TCG_REG_TMP0);
}
break;
case INDEX_op_rotl_i64:
/* transform into equivalent rotr/rotri */
if (c2) {
tcg_out_opc_rotri_d(s, a0, a1, (64 - a2) & 0x3f);
} else {
tcg_out_opc_sub_w(s, TCG_REG_TMP0, TCG_REG_ZERO, a2);
tcg_out_opc_rotr_d(s, a0, a1, TCG_REG_TMP0);
}
break;
case INDEX_op_rotr_i32:
if (c2) {
tcg_out_opc_rotri_w(s, a0, a1, a2 & 0x1f);
} else {
tcg_out_opc_rotr_w(s, a0, a1, a2);
}
break;
case INDEX_op_rotr_i64:
if (c2) {
tcg_out_opc_rotri_d(s, a0, a1, a2 & 0x3f);
} else {
tcg_out_opc_rotr_d(s, a0, a1, a2);
}
break;
case INDEX_op_add_i32:
if (c2) {
tcg_out_addi(s, TCG_TYPE_I32, a0, a1, a2);
} else {
tcg_out_opc_add_w(s, a0, a1, a2);
}
break;
case INDEX_op_add_i64:
if (c2) {
tcg_out_addi(s, TCG_TYPE_I64, a0, a1, a2);
} else {
tcg_out_opc_add_d(s, a0, a1, a2);
}
break;
case INDEX_op_sub_i32:
if (c2) {
tcg_out_addi(s, TCG_TYPE_I32, a0, a1, -a2);
} else {
tcg_out_opc_sub_w(s, a0, a1, a2);
}
break;
case INDEX_op_sub_i64:
if (c2) {
tcg_out_addi(s, TCG_TYPE_I64, a0, a1, -a2);
} else {
tcg_out_opc_sub_d(s, a0, a1, a2);
}
break;
case INDEX_op_mul_i32:
tcg_out_opc_mul_w(s, a0, a1, a2);
break;
case INDEX_op_mul_i64:
tcg_out_opc_mul_d(s, a0, a1, a2);
break;
case INDEX_op_mulsh_i32:
tcg_out_opc_mulh_w(s, a0, a1, a2);
break;
case INDEX_op_mulsh_i64:
tcg_out_opc_mulh_d(s, a0, a1, a2);
break;
case INDEX_op_muluh_i32:
tcg_out_opc_mulh_wu(s, a0, a1, a2);
break;
case INDEX_op_muluh_i64:
tcg_out_opc_mulh_du(s, a0, a1, a2);
break;
case INDEX_op_div_i32:
tcg_out_opc_div_w(s, a0, a1, a2);
break;
case INDEX_op_div_i64:
tcg_out_opc_div_d(s, a0, a1, a2);
break;
case INDEX_op_divu_i32:
tcg_out_opc_div_wu(s, a0, a1, a2);
break;
case INDEX_op_divu_i64:
tcg_out_opc_div_du(s, a0, a1, a2);
break;
case INDEX_op_rem_i32:
tcg_out_opc_mod_w(s, a0, a1, a2);
break;
case INDEX_op_rem_i64:
tcg_out_opc_mod_d(s, a0, a1, a2);
break;
case INDEX_op_remu_i32:
tcg_out_opc_mod_wu(s, a0, a1, a2);
break;
case INDEX_op_remu_i64:
tcg_out_opc_mod_du(s, a0, a1, a2);
break;
case INDEX_op_setcond_i32:
case INDEX_op_setcond_i64:
tcg_out_setcond(s, args[3], a0, a1, a2, c2);
break;
case INDEX_op_movcond_i32:
case INDEX_op_movcond_i64:
tcg_out_movcond(s, args[5], a0, a1, a2, c2, args[3], args[4]);
break;
case INDEX_op_ld8s_i32:
case INDEX_op_ld8s_i64:
tcg_out_ldst(s, OPC_LD_B, a0, a1, a2);
break;
case INDEX_op_ld8u_i32:
case INDEX_op_ld8u_i64:
tcg_out_ldst(s, OPC_LD_BU, a0, a1, a2);
break;
case INDEX_op_ld16s_i32:
case INDEX_op_ld16s_i64:
tcg_out_ldst(s, OPC_LD_H, a0, a1, a2);
break;
case INDEX_op_ld16u_i32:
case INDEX_op_ld16u_i64:
tcg_out_ldst(s, OPC_LD_HU, a0, a1, a2);
break;
case INDEX_op_ld_i32:
case INDEX_op_ld32s_i64:
tcg_out_ldst(s, OPC_LD_W, a0, a1, a2);
break;
case INDEX_op_ld32u_i64:
tcg_out_ldst(s, OPC_LD_WU, a0, a1, a2);
break;
case INDEX_op_ld_i64:
tcg_out_ldst(s, OPC_LD_D, a0, a1, a2);
break;
case INDEX_op_st8_i32:
case INDEX_op_st8_i64:
tcg_out_ldst(s, OPC_ST_B, a0, a1, a2);
break;
case INDEX_op_st16_i32:
case INDEX_op_st16_i64:
tcg_out_ldst(s, OPC_ST_H, a0, a1, a2);
break;
case INDEX_op_st_i32:
case INDEX_op_st32_i64:
tcg_out_ldst(s, OPC_ST_W, a0, a1, a2);
break;
case INDEX_op_st_i64:
tcg_out_ldst(s, OPC_ST_D, a0, a1, a2);
break;
case INDEX_op_qemu_ld_a32_i32:
case INDEX_op_qemu_ld_a64_i32:
tcg_out_qemu_ld(s, a0, a1, a2, TCG_TYPE_I32);
break;
case INDEX_op_qemu_ld_a32_i64:
case INDEX_op_qemu_ld_a64_i64:
tcg_out_qemu_ld(s, a0, a1, a2, TCG_TYPE_I64);
break;
case INDEX_op_qemu_ld_a32_i128:
case INDEX_op_qemu_ld_a64_i128:
tcg_out_qemu_ldst_i128(s, a0, a1, a2, a3, true);
break;
case INDEX_op_qemu_st_a32_i32:
case INDEX_op_qemu_st_a64_i32:
tcg_out_qemu_st(s, a0, a1, a2, TCG_TYPE_I32);
break;
case INDEX_op_qemu_st_a32_i64:
case INDEX_op_qemu_st_a64_i64:
tcg_out_qemu_st(s, a0, a1, a2, TCG_TYPE_I64);
break;
case INDEX_op_qemu_st_a32_i128:
case INDEX_op_qemu_st_a64_i128:
tcg_out_qemu_ldst_i128(s, a0, a1, a2, a3, false);
break;
case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */
case INDEX_op_mov_i64:
case INDEX_op_call: /* Always emitted via tcg_out_call. */
case INDEX_op_exit_tb: /* Always emitted via tcg_out_exit_tb. */
case INDEX_op_goto_tb: /* Always emitted via tcg_out_goto_tb. */
case INDEX_op_ext8s_i32: /* Always emitted via tcg_reg_alloc_op. */
case INDEX_op_ext8s_i64:
case INDEX_op_ext8u_i32:
case INDEX_op_ext8u_i64:
case INDEX_op_ext16s_i32:
case INDEX_op_ext16s_i64:
case INDEX_op_ext16u_i32:
case INDEX_op_ext16u_i64:
case INDEX_op_ext32s_i64:
case INDEX_op_ext32u_i64:
case INDEX_op_ext_i32_i64:
case INDEX_op_extu_i32_i64:
case INDEX_op_extrl_i64_i32:
default:
g_assert_not_reached();
}
}
static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
TCGReg rd, TCGReg rs)
{
switch (vece) {
case MO_8:
tcg_out_opc_vreplgr2vr_b(s, rd, rs);
break;
case MO_16:
tcg_out_opc_vreplgr2vr_h(s, rd, rs);
break;
case MO_32:
tcg_out_opc_vreplgr2vr_w(s, rd, rs);
break;
case MO_64:
tcg_out_opc_vreplgr2vr_d(s, rd, rs);
break;
default:
g_assert_not_reached();
}
return true;
}
static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
TCGReg r, TCGReg base, intptr_t offset)
{
/* Handle imm overflow and division (vldrepl.d imm is divided by 8) */
if (offset < -0x800 || offset > 0x7ff || \
(offset & ((1 << vece) - 1)) != 0) {
tcg_out_addi(s, TCG_TYPE_I64, TCG_REG_TMP0, base, offset);
base = TCG_REG_TMP0;
offset = 0;
}
offset >>= vece;
switch (vece) {
case MO_8:
tcg_out_opc_vldrepl_b(s, r, base, offset);
break;
case MO_16:
tcg_out_opc_vldrepl_h(s, r, base, offset);
break;
case MO_32:
tcg_out_opc_vldrepl_w(s, r, base, offset);
break;
case MO_64:
tcg_out_opc_vldrepl_d(s, r, base, offset);
break;
default:
g_assert_not_reached();
}
return true;
}
static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece,
TCGReg rd, int64_t v64)
{
/* Try vldi if imm can fit */
int64_t value = sextract64(v64, 0, 8 << vece);
if (-0x200 <= value && value <= 0x1FF) {
uint32_t imm = (vece << 10) | ((uint32_t)v64 & 0x3FF);
tcg_out_opc_vldi(s, rd, imm);
return;
}
/* TODO: vldi patterns when imm 12 is set */
/* Fallback to vreplgr2vr */
tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_TMP0, value);
switch (vece) {
case MO_8:
tcg_out_opc_vreplgr2vr_b(s, rd, TCG_REG_TMP0);
break;
case MO_16:
tcg_out_opc_vreplgr2vr_h(s, rd, TCG_REG_TMP0);
break;
case MO_32:
tcg_out_opc_vreplgr2vr_w(s, rd, TCG_REG_TMP0);
break;
case MO_64:
tcg_out_opc_vreplgr2vr_d(s, rd, TCG_REG_TMP0);
break;
default:
g_assert_not_reached();
}
}
static void tcg_out_addsub_vec(TCGContext *s, unsigned vece, const TCGArg a0,
const TCGArg a1, const TCGArg a2,
bool a2_is_const, bool is_add)
{
static const LoongArchInsn add_vec_insn[4] = {
OPC_VADD_B, OPC_VADD_H, OPC_VADD_W, OPC_VADD_D
};
static const LoongArchInsn add_vec_imm_insn[4] = {
OPC_VADDI_BU, OPC_VADDI_HU, OPC_VADDI_WU, OPC_VADDI_DU
};
static const LoongArchInsn sub_vec_insn[4] = {
OPC_VSUB_B, OPC_VSUB_H, OPC_VSUB_W, OPC_VSUB_D
};
static const LoongArchInsn sub_vec_imm_insn[4] = {
OPC_VSUBI_BU, OPC_VSUBI_HU, OPC_VSUBI_WU, OPC_VSUBI_DU
};
if (a2_is_const) {
int64_t value = sextract64(a2, 0, 8 << vece);
if (!is_add) {
value = -value;
}
/* Try vaddi/vsubi */
if (0 <= value && value <= 0x1f) {
tcg_out32(s, encode_vdvjuk5_insn(add_vec_imm_insn[vece], a0, \
a1, value));
return;
} else if (-0x1f <= value && value < 0) {
tcg_out32(s, encode_vdvjuk5_insn(sub_vec_imm_insn[vece], a0, \
a1, -value));
return;
}
/* constraint TCG_CT_CONST_VADD ensures unreachable */
g_assert_not_reached();
}
if (is_add) {
tcg_out32(s, encode_vdvjvk_insn(add_vec_insn[vece], a0, a1, a2));
} else {
tcg_out32(s, encode_vdvjvk_insn(sub_vec_insn[vece], a0, a1, a2));
}
}
static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc,
unsigned vecl, unsigned vece,
const TCGArg args[TCG_MAX_OP_ARGS],
const int const_args[TCG_MAX_OP_ARGS])
{
TCGType type = vecl + TCG_TYPE_V64;
TCGArg a0, a1, a2, a3;
TCGReg temp = TCG_REG_TMP0;
TCGReg temp_vec = TCG_VEC_TMP0;
static const LoongArchInsn cmp_vec_insn[16][4] = {
[TCG_COND_EQ] = {OPC_VSEQ_B, OPC_VSEQ_H, OPC_VSEQ_W, OPC_VSEQ_D},
[TCG_COND_LE] = {OPC_VSLE_B, OPC_VSLE_H, OPC_VSLE_W, OPC_VSLE_D},
[TCG_COND_LEU] = {OPC_VSLE_BU, OPC_VSLE_HU, OPC_VSLE_WU, OPC_VSLE_DU},
[TCG_COND_LT] = {OPC_VSLT_B, OPC_VSLT_H, OPC_VSLT_W, OPC_VSLT_D},
[TCG_COND_LTU] = {OPC_VSLT_BU, OPC_VSLT_HU, OPC_VSLT_WU, OPC_VSLT_DU},
};
static const LoongArchInsn cmp_vec_imm_insn[16][4] = {
[TCG_COND_EQ] = {OPC_VSEQI_B, OPC_VSEQI_H, OPC_VSEQI_W, OPC_VSEQI_D},
[TCG_COND_LE] = {OPC_VSLEI_B, OPC_VSLEI_H, OPC_VSLEI_W, OPC_VSLEI_D},
[TCG_COND_LEU] = {OPC_VSLEI_BU, OPC_VSLEI_HU, OPC_VSLEI_WU, OPC_VSLEI_DU},
[TCG_COND_LT] = {OPC_VSLTI_B, OPC_VSLTI_H, OPC_VSLTI_W, OPC_VSLTI_D},
[TCG_COND_LTU] = {OPC_VSLTI_BU, OPC_VSLTI_HU, OPC_VSLTI_WU, OPC_VSLTI_DU},
};
LoongArchInsn insn;
static const LoongArchInsn neg_vec_insn[4] = {
OPC_VNEG_B, OPC_VNEG_H, OPC_VNEG_W, OPC_VNEG_D
};
static const LoongArchInsn mul_vec_insn[4] = {
OPC_VMUL_B, OPC_VMUL_H, OPC_VMUL_W, OPC_VMUL_D
};
static const LoongArchInsn smin_vec_insn[4] = {
OPC_VMIN_B, OPC_VMIN_H, OPC_VMIN_W, OPC_VMIN_D
};
static const LoongArchInsn umin_vec_insn[4] = {
OPC_VMIN_BU, OPC_VMIN_HU, OPC_VMIN_WU, OPC_VMIN_DU
};
static const LoongArchInsn smax_vec_insn[4] = {
OPC_VMAX_B, OPC_VMAX_H, OPC_VMAX_W, OPC_VMAX_D
};
static const LoongArchInsn umax_vec_insn[4] = {
OPC_VMAX_BU, OPC_VMAX_HU, OPC_VMAX_WU, OPC_VMAX_DU
};
static const LoongArchInsn ssadd_vec_insn[4] = {
OPC_VSADD_B, OPC_VSADD_H, OPC_VSADD_W, OPC_VSADD_D
};
static const LoongArchInsn usadd_vec_insn[4] = {
OPC_VSADD_BU, OPC_VSADD_HU, OPC_VSADD_WU, OPC_VSADD_DU
};
static const LoongArchInsn sssub_vec_insn[4] = {
OPC_VSSUB_B, OPC_VSSUB_H, OPC_VSSUB_W, OPC_VSSUB_D
};
static const LoongArchInsn ussub_vec_insn[4] = {
OPC_VSSUB_BU, OPC_VSSUB_HU, OPC_VSSUB_WU, OPC_VSSUB_DU
};
static const LoongArchInsn shlv_vec_insn[4] = {
OPC_VSLL_B, OPC_VSLL_H, OPC_VSLL_W, OPC_VSLL_D
};
static const LoongArchInsn shrv_vec_insn[4] = {
OPC_VSRL_B, OPC_VSRL_H, OPC_VSRL_W, OPC_VSRL_D
};
static const LoongArchInsn sarv_vec_insn[4] = {
OPC_VSRA_B, OPC_VSRA_H, OPC_VSRA_W, OPC_VSRA_D
};
static const LoongArchInsn shli_vec_insn[4] = {
OPC_VSLLI_B, OPC_VSLLI_H, OPC_VSLLI_W, OPC_VSLLI_D
};
static const LoongArchInsn shri_vec_insn[4] = {
OPC_VSRLI_B, OPC_VSRLI_H, OPC_VSRLI_W, OPC_VSRLI_D
};
static const LoongArchInsn sari_vec_insn[4] = {
OPC_VSRAI_B, OPC_VSRAI_H, OPC_VSRAI_W, OPC_VSRAI_D
};
static const LoongArchInsn rotrv_vec_insn[4] = {
OPC_VROTR_B, OPC_VROTR_H, OPC_VROTR_W, OPC_VROTR_D
};
a0 = args[0];
a1 = args[1];
a2 = args[2];
a3 = args[3];
/* Currently only supports V128 */
tcg_debug_assert(type == TCG_TYPE_V128);
switch (opc) {
case INDEX_op_st_vec:
/* Try to fit vst imm */
if (-0x800 <= a2 && a2 <= 0x7ff) {
tcg_out_opc_vst(s, a0, a1, a2);
} else {
tcg_out_movi(s, TCG_TYPE_I64, temp, a2);
tcg_out_opc_vstx(s, a0, a1, temp);
}
break;
case INDEX_op_ld_vec:
/* Try to fit vld imm */
if (-0x800 <= a2 && a2 <= 0x7ff) {
tcg_out_opc_vld(s, a0, a1, a2);
} else {
tcg_out_movi(s, TCG_TYPE_I64, temp, a2);
tcg_out_opc_vldx(s, a0, a1, temp);
}
break;
case INDEX_op_and_vec:
tcg_out_opc_vand_v(s, a0, a1, a2);
break;
case INDEX_op_andc_vec:
/*
* vandn vd, vj, vk: vd = vk & ~vj
* andc_vec vd, vj, vk: vd = vj & ~vk
* vk and vk are swapped
*/
tcg_out_opc_vandn_v(s, a0, a2, a1);
break;
case INDEX_op_or_vec:
tcg_out_opc_vor_v(s, a0, a1, a2);
break;
case INDEX_op_orc_vec:
tcg_out_opc_vorn_v(s, a0, a1, a2);
break;
case INDEX_op_xor_vec:
tcg_out_opc_vxor_v(s, a0, a1, a2);
break;
case INDEX_op_nor_vec:
tcg_out_opc_vnor_v(s, a0, a1, a2);
break;
case INDEX_op_not_vec:
tcg_out_opc_vnor_v(s, a0, a1, a1);
break;
case INDEX_op_cmp_vec:
{
TCGCond cond = args[3];
if (const_args[2]) {
/*
* cmp_vec dest, src, value
* Try vseqi/vslei/vslti
*/
int64_t value = sextract64(a2, 0, 8 << vece);
if ((cond == TCG_COND_EQ || cond == TCG_COND_LE || \
cond == TCG_COND_LT) && (-0x10 <= value && value <= 0x0f)) {
tcg_out32(s, encode_vdvjsk5_insn(cmp_vec_imm_insn[cond][vece], \
a0, a1, value));
break;
} else if ((cond == TCG_COND_LEU || cond == TCG_COND_LTU) &&
(0x00 <= value && value <= 0x1f)) {
tcg_out32(s, encode_vdvjuk5_insn(cmp_vec_imm_insn[cond][vece], \
a0, a1, value));
break;
}
/*
* Fallback to:
* dupi_vec temp, a2
* cmp_vec a0, a1, temp, cond
*/
tcg_out_dupi_vec(s, type, vece, temp_vec, a2);
a2 = temp_vec;
}
insn = cmp_vec_insn[cond][vece];
if (insn == 0) {
TCGArg t;
t = a1, a1 = a2, a2 = t;
cond = tcg_swap_cond(cond);
insn = cmp_vec_insn[cond][vece];
tcg_debug_assert(insn != 0);
}
tcg_out32(s, encode_vdvjvk_insn(insn, a0, a1, a2));
}
break;
case INDEX_op_add_vec:
tcg_out_addsub_vec(s, vece, a0, a1, a2, const_args[2], true);
break;
case INDEX_op_sub_vec:
tcg_out_addsub_vec(s, vece, a0, a1, a2, const_args[2], false);
break;
case INDEX_op_neg_vec:
tcg_out32(s, encode_vdvj_insn(neg_vec_insn[vece], a0, a1));
break;
case INDEX_op_mul_vec:
tcg_out32(s, encode_vdvjvk_insn(mul_vec_insn[vece], a0, a1, a2));
break;
case INDEX_op_smin_vec:
tcg_out32(s, encode_vdvjvk_insn(smin_vec_insn[vece], a0, a1, a2));
break;
case INDEX_op_smax_vec:
tcg_out32(s, encode_vdvjvk_insn(smax_vec_insn[vece], a0, a1, a2));
break;
case INDEX_op_umin_vec:
tcg_out32(s, encode_vdvjvk_insn(umin_vec_insn[vece], a0, a1, a2));
break;
case INDEX_op_umax_vec:
tcg_out32(s, encode_vdvjvk_insn(umax_vec_insn[vece], a0, a1, a2));
break;
case INDEX_op_ssadd_vec:
tcg_out32(s, encode_vdvjvk_insn(ssadd_vec_insn[vece], a0, a1, a2));
break;
case INDEX_op_usadd_vec:
tcg_out32(s, encode_vdvjvk_insn(usadd_vec_insn[vece], a0, a1, a2));
break;
case INDEX_op_sssub_vec:
tcg_out32(s, encode_vdvjvk_insn(sssub_vec_insn[vece], a0, a1, a2));
break;
case INDEX_op_ussub_vec:
tcg_out32(s, encode_vdvjvk_insn(ussub_vec_insn[vece], a0, a1, a2));
break;
case INDEX_op_shlv_vec:
tcg_out32(s, encode_vdvjvk_insn(shlv_vec_insn[vece], a0, a1, a2));
break;
case INDEX_op_shrv_vec:
tcg_out32(s, encode_vdvjvk_insn(shrv_vec_insn[vece], a0, a1, a2));
break;
case INDEX_op_sarv_vec:
tcg_out32(s, encode_vdvjvk_insn(sarv_vec_insn[vece], a0, a1, a2));
break;
case INDEX_op_shli_vec:
tcg_out32(s, encode_vdvjuk3_insn(shli_vec_insn[vece], a0, a1, a2));
break;
case INDEX_op_shri_vec:
tcg_out32(s, encode_vdvjuk3_insn(shri_vec_insn[vece], a0, a1, a2));
break;
case INDEX_op_sari_vec:
tcg_out32(s, encode_vdvjuk3_insn(sari_vec_insn[vece], a0, a1, a2));
break;
case INDEX_op_rotrv_vec:
tcg_out32(s, encode_vdvjvk_insn(rotrv_vec_insn[vece], a0, a1, a2));
break;
case INDEX_op_rotlv_vec:
/* rotlv_vec a1, a2 = rotrv_vec a1, -a2 */
tcg_out32(s, encode_vdvj_insn(neg_vec_insn[vece], temp_vec, a2));
tcg_out32(s, encode_vdvjvk_insn(rotrv_vec_insn[vece], a0, a1,
temp_vec));
break;
case INDEX_op_rotli_vec:
/* rotli_vec a1, a2 = rotri_vec a1, -a2 */
a2 = extract32(-a2, 0, 3 + vece);
switch (vece) {
case MO_8:
tcg_out_opc_vrotri_b(s, a0, a1, a2);
break;
case MO_16:
tcg_out_opc_vrotri_h(s, a0, a1, a2);
break;
case MO_32:
tcg_out_opc_vrotri_w(s, a0, a1, a2);
break;
case MO_64:
tcg_out_opc_vrotri_d(s, a0, a1, a2);
break;
default:
g_assert_not_reached();
}
break;
case INDEX_op_bitsel_vec:
/* vbitsel vd, vj, vk, va = bitsel_vec vd, va, vk, vj */
tcg_out_opc_vbitsel_v(s, a0, a3, a2, a1);
break;
case INDEX_op_dupm_vec:
tcg_out_dupm_vec(s, type, vece, a0, a1, a2);
break;
default:
g_assert_not_reached();
}
}
int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece)
{
switch (opc) {
case INDEX_op_ld_vec:
case INDEX_op_st_vec:
case INDEX_op_dup_vec:
case INDEX_op_dupm_vec:
case INDEX_op_cmp_vec:
case INDEX_op_add_vec:
case INDEX_op_sub_vec:
case INDEX_op_and_vec:
case INDEX_op_andc_vec:
case INDEX_op_or_vec:
case INDEX_op_orc_vec:
case INDEX_op_xor_vec:
case INDEX_op_nor_vec:
case INDEX_op_not_vec:
case INDEX_op_neg_vec:
case INDEX_op_mul_vec:
case INDEX_op_smin_vec:
case INDEX_op_smax_vec:
case INDEX_op_umin_vec:
case INDEX_op_umax_vec:
case INDEX_op_ssadd_vec:
case INDEX_op_usadd_vec:
case INDEX_op_sssub_vec:
case INDEX_op_ussub_vec:
case INDEX_op_shlv_vec:
case INDEX_op_shrv_vec:
case INDEX_op_sarv_vec:
case INDEX_op_bitsel_vec:
return 1;
default:
return 0;
}
}
void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece,
TCGArg a0, ...)
{
g_assert_not_reached();
}
static TCGConstraintSetIndex tcg_target_op_def(TCGOpcode op)
{
switch (op) {
case INDEX_op_goto_ptr:
return C_O0_I1(r);
case INDEX_op_st8_i32:
case INDEX_op_st8_i64:
case INDEX_op_st16_i32:
case INDEX_op_st16_i64:
case INDEX_op_st32_i64:
case INDEX_op_st_i32:
case INDEX_op_st_i64:
case INDEX_op_qemu_st_a32_i32:
case INDEX_op_qemu_st_a64_i32:
case INDEX_op_qemu_st_a32_i64:
case INDEX_op_qemu_st_a64_i64:
return C_O0_I2(rZ, r);
case INDEX_op_qemu_ld_a32_i128:
case INDEX_op_qemu_ld_a64_i128:
return C_O2_I1(r, r, r);
case INDEX_op_qemu_st_a32_i128:
case INDEX_op_qemu_st_a64_i128:
return C_O0_I3(r, r, r);
case INDEX_op_brcond_i32:
case INDEX_op_brcond_i64:
return C_O0_I2(rZ, rZ);
case INDEX_op_ext8s_i32:
case INDEX_op_ext8s_i64:
case INDEX_op_ext8u_i32:
case INDEX_op_ext8u_i64:
case INDEX_op_ext16s_i32:
case INDEX_op_ext16s_i64:
case INDEX_op_ext16u_i32:
case INDEX_op_ext16u_i64:
case INDEX_op_ext32s_i64:
case INDEX_op_ext32u_i64:
case INDEX_op_extu_i32_i64:
case INDEX_op_extrl_i64_i32:
case INDEX_op_extrh_i64_i32:
case INDEX_op_ext_i32_i64:
case INDEX_op_not_i32:
case INDEX_op_not_i64:
case INDEX_op_extract_i32:
case INDEX_op_extract_i64:
case INDEX_op_bswap16_i32:
case INDEX_op_bswap16_i64:
case INDEX_op_bswap32_i32:
case INDEX_op_bswap32_i64:
case INDEX_op_bswap64_i64:
case INDEX_op_ld8s_i32:
case INDEX_op_ld8s_i64:
case INDEX_op_ld8u_i32:
case INDEX_op_ld8u_i64:
case INDEX_op_ld16s_i32:
case INDEX_op_ld16s_i64:
case INDEX_op_ld16u_i32:
case INDEX_op_ld16u_i64:
case INDEX_op_ld32s_i64:
case INDEX_op_ld32u_i64:
case INDEX_op_ld_i32:
case INDEX_op_ld_i64:
case INDEX_op_qemu_ld_a32_i32:
case INDEX_op_qemu_ld_a64_i32:
case INDEX_op_qemu_ld_a32_i64:
case INDEX_op_qemu_ld_a64_i64:
return C_O1_I1(r, r);
case INDEX_op_andc_i32:
case INDEX_op_andc_i64:
case INDEX_op_orc_i32:
case INDEX_op_orc_i64:
/*
* LoongArch insns for these ops don't have reg-imm forms, but we
* can express using andi/ori if ~constant satisfies
* TCG_CT_CONST_U12.
*/
return C_O1_I2(r, r, rC);
case INDEX_op_shl_i32:
case INDEX_op_shl_i64:
case INDEX_op_shr_i32:
case INDEX_op_shr_i64:
case INDEX_op_sar_i32:
case INDEX_op_sar_i64:
case INDEX_op_rotl_i32:
case INDEX_op_rotl_i64:
case INDEX_op_rotr_i32:
case INDEX_op_rotr_i64:
return C_O1_I2(r, r, ri);
case INDEX_op_add_i32:
return C_O1_I2(r, r, ri);
case INDEX_op_add_i64:
return C_O1_I2(r, r, rJ);
case INDEX_op_and_i32:
case INDEX_op_and_i64:
case INDEX_op_nor_i32:
case INDEX_op_nor_i64:
case INDEX_op_or_i32:
case INDEX_op_or_i64:
case INDEX_op_xor_i32:
case INDEX_op_xor_i64:
/* LoongArch reg-imm bitops have their imms ZERO-extended */
return C_O1_I2(r, r, rU);
case INDEX_op_clz_i32:
case INDEX_op_clz_i64:
case INDEX_op_ctz_i32:
case INDEX_op_ctz_i64:
return C_O1_I2(r, r, rW);
case INDEX_op_deposit_i32:
case INDEX_op_deposit_i64:
/* Must deposit into the same register as input */
return C_O1_I2(r, 0, rZ);
case INDEX_op_sub_i32:
case INDEX_op_setcond_i32:
return C_O1_I2(r, rZ, ri);
case INDEX_op_sub_i64:
case INDEX_op_setcond_i64:
return C_O1_I2(r, rZ, rJ);
case INDEX_op_mul_i32:
case INDEX_op_mul_i64:
case INDEX_op_mulsh_i32:
case INDEX_op_mulsh_i64:
case INDEX_op_muluh_i32:
case INDEX_op_muluh_i64:
case INDEX_op_div_i32:
case INDEX_op_div_i64:
case INDEX_op_divu_i32:
case INDEX_op_divu_i64:
case INDEX_op_rem_i32:
case INDEX_op_rem_i64:
case INDEX_op_remu_i32:
case INDEX_op_remu_i64:
return C_O1_I2(r, rZ, rZ);
case INDEX_op_movcond_i32:
case INDEX_op_movcond_i64:
return C_O1_I4(r, rZ, rJ, rZ, rZ);
case INDEX_op_ld_vec:
case INDEX_op_dupm_vec:
case INDEX_op_dup_vec:
return C_O1_I1(w, r);
case INDEX_op_st_vec:
return C_O0_I2(w, r);
case INDEX_op_cmp_vec:
return C_O1_I2(w, w, wM);
case INDEX_op_add_vec:
case INDEX_op_sub_vec:
return C_O1_I2(w, w, wA);
case INDEX_op_and_vec:
case INDEX_op_andc_vec:
case INDEX_op_or_vec:
case INDEX_op_orc_vec:
case INDEX_op_xor_vec:
case INDEX_op_nor_vec:
case INDEX_op_mul_vec:
case INDEX_op_smin_vec:
case INDEX_op_smax_vec:
case INDEX_op_umin_vec:
case INDEX_op_umax_vec:
case INDEX_op_ssadd_vec:
case INDEX_op_usadd_vec:
case INDEX_op_sssub_vec:
case INDEX_op_ussub_vec:
case INDEX_op_shlv_vec:
case INDEX_op_shrv_vec:
case INDEX_op_sarv_vec:
case INDEX_op_rotrv_vec:
case INDEX_op_rotlv_vec:
return C_O1_I2(w, w, w);
case INDEX_op_not_vec:
case INDEX_op_neg_vec:
case INDEX_op_shli_vec:
case INDEX_op_shri_vec:
case INDEX_op_sari_vec:
case INDEX_op_rotli_vec:
return C_O1_I1(w, w);
case INDEX_op_bitsel_vec:
return C_O1_I3(w, w, w, w);
default:
g_assert_not_reached();
}
}
static const int tcg_target_callee_save_regs[] = {
TCG_REG_S0, /* used for the global env (TCG_AREG0) */
TCG_REG_S1,
TCG_REG_S2,
TCG_REG_S3,
TCG_REG_S4,
TCG_REG_S5,
TCG_REG_S6,
TCG_REG_S7,
TCG_REG_S8,
TCG_REG_S9,
TCG_REG_RA, /* should be last for ABI compliance */
};
/* Stack frame parameters. */
#define REG_SIZE (TCG_TARGET_REG_BITS / 8)
#define SAVE_SIZE ((int)ARRAY_SIZE(tcg_target_callee_save_regs) * REG_SIZE)
#define TEMP_SIZE (CPU_TEMP_BUF_NLONGS * (int)sizeof(long))
#define FRAME_SIZE ((TCG_STATIC_CALL_ARGS_SIZE + TEMP_SIZE + SAVE_SIZE \
+ TCG_TARGET_STACK_ALIGN - 1) \
& -TCG_TARGET_STACK_ALIGN)
#define SAVE_OFS (TCG_STATIC_CALL_ARGS_SIZE + TEMP_SIZE)
/* We're expecting to be able to use an immediate for frame allocation. */
QEMU_BUILD_BUG_ON(FRAME_SIZE > 0x7ff);
/* Generate global QEMU prologue and epilogue code */
static void tcg_target_qemu_prologue(TCGContext *s)
{
int i;
tcg_set_frame(s, TCG_REG_SP, TCG_STATIC_CALL_ARGS_SIZE, TEMP_SIZE);
/* TB prologue */
tcg_out_opc_addi_d(s, TCG_REG_SP, TCG_REG_SP, -FRAME_SIZE);
for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); i++) {
tcg_out_st(s, TCG_TYPE_REG, tcg_target_callee_save_regs[i],
TCG_REG_SP, SAVE_OFS + i * REG_SIZE);
}
if (!tcg_use_softmmu && guest_base) {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_GUEST_BASE_REG, guest_base);
tcg_regset_set_reg(s->reserved_regs, TCG_GUEST_BASE_REG);
}
/* Call generated code */
tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
tcg_out_opc_jirl(s, TCG_REG_ZERO, tcg_target_call_iarg_regs[1], 0);
/* Return path for goto_ptr. Set return value to 0 */
tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr);
tcg_out_mov(s, TCG_TYPE_REG, TCG_REG_A0, TCG_REG_ZERO);
/* TB epilogue */
tb_ret_addr = tcg_splitwx_to_rx(s->code_ptr);
for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); i++) {
tcg_out_ld(s, TCG_TYPE_REG, tcg_target_callee_save_regs[i],
TCG_REG_SP, SAVE_OFS + i * REG_SIZE);
}
tcg_out_opc_addi_d(s, TCG_REG_SP, TCG_REG_SP, FRAME_SIZE);
tcg_out_opc_jirl(s, TCG_REG_ZERO, TCG_REG_RA, 0);
}
static void tcg_out_tb_start(TCGContext *s)
{
/* nothing to do */
}
static void tcg_target_init(TCGContext *s)
{
unsigned long hwcap = qemu_getauxval(AT_HWCAP);
/* Server and desktop class cpus have UAL; embedded cpus do not. */
if (!(hwcap & HWCAP_LOONGARCH_UAL)) {
error_report("TCG: unaligned access support required; exiting");
exit(EXIT_FAILURE);
}
if (hwcap & HWCAP_LOONGARCH_LSX) {
use_lsx_instructions = 1;
}
tcg_target_available_regs[TCG_TYPE_I32] = ALL_GENERAL_REGS;
tcg_target_available_regs[TCG_TYPE_I64] = ALL_GENERAL_REGS;
tcg_target_call_clobber_regs = ALL_GENERAL_REGS;
tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_S0);
tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_S1);
tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_S2);
tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_S3);
tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_S4);
tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_S5);
tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_S6);
tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_S7);
tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_S8);
tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_S9);
if (use_lsx_instructions) {
tcg_target_available_regs[TCG_TYPE_V128] = ALL_VECTOR_REGS;
tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V24);
tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V25);
tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V26);
tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V27);
tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V28);
tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V29);
tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V30);
tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V31);
}
s->reserved_regs = 0;
tcg_regset_set_reg(s->reserved_regs, TCG_REG_ZERO);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_TMP0);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_TMP1);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_TMP2);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_SP);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_TP);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_RESERVED);
tcg_regset_set_reg(s->reserved_regs, TCG_VEC_TMP0);
}
typedef struct {
DebugFrameHeader h;
uint8_t fde_def_cfa[4];
uint8_t fde_reg_ofs[ARRAY_SIZE(tcg_target_callee_save_regs) * 2];
} DebugFrame;
#define ELF_HOST_MACHINE EM_LOONGARCH
static const DebugFrame debug_frame = {
.h.cie.len = sizeof(DebugFrameCIE) - 4, /* length after .len member */
.h.cie.id = -1,
.h.cie.version = 1,
.h.cie.code_align = 1,
.h.cie.data_align = -(TCG_TARGET_REG_BITS / 8) & 0x7f, /* sleb128 */
.h.cie.return_column = TCG_REG_RA,
/* Total FDE size does not include the "len" member. */
.h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
.fde_def_cfa = {
12, TCG_REG_SP, /* DW_CFA_def_cfa sp, ... */
(FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */
(FRAME_SIZE >> 7)
},
.fde_reg_ofs = {
0x80 + 23, 11, /* DW_CFA_offset, s0, -88 */
0x80 + 24, 10, /* DW_CFA_offset, s1, -80 */
0x80 + 25, 9, /* DW_CFA_offset, s2, -72 */
0x80 + 26, 8, /* DW_CFA_offset, s3, -64 */
0x80 + 27, 7, /* DW_CFA_offset, s4, -56 */
0x80 + 28, 6, /* DW_CFA_offset, s5, -48 */
0x80 + 29, 5, /* DW_CFA_offset, s6, -40 */
0x80 + 30, 4, /* DW_CFA_offset, s7, -32 */
0x80 + 31, 3, /* DW_CFA_offset, s8, -24 */
0x80 + 22, 2, /* DW_CFA_offset, s9, -16 */
0x80 + 1 , 1, /* DW_CFA_offset, ra, -8 */
}
};
void tcg_register_jit(const void *buf, size_t buf_size)
{
tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
}