qemu-e2k/target-ppc/op.c
j_mayer 7863667f35 Always make PowerPC hypervisor mode memory accesses and instructions
available for full system emulation, then removing all #if TARGET_PPC64H
  from micro-ops and code translator.
Add new macros to dramatically simplify memory access tables definitions
  in target-ppc/translate.c.


git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@3654 c046a42c-6fe2-441c-8c8c-71466251a162
2007-11-16 14:11:28 +00:00

3437 lines
51 KiB
C

/*
* PowerPC emulation micro-operations for qemu.
*
* Copyright (c) 2003-2007 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
//#define DEBUG_OP
#include "config.h"
#include "exec.h"
#include "host-utils.h"
#include "helper_regs.h"
#include "op_helper.h"
#define REG 0
#include "op_template.h"
#define REG 1
#include "op_template.h"
#define REG 2
#include "op_template.h"
#define REG 3
#include "op_template.h"
#define REG 4
#include "op_template.h"
#define REG 5
#include "op_template.h"
#define REG 6
#include "op_template.h"
#define REG 7
#include "op_template.h"
#define REG 8
#include "op_template.h"
#define REG 9
#include "op_template.h"
#define REG 10
#include "op_template.h"
#define REG 11
#include "op_template.h"
#define REG 12
#include "op_template.h"
#define REG 13
#include "op_template.h"
#define REG 14
#include "op_template.h"
#define REG 15
#include "op_template.h"
#define REG 16
#include "op_template.h"
#define REG 17
#include "op_template.h"
#define REG 18
#include "op_template.h"
#define REG 19
#include "op_template.h"
#define REG 20
#include "op_template.h"
#define REG 21
#include "op_template.h"
#define REG 22
#include "op_template.h"
#define REG 23
#include "op_template.h"
#define REG 24
#include "op_template.h"
#define REG 25
#include "op_template.h"
#define REG 26
#include "op_template.h"
#define REG 27
#include "op_template.h"
#define REG 28
#include "op_template.h"
#define REG 29
#include "op_template.h"
#define REG 30
#include "op_template.h"
#define REG 31
#include "op_template.h"
void OPPROTO op_print_mem_EA (void)
{
do_print_mem_EA(T0);
RETURN();
}
/* PowerPC state maintenance operations */
/* set_Rc0 */
void OPPROTO op_set_Rc0 (void)
{
env->crf[0] = T0 | xer_so;
RETURN();
}
/* Constants load */
void OPPROTO op_reset_T0 (void)
{
T0 = 0;
RETURN();
}
void OPPROTO op_set_T0 (void)
{
T0 = (uint32_t)PARAM1;
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_set_T0_64 (void)
{
T0 = ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2;
RETURN();
}
#endif
void OPPROTO op_set_T1 (void)
{
T1 = (uint32_t)PARAM1;
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_set_T1_64 (void)
{
T1 = ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2;
RETURN();
}
#endif
#if 0 // unused
void OPPROTO op_set_T2 (void)
{
T2 = (uint32_t)PARAM1;
RETURN();
}
#endif
void OPPROTO op_move_T1_T0 (void)
{
T1 = T0;
RETURN();
}
void OPPROTO op_move_T2_T0 (void)
{
T2 = T0;
RETURN();
}
void OPPROTO op_moven_T2_T0 (void)
{
T2 = ~T0;
RETURN();
}
/* Generate exceptions */
void OPPROTO op_raise_exception_err (void)
{
do_raise_exception_err(PARAM1, PARAM2);
}
void OPPROTO op_update_nip (void)
{
env->nip = (uint32_t)PARAM1;
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_update_nip_64 (void)
{
env->nip = ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2;
RETURN();
}
#endif
void OPPROTO op_debug (void)
{
do_raise_exception(EXCP_DEBUG);
}
void OPPROTO op_exit_tb (void)
{
EXIT_TB();
}
/* Load/store special registers */
void OPPROTO op_load_cr (void)
{
do_load_cr();
RETURN();
}
void OPPROTO op_store_cr (void)
{
do_store_cr(PARAM1);
RETURN();
}
void OPPROTO op_load_cro (void)
{
T0 = env->crf[PARAM1];
RETURN();
}
void OPPROTO op_store_cro (void)
{
env->crf[PARAM1] = T0;
RETURN();
}
void OPPROTO op_load_xer_cr (void)
{
T0 = (xer_so << 3) | (xer_ov << 2) | (xer_ca << 1);
RETURN();
}
void OPPROTO op_clear_xer_ov (void)
{
xer_so = 0;
xer_ov = 0;
RETURN();
}
void OPPROTO op_clear_xer_ca (void)
{
xer_ca = 0;
RETURN();
}
void OPPROTO op_load_xer_bc (void)
{
T1 = xer_bc;
RETURN();
}
void OPPROTO op_store_xer_bc (void)
{
xer_bc = T0;
RETURN();
}
void OPPROTO op_load_xer (void)
{
T0 = hreg_load_xer(env);
RETURN();
}
void OPPROTO op_store_xer (void)
{
hreg_store_xer(env, T0);
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_store_pri (void)
{
do_store_pri(PARAM1);
RETURN();
}
#endif
#if !defined(CONFIG_USER_ONLY)
/* Segment registers load and store */
void OPPROTO op_load_sr (void)
{
T0 = env->sr[T1];
RETURN();
}
void OPPROTO op_store_sr (void)
{
do_store_sr(env, T1, T0);
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_load_slb (void)
{
T0 = ppc_load_slb(env, T1);
RETURN();
}
void OPPROTO op_store_slb (void)
{
ppc_store_slb(env, T1, T0);
RETURN();
}
#endif /* defined(TARGET_PPC64) */
void OPPROTO op_load_sdr1 (void)
{
T0 = env->sdr1;
RETURN();
}
void OPPROTO op_store_sdr1 (void)
{
do_store_sdr1(env, T0);
RETURN();
}
#if defined (TARGET_PPC64)
void OPPROTO op_load_asr (void)
{
T0 = env->asr;
RETURN();
}
void OPPROTO op_store_asr (void)
{
ppc_store_asr(env, T0);
RETURN();
}
#endif
void OPPROTO op_load_msr (void)
{
T0 = env->msr;
RETURN();
}
void OPPROTO op_store_msr (void)
{
do_store_msr();
RETURN();
}
#if defined (TARGET_PPC64)
void OPPROTO op_store_msr_32 (void)
{
T0 = (env->msr & ~0xFFFFFFFFULL) | (T0 & 0xFFFFFFFF);
do_store_msr();
RETURN();
}
#endif
void OPPROTO op_update_riee (void)
{
/* We don't call do_store_msr here as we won't trigger
* any special case nor change hflags
*/
T0 &= (1 << MSR_RI) | (1 << MSR_EE);
env->msr &= ~(1 << MSR_RI) | (1 << MSR_EE);
env->msr |= T0;
RETURN();
}
#endif
/* SPR */
void OPPROTO op_load_spr (void)
{
T0 = env->spr[PARAM1];
RETURN();
}
void OPPROTO op_store_spr (void)
{
env->spr[PARAM1] = T0;
RETURN();
}
void OPPROTO op_load_dump_spr (void)
{
T0 = ppc_load_dump_spr(PARAM1);
RETURN();
}
void OPPROTO op_store_dump_spr (void)
{
ppc_store_dump_spr(PARAM1, T0);
RETURN();
}
void OPPROTO op_mask_spr (void)
{
env->spr[PARAM1] &= ~T0;
RETURN();
}
void OPPROTO op_load_lr (void)
{
T0 = env->lr;
RETURN();
}
void OPPROTO op_store_lr (void)
{
env->lr = T0;
RETURN();
}
void OPPROTO op_load_ctr (void)
{
T0 = env->ctr;
RETURN();
}
void OPPROTO op_store_ctr (void)
{
env->ctr = T0;
RETURN();
}
void OPPROTO op_load_tbl (void)
{
T0 = cpu_ppc_load_tbl(env);
RETURN();
}
void OPPROTO op_load_tbu (void)
{
T0 = cpu_ppc_load_tbu(env);
RETURN();
}
void OPPROTO op_load_atbl (void)
{
T0 = cpu_ppc_load_atbl(env);
RETURN();
}
void OPPROTO op_load_atbu (void)
{
T0 = cpu_ppc_load_atbu(env);
RETURN();
}
#if !defined(CONFIG_USER_ONLY)
void OPPROTO op_store_tbl (void)
{
cpu_ppc_store_tbl(env, T0);
RETURN();
}
void OPPROTO op_store_tbu (void)
{
cpu_ppc_store_tbu(env, T0);
RETURN();
}
void OPPROTO op_store_atbl (void)
{
cpu_ppc_store_atbl(env, T0);
RETURN();
}
void OPPROTO op_store_atbu (void)
{
cpu_ppc_store_atbu(env, T0);
RETURN();
}
void OPPROTO op_load_decr (void)
{
T0 = cpu_ppc_load_decr(env);
RETURN();
}
void OPPROTO op_store_decr (void)
{
cpu_ppc_store_decr(env, T0);
RETURN();
}
void OPPROTO op_load_ibat (void)
{
T0 = env->IBAT[PARAM1][PARAM2];
RETURN();
}
void OPPROTO op_store_ibatu (void)
{
do_store_ibatu(env, PARAM1, T0);
RETURN();
}
void OPPROTO op_store_ibatl (void)
{
#if 1
env->IBAT[1][PARAM1] = T0;
#else
do_store_ibatl(env, PARAM1, T0);
#endif
RETURN();
}
void OPPROTO op_load_dbat (void)
{
T0 = env->DBAT[PARAM1][PARAM2];
RETURN();
}
void OPPROTO op_store_dbatu (void)
{
do_store_dbatu(env, PARAM1, T0);
RETURN();
}
void OPPROTO op_store_dbatl (void)
{
#if 1
env->DBAT[1][PARAM1] = T0;
#else
do_store_dbatl(env, PARAM1, T0);
#endif
RETURN();
}
#endif /* !defined(CONFIG_USER_ONLY) */
/* FPSCR */
#ifdef CONFIG_SOFTFLOAT
void OPPROTO op_reset_fpstatus (void)
{
env->fp_status.float_exception_flags = 0;
RETURN();
}
#endif
void OPPROTO op_compute_fprf (void)
{
do_compute_fprf(PARAM1);
RETURN();
}
#ifdef CONFIG_SOFTFLOAT
void OPPROTO op_float_check_status (void)
{
do_float_check_status();
RETURN();
}
#else
void OPPROTO op_float_check_status (void)
{
if (env->exception_index == POWERPC_EXCP_PROGRAM &&
(env->error_code & POWERPC_EXCP_FP)) {
/* Differred floating-point exception after target FPR update */
if (msr_fe0 != 0 || msr_fe1 != 0)
do_raise_exception_err(env->exception_index, env->error_code);
}
RETURN();
}
#endif
#if defined(WORDS_BIGENDIAN)
#define WORD0 0
#define WORD1 1
#else
#define WORD0 1
#define WORD1 0
#endif
void OPPROTO op_load_fpscr_FT0 (void)
{
/* The 32 MSB of the target fpr are undefined.
* They'll be zero...
*/
union {
float64 d;
struct {
uint32_t u[2];
} s;
} u;
u.s.u[WORD0] = 0;
u.s.u[WORD1] = env->fpscr;
FT0 = u.d;
RETURN();
}
void OPPROTO op_set_FT0 (void)
{
union {
float64 d;
struct {
uint32_t u[2];
} s;
} u;
u.s.u[WORD0] = 0;
u.s.u[WORD1] = PARAM1;
FT0 = u.d;
RETURN();
}
#undef WORD0
#undef WORD1
void OPPROTO op_load_fpscr_T0 (void)
{
T0 = (env->fpscr >> PARAM1) & 0xF;
RETURN();
}
void OPPROTO op_load_fpcc (void)
{
T0 = fpscr_fpcc;
RETURN();
}
void OPPROTO op_fpscr_resetbit (void)
{
env->fpscr &= PARAM1;
RETURN();
}
void OPPROTO op_fpscr_setbit (void)
{
do_fpscr_setbit(PARAM1);
RETURN();
}
void OPPROTO op_store_fpscr (void)
{
do_store_fpscr(PARAM1);
RETURN();
}
/* Branch */
#define EIP env->nip
void OPPROTO op_setlr (void)
{
env->lr = (uint32_t)PARAM1;
RETURN();
}
#if defined (TARGET_PPC64)
void OPPROTO op_setlr_64 (void)
{
env->lr = ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2;
RETURN();
}
#endif
void OPPROTO op_goto_tb0 (void)
{
GOTO_TB(op_goto_tb0, PARAM1, 0);
}
void OPPROTO op_goto_tb1 (void)
{
GOTO_TB(op_goto_tb1, PARAM1, 1);
}
void OPPROTO op_b_T1 (void)
{
env->nip = (uint32_t)(T1 & ~3);
RETURN();
}
#if defined (TARGET_PPC64)
void OPPROTO op_b_T1_64 (void)
{
env->nip = (uint64_t)(T1 & ~3);
RETURN();
}
#endif
void OPPROTO op_jz_T0 (void)
{
if (!T0)
GOTO_LABEL_PARAM(1);
RETURN();
}
void OPPROTO op_btest_T1 (void)
{
if (T0) {
env->nip = (uint32_t)(T1 & ~3);
} else {
env->nip = (uint32_t)PARAM1;
}
RETURN();
}
#if defined (TARGET_PPC64)
void OPPROTO op_btest_T1_64 (void)
{
if (T0) {
env->nip = (uint64_t)(T1 & ~3);
} else {
env->nip = ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2;
}
RETURN();
}
#endif
void OPPROTO op_movl_T1_ctr (void)
{
T1 = env->ctr;
RETURN();
}
void OPPROTO op_movl_T1_lr (void)
{
T1 = env->lr;
RETURN();
}
/* tests with result in T0 */
void OPPROTO op_test_ctr (void)
{
T0 = (uint32_t)env->ctr;
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_test_ctr_64 (void)
{
T0 = (uint64_t)env->ctr;
RETURN();
}
#endif
void OPPROTO op_test_ctr_true (void)
{
T0 = ((uint32_t)env->ctr != 0 && (T0 & PARAM1) != 0);
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_test_ctr_true_64 (void)
{
T0 = ((uint64_t)env->ctr != 0 && (T0 & PARAM1) != 0);
RETURN();
}
#endif
void OPPROTO op_test_ctr_false (void)
{
T0 = ((uint32_t)env->ctr != 0 && (T0 & PARAM1) == 0);
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_test_ctr_false_64 (void)
{
T0 = ((uint64_t)env->ctr != 0 && (T0 & PARAM1) == 0);
RETURN();
}
#endif
void OPPROTO op_test_ctrz (void)
{
T0 = ((uint32_t)env->ctr == 0);
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_test_ctrz_64 (void)
{
T0 = ((uint64_t)env->ctr == 0);
RETURN();
}
#endif
void OPPROTO op_test_ctrz_true (void)
{
T0 = ((uint32_t)env->ctr == 0 && (T0 & PARAM1) != 0);
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_test_ctrz_true_64 (void)
{
T0 = ((uint64_t)env->ctr == 0 && (T0 & PARAM1) != 0);
RETURN();
}
#endif
void OPPROTO op_test_ctrz_false (void)
{
T0 = ((uint32_t)env->ctr == 0 && (T0 & PARAM1) == 0);
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_test_ctrz_false_64 (void)
{
T0 = ((uint64_t)env->ctr == 0 && (T0 & PARAM1) == 0);
RETURN();
}
#endif
void OPPROTO op_test_true (void)
{
T0 = (T0 & PARAM1);
RETURN();
}
void OPPROTO op_test_false (void)
{
T0 = ((T0 & PARAM1) == 0);
RETURN();
}
/* CTR maintenance */
void OPPROTO op_dec_ctr (void)
{
env->ctr--;
RETURN();
}
/*** Integer arithmetic ***/
/* add */
void OPPROTO op_add (void)
{
T0 += T1;
RETURN();
}
void OPPROTO op_check_addo (void)
{
xer_ov = (((uint32_t)T2 ^ (uint32_t)T1 ^ UINT32_MAX) &
((uint32_t)T2 ^ (uint32_t)T0)) >> 31;
xer_so |= xer_ov;
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_check_addo_64 (void)
{
xer_ov = (((uint64_t)T2 ^ (uint64_t)T1 ^ UINT64_MAX) &
((uint64_t)T2 ^ (uint64_t)T0)) >> 63;
xer_so |= xer_ov;
RETURN();
}
#endif
/* add carrying */
void OPPROTO op_check_addc (void)
{
if (likely((uint32_t)T0 >= (uint32_t)T2)) {
xer_ca = 0;
} else {
xer_ca = 1;
}
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_check_addc_64 (void)
{
if (likely((uint64_t)T0 >= (uint64_t)T2)) {
xer_ca = 0;
} else {
xer_ca = 1;
}
RETURN();
}
#endif
/* add extended */
void OPPROTO op_adde (void)
{
do_adde();
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_adde_64 (void)
{
do_adde_64();
RETURN();
}
#endif
/* add immediate */
void OPPROTO op_addi (void)
{
T0 += (int32_t)PARAM1;
RETURN();
}
/* add to minus one extended */
void OPPROTO op_add_me (void)
{
T0 += xer_ca + (-1);
if (likely((uint32_t)T1 != 0))
xer_ca = 1;
else
xer_ca = 0;
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_add_me_64 (void)
{
T0 += xer_ca + (-1);
if (likely((uint64_t)T1 != 0))
xer_ca = 1;
else
xer_ca = 0;
RETURN();
}
#endif
void OPPROTO op_addmeo (void)
{
do_addmeo();
RETURN();
}
void OPPROTO op_addmeo_64 (void)
{
do_addmeo();
RETURN();
}
/* add to zero extended */
void OPPROTO op_add_ze (void)
{
T0 += xer_ca;
RETURN();
}
/* divide word */
void OPPROTO op_divw (void)
{
if (unlikely(((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
(int32_t)T1 == 0)) {
T0 = (int32_t)(UINT32_MAX * ((uint32_t)T0 >> 31));
} else {
T0 = (int32_t)T0 / (int32_t)T1;
}
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_divd (void)
{
if (unlikely(((int64_t)T0 == INT64_MIN && (int64_t)T1 == (int64_t)-1LL) ||
(int64_t)T1 == 0)) {
T0 = (int64_t)(UINT64_MAX * ((uint64_t)T0 >> 63));
} else {
T0 = (int64_t)T0 / (int64_t)T1;
}
RETURN();
}
#endif
void OPPROTO op_divwo (void)
{
do_divwo();
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_divdo (void)
{
do_divdo();
RETURN();
}
#endif
/* divide word unsigned */
void OPPROTO op_divwu (void)
{
if (unlikely(T1 == 0)) {
T0 = 0;
} else {
T0 = (uint32_t)T0 / (uint32_t)T1;
}
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_divdu (void)
{
if (unlikely(T1 == 0)) {
T0 = 0;
} else {
T0 /= T1;
}
RETURN();
}
#endif
void OPPROTO op_divwuo (void)
{
do_divwuo();
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_divduo (void)
{
do_divduo();
RETURN();
}
#endif
/* multiply high word */
void OPPROTO op_mulhw (void)
{
T0 = ((int64_t)((int32_t)T0) * (int64_t)((int32_t)T1)) >> 32;
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_mulhd (void)
{
uint64_t tl, th;
muls64(&tl, &th, T0, T1);
T0 = th;
RETURN();
}
#endif
/* multiply high word unsigned */
void OPPROTO op_mulhwu (void)
{
T0 = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1) >> 32;
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_mulhdu (void)
{
uint64_t tl, th;
mulu64(&tl, &th, T0, T1);
T0 = th;
RETURN();
}
#endif
/* multiply low immediate */
void OPPROTO op_mulli (void)
{
T0 = ((int32_t)T0 * (int32_t)PARAM1);
RETURN();
}
/* multiply low word */
void OPPROTO op_mullw (void)
{
T0 = (int32_t)(T0 * T1);
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_mulld (void)
{
T0 *= T1;
RETURN();
}
#endif
void OPPROTO op_mullwo (void)
{
do_mullwo();
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_mulldo (void)
{
do_mulldo();
RETURN();
}
#endif
/* negate */
void OPPROTO op_neg (void)
{
if (likely(T0 != INT32_MIN)) {
T0 = -(int32_t)T0;
}
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_neg_64 (void)
{
if (likely(T0 != INT64_MIN)) {
T0 = -(int64_t)T0;
}
RETURN();
}
#endif
void OPPROTO op_nego (void)
{
do_nego();
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_nego_64 (void)
{
do_nego_64();
RETURN();
}
#endif
/* subtract from */
void OPPROTO op_subf (void)
{
T0 = T1 - T0;
RETURN();
}
/* subtract from carrying */
void OPPROTO op_check_subfc (void)
{
if (likely((uint32_t)T0 > (uint32_t)T1)) {
xer_ca = 0;
} else {
xer_ca = 1;
}
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_check_subfc_64 (void)
{
if (likely((uint64_t)T0 > (uint64_t)T1)) {
xer_ca = 0;
} else {
xer_ca = 1;
}
RETURN();
}
#endif
/* subtract from extended */
void OPPROTO op_subfe (void)
{
do_subfe();
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_subfe_64 (void)
{
do_subfe_64();
RETURN();
}
#endif
/* subtract from immediate carrying */
void OPPROTO op_subfic (void)
{
T0 = (int32_t)PARAM1 + ~T0 + 1;
if ((uint32_t)T0 <= (uint32_t)PARAM1) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_subfic_64 (void)
{
T0 = (int64_t)PARAM1 + ~T0 + 1;
if ((uint64_t)T0 <= (uint64_t)PARAM1) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
#endif
/* subtract from minus one extended */
void OPPROTO op_subfme (void)
{
T0 = ~T0 + xer_ca - 1;
if (likely((uint32_t)T0 != UINT32_MAX))
xer_ca = 1;
else
xer_ca = 0;
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_subfme_64 (void)
{
T0 = ~T0 + xer_ca - 1;
if (likely((uint64_t)T0 != UINT64_MAX))
xer_ca = 1;
else
xer_ca = 0;
RETURN();
}
#endif
void OPPROTO op_subfmeo (void)
{
do_subfmeo();
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_subfmeo_64 (void)
{
do_subfmeo_64();
RETURN();
}
#endif
/* subtract from zero extended */
void OPPROTO op_subfze (void)
{
T1 = ~T0;
T0 = T1 + xer_ca;
if ((uint32_t)T0 < (uint32_t)T1) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_subfze_64 (void)
{
T1 = ~T0;
T0 = T1 + xer_ca;
if ((uint64_t)T0 < (uint64_t)T1) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
#endif
void OPPROTO op_subfzeo (void)
{
do_subfzeo();
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_subfzeo_64 (void)
{
do_subfzeo_64();
RETURN();
}
#endif
/*** Integer comparison ***/
/* compare */
void OPPROTO op_cmp (void)
{
if ((int32_t)T0 < (int32_t)T1) {
T0 = 0x08;
} else if ((int32_t)T0 > (int32_t)T1) {
T0 = 0x04;
} else {
T0 = 0x02;
}
T0 |= xer_so;
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_cmp_64 (void)
{
if ((int64_t)T0 < (int64_t)T1) {
T0 = 0x08;
} else if ((int64_t)T0 > (int64_t)T1) {
T0 = 0x04;
} else {
T0 = 0x02;
}
T0 |= xer_so;
RETURN();
}
#endif
/* compare immediate */
void OPPROTO op_cmpi (void)
{
if ((int32_t)T0 < (int32_t)PARAM1) {
T0 = 0x08;
} else if ((int32_t)T0 > (int32_t)PARAM1) {
T0 = 0x04;
} else {
T0 = 0x02;
}
T0 |= xer_so;
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_cmpi_64 (void)
{
if ((int64_t)T0 < (int64_t)((int32_t)PARAM1)) {
T0 = 0x08;
} else if ((int64_t)T0 > (int64_t)((int32_t)PARAM1)) {
T0 = 0x04;
} else {
T0 = 0x02;
}
T0 |= xer_so;
RETURN();
}
#endif
/* compare logical */
void OPPROTO op_cmpl (void)
{
if ((uint32_t)T0 < (uint32_t)T1) {
T0 = 0x08;
} else if ((uint32_t)T0 > (uint32_t)T1) {
T0 = 0x04;
} else {
T0 = 0x02;
}
T0 |= xer_so;
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_cmpl_64 (void)
{
if ((uint64_t)T0 < (uint64_t)T1) {
T0 = 0x08;
} else if ((uint64_t)T0 > (uint64_t)T1) {
T0 = 0x04;
} else {
T0 = 0x02;
}
T0 |= xer_so;
RETURN();
}
#endif
/* compare logical immediate */
void OPPROTO op_cmpli (void)
{
if ((uint32_t)T0 < (uint32_t)PARAM1) {
T0 = 0x08;
} else if ((uint32_t)T0 > (uint32_t)PARAM1) {
T0 = 0x04;
} else {
T0 = 0x02;
}
T0 |= xer_so;
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_cmpli_64 (void)
{
if ((uint64_t)T0 < (uint64_t)PARAM1) {
T0 = 0x08;
} else if ((uint64_t)T0 > (uint64_t)PARAM1) {
T0 = 0x04;
} else {
T0 = 0x02;
}
T0 |= xer_so;
RETURN();
}
#endif
void OPPROTO op_isel (void)
{
if (T0)
T0 = T1;
else
T0 = T2;
RETURN();
}
void OPPROTO op_popcntb (void)
{
do_popcntb();
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_popcntb_64 (void)
{
do_popcntb_64();
RETURN();
}
#endif
/*** Integer logical ***/
/* and */
void OPPROTO op_and (void)
{
T0 &= T1;
RETURN();
}
/* andc */
void OPPROTO op_andc (void)
{
T0 &= ~T1;
RETURN();
}
/* andi. */
void OPPROTO op_andi_T0 (void)
{
T0 &= (uint32_t)PARAM1;
RETURN();
}
void OPPROTO op_andi_T1 (void)
{
T1 &= (uint32_t)PARAM1;
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_andi_T0_64 (void)
{
T0 &= ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2;
RETURN();
}
void OPPROTO op_andi_T1_64 (void)
{
T1 &= ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2;
RETURN();
}
#endif
/* count leading zero */
void OPPROTO op_cntlzw (void)
{
do_cntlzw();
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_cntlzd (void)
{
do_cntlzd();
RETURN();
}
#endif
/* eqv */
void OPPROTO op_eqv (void)
{
T0 = ~(T0 ^ T1);
RETURN();
}
/* extend sign byte */
void OPPROTO op_extsb (void)
{
#if defined (TARGET_PPC64)
T0 = (int64_t)((int8_t)T0);
#else
T0 = (int32_t)((int8_t)T0);
#endif
RETURN();
}
/* extend sign half word */
void OPPROTO op_extsh (void)
{
#if defined (TARGET_PPC64)
T0 = (int64_t)((int16_t)T0);
#else
T0 = (int32_t)((int16_t)T0);
#endif
RETURN();
}
#if defined (TARGET_PPC64)
void OPPROTO op_extsw (void)
{
T0 = (int64_t)((int32_t)T0);
RETURN();
}
#endif
/* nand */
void OPPROTO op_nand (void)
{
T0 = ~(T0 & T1);
RETURN();
}
/* nor */
void OPPROTO op_nor (void)
{
T0 = ~(T0 | T1);
RETURN();
}
/* or */
void OPPROTO op_or (void)
{
T0 |= T1;
RETURN();
}
/* orc */
void OPPROTO op_orc (void)
{
T0 |= ~T1;
RETURN();
}
/* ori */
void OPPROTO op_ori (void)
{
T0 |= (uint32_t)PARAM1;
RETURN();
}
/* xor */
void OPPROTO op_xor (void)
{
T0 ^= T1;
RETURN();
}
/* xori */
void OPPROTO op_xori (void)
{
T0 ^= (uint32_t)PARAM1;
RETURN();
}
/*** Integer rotate ***/
void OPPROTO op_rotl32_T0_T1 (void)
{
T0 = rotl32(T0, T1 & 0x1F);
RETURN();
}
void OPPROTO op_rotli32_T0 (void)
{
T0 = rotl32(T0, PARAM1);
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_rotl64_T0_T1 (void)
{
T0 = rotl64(T0, T1 & 0x3F);
RETURN();
}
void OPPROTO op_rotli64_T0 (void)
{
T0 = rotl64(T0, PARAM1);
RETURN();
}
#endif
/*** Integer shift ***/
/* shift left word */
void OPPROTO op_slw (void)
{
if (T1 & 0x20) {
T0 = 0;
} else {
T0 = (uint32_t)(T0 << T1);
}
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_sld (void)
{
if (T1 & 0x40) {
T0 = 0;
} else {
T0 = T0 << T1;
}
RETURN();
}
#endif
/* shift right algebraic word */
void OPPROTO op_sraw (void)
{
do_sraw();
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_srad (void)
{
do_srad();
RETURN();
}
#endif
/* shift right algebraic word immediate */
void OPPROTO op_srawi (void)
{
uint32_t mask = (uint32_t)PARAM2;
T0 = (int32_t)T0 >> PARAM1;
if ((int32_t)T1 < 0 && (T1 & mask) != 0) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_sradi (void)
{
uint64_t mask = ((uint64_t)PARAM2 << 32) | (uint64_t)PARAM3;
T0 = (int64_t)T0 >> PARAM1;
if ((int64_t)T1 < 0 && ((uint64_t)T1 & mask) != 0) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
#endif
/* shift right word */
void OPPROTO op_srw (void)
{
if (T1 & 0x20) {
T0 = 0;
} else {
T0 = (uint32_t)T0 >> T1;
}
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_srd (void)
{
if (T1 & 0x40) {
T0 = 0;
} else {
T0 = (uint64_t)T0 >> T1;
}
RETURN();
}
#endif
void OPPROTO op_sl_T0_T1 (void)
{
T0 = T0 << T1;
RETURN();
}
void OPPROTO op_sli_T0 (void)
{
T0 = T0 << PARAM1;
RETURN();
}
void OPPROTO op_sli_T1 (void)
{
T1 = T1 << PARAM1;
RETURN();
}
void OPPROTO op_srl_T0_T1 (void)
{
T0 = (uint32_t)T0 >> T1;
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_srl_T0_T1_64 (void)
{
T0 = (uint32_t)T0 >> T1;
RETURN();
}
#endif
void OPPROTO op_srli_T0 (void)
{
T0 = (uint32_t)T0 >> PARAM1;
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_srli_T0_64 (void)
{
T0 = (uint64_t)T0 >> PARAM1;
RETURN();
}
#endif
void OPPROTO op_srli_T1 (void)
{
T1 = (uint32_t)T1 >> PARAM1;
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_srli_T1_64 (void)
{
T1 = (uint64_t)T1 >> PARAM1;
RETURN();
}
#endif
/*** Floating-Point arithmetic ***/
/* fadd - fadd. */
void OPPROTO op_fadd (void)
{
#if USE_PRECISE_EMULATION
do_fadd();
#else
FT0 = float64_add(FT0, FT1, &env->fp_status);
#endif
RETURN();
}
/* fsub - fsub. */
void OPPROTO op_fsub (void)
{
#if USE_PRECISE_EMULATION
do_fsub();
#else
FT0 = float64_sub(FT0, FT1, &env->fp_status);
#endif
RETURN();
}
/* fmul - fmul. */
void OPPROTO op_fmul (void)
{
#if USE_PRECISE_EMULATION
do_fmul();
#else
FT0 = float64_mul(FT0, FT1, &env->fp_status);
#endif
RETURN();
}
/* fdiv - fdiv. */
void OPPROTO op_fdiv (void)
{
#if USE_PRECISE_EMULATION
do_fdiv();
#else
FT0 = float64_div(FT0, FT1, &env->fp_status);
#endif
RETURN();
}
/* fsqrt - fsqrt. */
void OPPROTO op_fsqrt (void)
{
do_fsqrt();
RETURN();
}
/* fre - fre. */
void OPPROTO op_fre (void)
{
do_fre();
RETURN();
}
/* fres - fres. */
void OPPROTO op_fres (void)
{
do_fres();
RETURN();
}
/* frsqrte - frsqrte. */
void OPPROTO op_frsqrte (void)
{
do_frsqrte();
RETURN();
}
/* fsel - fsel. */
void OPPROTO op_fsel (void)
{
do_fsel();
RETURN();
}
/*** Floating-Point multiply-and-add ***/
/* fmadd - fmadd. */
void OPPROTO op_fmadd (void)
{
#if USE_PRECISE_EMULATION
do_fmadd();
#else
FT0 = float64_mul(FT0, FT1, &env->fp_status);
FT0 = float64_add(FT0, FT2, &env->fp_status);
#endif
RETURN();
}
/* fmsub - fmsub. */
void OPPROTO op_fmsub (void)
{
#if USE_PRECISE_EMULATION
do_fmsub();
#else
FT0 = float64_mul(FT0, FT1, &env->fp_status);
FT0 = float64_sub(FT0, FT2, &env->fp_status);
#endif
RETURN();
}
/* fnmadd - fnmadd. - fnmadds - fnmadds. */
void OPPROTO op_fnmadd (void)
{
do_fnmadd();
RETURN();
}
/* fnmsub - fnmsub. */
void OPPROTO op_fnmsub (void)
{
do_fnmsub();
RETURN();
}
/*** Floating-Point round & convert ***/
/* frsp - frsp. */
void OPPROTO op_frsp (void)
{
#if USE_PRECISE_EMULATION
do_frsp();
#else
FT0 = float64_to_float32(FT0, &env->fp_status);
#endif
RETURN();
}
/* fctiw - fctiw. */
void OPPROTO op_fctiw (void)
{
do_fctiw();
RETURN();
}
/* fctiwz - fctiwz. */
void OPPROTO op_fctiwz (void)
{
do_fctiwz();
RETURN();
}
#if defined(TARGET_PPC64)
/* fcfid - fcfid. */
void OPPROTO op_fcfid (void)
{
do_fcfid();
RETURN();
}
/* fctid - fctid. */
void OPPROTO op_fctid (void)
{
do_fctid();
RETURN();
}
/* fctidz - fctidz. */
void OPPROTO op_fctidz (void)
{
do_fctidz();
RETURN();
}
#endif
void OPPROTO op_frin (void)
{
do_frin();
RETURN();
}
void OPPROTO op_friz (void)
{
do_friz();
RETURN();
}
void OPPROTO op_frip (void)
{
do_frip();
RETURN();
}
void OPPROTO op_frim (void)
{
do_frim();
RETURN();
}
/*** Floating-Point compare ***/
/* fcmpu */
void OPPROTO op_fcmpu (void)
{
do_fcmpu();
RETURN();
}
/* fcmpo */
void OPPROTO op_fcmpo (void)
{
do_fcmpo();
RETURN();
}
/*** Floating-point move ***/
/* fabs */
void OPPROTO op_fabs (void)
{
FT0 = float64_abs(FT0);
RETURN();
}
/* fnabs */
void OPPROTO op_fnabs (void)
{
FT0 = float64_abs(FT0);
FT0 = float64_chs(FT0);
RETURN();
}
/* fneg */
void OPPROTO op_fneg (void)
{
FT0 = float64_chs(FT0);
RETURN();
}
/* Load and store */
#define MEMSUFFIX _raw
#include "op_helper.h"
#include "op_mem.h"
#if !defined(CONFIG_USER_ONLY)
#define MEMSUFFIX _user
#include "op_helper.h"
#include "op_mem.h"
#define MEMSUFFIX _kernel
#include "op_helper.h"
#include "op_mem.h"
#define MEMSUFFIX _hypv
#include "op_helper.h"
#include "op_mem.h"
#endif
/* Special op to check and maybe clear reservation */
void OPPROTO op_check_reservation (void)
{
if ((uint32_t)env->reserve == (uint32_t)(T0 & ~0x00000003))
env->reserve = (target_ulong)-1ULL;
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_check_reservation_64 (void)
{
if ((uint64_t)env->reserve == (uint64_t)(T0 & ~0x00000003))
env->reserve = (target_ulong)-1ULL;
RETURN();
}
#endif
void OPPROTO op_wait (void)
{
env->halted = 1;
RETURN();
}
/* Return from interrupt */
#if !defined(CONFIG_USER_ONLY)
void OPPROTO op_rfi (void)
{
do_rfi();
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_rfid (void)
{
do_rfid();
RETURN();
}
void OPPROTO op_hrfid (void)
{
do_hrfid();
RETURN();
}
#endif
/* Exception vectors */
void OPPROTO op_store_excp_prefix (void)
{
T0 &= env->ivpr_mask;
env->excp_prefix = T0;
RETURN();
}
void OPPROTO op_store_excp_vector (void)
{
T0 &= env->ivor_mask;
env->excp_vectors[PARAM1] = T0;
RETURN();
}
#endif
/* Trap word */
void OPPROTO op_tw (void)
{
do_tw(PARAM1);
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_td (void)
{
do_td(PARAM1);
RETURN();
}
#endif
#if !defined(CONFIG_USER_ONLY)
/* tlbia */
void OPPROTO op_tlbia (void)
{
ppc_tlb_invalidate_all(env);
RETURN();
}
/* tlbie */
void OPPROTO op_tlbie (void)
{
ppc_tlb_invalidate_one(env, (uint32_t)T0);
RETURN();
}
#if defined(TARGET_PPC64)
void OPPROTO op_tlbie_64 (void)
{
ppc_tlb_invalidate_one(env, T0);
RETURN();
}
#endif
#if defined(TARGET_PPC64)
void OPPROTO op_slbia (void)
{
ppc_slb_invalidate_all(env);
RETURN();
}
void OPPROTO op_slbie (void)
{
ppc_slb_invalidate_one(env, (uint32_t)T0);
RETURN();
}
void OPPROTO op_slbie_64 (void)
{
ppc_slb_invalidate_one(env, T0);
RETURN();
}
#endif
#endif
#if !defined(CONFIG_USER_ONLY)
/* PowerPC 602/603/755 software TLB load instructions */
void OPPROTO op_6xx_tlbld (void)
{
do_load_6xx_tlb(0);
RETURN();
}
void OPPROTO op_6xx_tlbli (void)
{
do_load_6xx_tlb(1);
RETURN();
}
/* PowerPC 74xx software TLB load instructions */
void OPPROTO op_74xx_tlbld (void)
{
do_load_74xx_tlb(0);
RETURN();
}
void OPPROTO op_74xx_tlbli (void)
{
do_load_74xx_tlb(1);
RETURN();
}
#endif
/* 601 specific */
void OPPROTO op_load_601_rtcl (void)
{
T0 = cpu_ppc601_load_rtcl(env);
RETURN();
}
void OPPROTO op_load_601_rtcu (void)
{
T0 = cpu_ppc601_load_rtcu(env);
RETURN();
}
#if !defined(CONFIG_USER_ONLY)
void OPPROTO op_store_601_rtcl (void)
{
cpu_ppc601_store_rtcl(env, T0);
RETURN();
}
void OPPROTO op_store_601_rtcu (void)
{
cpu_ppc601_store_rtcu(env, T0);
RETURN();
}
void OPPROTO op_store_hid0_601 (void)
{
do_store_hid0_601();
RETURN();
}
void OPPROTO op_load_601_bat (void)
{
T0 = env->IBAT[PARAM1][PARAM2];
RETURN();
}
void OPPROTO op_store_601_batl (void)
{
do_store_ibatl_601(env, PARAM1, T0);
RETURN();
}
void OPPROTO op_store_601_batu (void)
{
do_store_ibatu_601(env, PARAM1, T0);
RETURN();
}
#endif /* !defined(CONFIG_USER_ONLY) */
/* PowerPC 601 specific instructions (POWER bridge) */
/* XXX: those micro-ops need tests ! */
void OPPROTO op_POWER_abs (void)
{
if ((int32_t)T0 == INT32_MIN)
T0 = INT32_MAX;
else if ((int32_t)T0 < 0)
T0 = -T0;
RETURN();
}
void OPPROTO op_POWER_abso (void)
{
do_POWER_abso();
RETURN();
}
void OPPROTO op_POWER_clcs (void)
{
do_POWER_clcs();
RETURN();
}
void OPPROTO op_POWER_div (void)
{
do_POWER_div();
RETURN();
}
void OPPROTO op_POWER_divo (void)
{
do_POWER_divo();
RETURN();
}
void OPPROTO op_POWER_divs (void)
{
do_POWER_divs();
RETURN();
}
void OPPROTO op_POWER_divso (void)
{
do_POWER_divso();
RETURN();
}
void OPPROTO op_POWER_doz (void)
{
if ((int32_t)T1 > (int32_t)T0)
T0 = T1 - T0;
else
T0 = 0;
RETURN();
}
void OPPROTO op_POWER_dozo (void)
{
do_POWER_dozo();
RETURN();
}
void OPPROTO op_load_xer_cmp (void)
{
T2 = xer_cmp;
RETURN();
}
void OPPROTO op_POWER_maskg (void)
{
do_POWER_maskg();
RETURN();
}
void OPPROTO op_POWER_maskir (void)
{
T0 = (T0 & ~T2) | (T1 & T2);
RETURN();
}
void OPPROTO op_POWER_mul (void)
{
uint64_t tmp;
tmp = (uint64_t)T0 * (uint64_t)T1;
env->spr[SPR_MQ] = tmp >> 32;
T0 = tmp;
RETURN();
}
void OPPROTO op_POWER_mulo (void)
{
do_POWER_mulo();
RETURN();
}
void OPPROTO op_POWER_nabs (void)
{
if (T0 > 0)
T0 = -T0;
RETURN();
}
void OPPROTO op_POWER_nabso (void)
{
/* nabs never overflows */
if (T0 > 0)
T0 = -T0;
xer_ov = 0;
RETURN();
}
/* XXX: factorise POWER rotates... */
void OPPROTO op_POWER_rlmi (void)
{
T0 = rotl32(T0, T2) & PARAM1;
T0 |= T1 & (uint32_t)PARAM2;
RETURN();
}
void OPPROTO op_POWER_rrib (void)
{
T2 &= 0x1FUL;
T0 = rotl32(T0 & INT32_MIN, T2);
T0 |= T1 & ~rotl32(INT32_MIN, T2);
RETURN();
}
void OPPROTO op_POWER_sle (void)
{
T1 &= 0x1FUL;
env->spr[SPR_MQ] = rotl32(T0, T1);
T0 = T0 << T1;
RETURN();
}
void OPPROTO op_POWER_sleq (void)
{
uint32_t tmp = env->spr[SPR_MQ];
T1 &= 0x1FUL;
env->spr[SPR_MQ] = rotl32(T0, T1);
T0 = T0 << T1;
T0 |= tmp >> (32 - T1);
RETURN();
}
void OPPROTO op_POWER_sllq (void)
{
uint32_t msk = UINT32_MAX;
msk = msk << (T1 & 0x1FUL);
if (T1 & 0x20UL)
msk = ~msk;
T1 &= 0x1FUL;
T0 = (T0 << T1) & msk;
T0 |= env->spr[SPR_MQ] & ~msk;
RETURN();
}
void OPPROTO op_POWER_slq (void)
{
uint32_t msk = UINT32_MAX, tmp;
msk = msk << (T1 & 0x1FUL);
if (T1 & 0x20UL)
msk = ~msk;
T1 &= 0x1FUL;
tmp = rotl32(T0, T1);
T0 = tmp & msk;
env->spr[SPR_MQ] = tmp;
RETURN();
}
void OPPROTO op_POWER_sraq (void)
{
env->spr[SPR_MQ] = rotl32(T0, 32 - (T1 & 0x1FUL));
if (T1 & 0x20UL)
T0 = UINT32_MAX;
else
T0 = (int32_t)T0 >> T1;
RETURN();
}
void OPPROTO op_POWER_sre (void)
{
T1 &= 0x1FUL;
env->spr[SPR_MQ] = rotl32(T0, 32 - T1);
T0 = (int32_t)T0 >> T1;
RETURN();
}
void OPPROTO op_POWER_srea (void)
{
T1 &= 0x1FUL;
env->spr[SPR_MQ] = T0 >> T1;
T0 = (int32_t)T0 >> T1;
RETURN();
}
void OPPROTO op_POWER_sreq (void)
{
uint32_t tmp;
int32_t msk;
T1 &= 0x1FUL;
msk = INT32_MIN >> T1;
tmp = env->spr[SPR_MQ];
env->spr[SPR_MQ] = rotl32(T0, 32 - T1);
T0 = T0 >> T1;
T0 |= tmp & msk;
RETURN();
}
void OPPROTO op_POWER_srlq (void)
{
uint32_t tmp;
int32_t msk;
msk = INT32_MIN >> (T1 & 0x1FUL);
if (T1 & 0x20UL)
msk = ~msk;
T1 &= 0x1FUL;
tmp = env->spr[SPR_MQ];
env->spr[SPR_MQ] = rotl32(T0, 32 - T1);
T0 = T0 >> T1;
T0 &= msk;
T0 |= tmp & ~msk;
RETURN();
}
void OPPROTO op_POWER_srq (void)
{
T1 &= 0x1FUL;
env->spr[SPR_MQ] = rotl32(T0, 32 - T1);
T0 = T0 >> T1;
RETURN();
}
/* POWER instructions not implemented in PowerPC 601 */
#if !defined(CONFIG_USER_ONLY)
void OPPROTO op_POWER_mfsri (void)
{
T1 = T0 >> 28;
T0 = env->sr[T1];
RETURN();
}
void OPPROTO op_POWER_rac (void)
{
do_POWER_rac();
RETURN();
}
void OPPROTO op_POWER_rfsvc (void)
{
do_POWER_rfsvc();
RETURN();
}
#endif
/* PowerPC 602 specific instruction */
#if !defined(CONFIG_USER_ONLY)
void OPPROTO op_602_mfrom (void)
{
do_op_602_mfrom();
RETURN();
}
#endif
/* PowerPC 4xx specific micro-ops */
void OPPROTO op_405_add_T0_T2 (void)
{
T0 = (int32_t)T0 + (int32_t)T2;
RETURN();
}
void OPPROTO op_405_mulchw (void)
{
T0 = ((int16_t)T0) * ((int16_t)(T1 >> 16));
RETURN();
}
void OPPROTO op_405_mulchwu (void)
{
T0 = ((uint16_t)T0) * ((uint16_t)(T1 >> 16));
RETURN();
}
void OPPROTO op_405_mulhhw (void)
{
T0 = ((int16_t)(T0 >> 16)) * ((int16_t)(T1 >> 16));
RETURN();
}
void OPPROTO op_405_mulhhwu (void)
{
T0 = ((uint16_t)(T0 >> 16)) * ((uint16_t)(T1 >> 16));
RETURN();
}
void OPPROTO op_405_mullhw (void)
{
T0 = ((int16_t)T0) * ((int16_t)T1);
RETURN();
}
void OPPROTO op_405_mullhwu (void)
{
T0 = ((uint16_t)T0) * ((uint16_t)T1);
RETURN();
}
void OPPROTO op_405_check_sat (void)
{
do_405_check_sat();
RETURN();
}
void OPPROTO op_405_check_ovu (void)
{
if (likely(T0 >= T2)) {
xer_ov = 0;
} else {
xer_ov = 1;
xer_so = 1;
}
RETURN();
}
void OPPROTO op_405_check_satu (void)
{
if (unlikely(T0 < T2)) {
/* Saturate result */
T0 = UINT32_MAX;
}
RETURN();
}
void OPPROTO op_load_dcr (void)
{
do_load_dcr();
RETURN();
}
void OPPROTO op_store_dcr (void)
{
do_store_dcr();
RETURN();
}
#if !defined(CONFIG_USER_ONLY)
/* Return from critical interrupt :
* same as rfi, except nip & MSR are loaded from SRR2/3 instead of SRR0/1
*/
void OPPROTO op_40x_rfci (void)
{
do_40x_rfci();
RETURN();
}
void OPPROTO op_rfci (void)
{
do_rfci();
RETURN();
}
void OPPROTO op_rfdi (void)
{
do_rfdi();
RETURN();
}
void OPPROTO op_rfmci (void)
{
do_rfmci();
RETURN();
}
void OPPROTO op_wrte (void)
{
/* We don't call do_store_msr here as we won't trigger
* any special case nor change hflags
*/
T0 &= 1 << MSR_EE;
env->msr &= ~(1 << MSR_EE);
env->msr |= T0;
RETURN();
}
void OPPROTO op_440_tlbre (void)
{
do_440_tlbre(PARAM1);
RETURN();
}
void OPPROTO op_440_tlbsx (void)
{
T0 = ppcemb_tlb_search(env, T0, env->spr[SPR_440_MMUCR] & 0xFF);
RETURN();
}
void OPPROTO op_4xx_tlbsx_check (void)
{
int tmp;
tmp = xer_so;
if ((int)T0 != -1)
tmp |= 0x02;
env->crf[0] = tmp;
RETURN();
}
void OPPROTO op_440_tlbwe (void)
{
do_440_tlbwe(PARAM1);
RETURN();
}
void OPPROTO op_4xx_tlbre_lo (void)
{
do_4xx_tlbre_lo();
RETURN();
}
void OPPROTO op_4xx_tlbre_hi (void)
{
do_4xx_tlbre_hi();
RETURN();
}
void OPPROTO op_4xx_tlbsx (void)
{
T0 = ppcemb_tlb_search(env, T0, env->spr[SPR_40x_PID]);
RETURN();
}
void OPPROTO op_4xx_tlbwe_lo (void)
{
do_4xx_tlbwe_lo();
RETURN();
}
void OPPROTO op_4xx_tlbwe_hi (void)
{
do_4xx_tlbwe_hi();
RETURN();
}
#endif
/* SPR micro-ops */
/* 440 specific */
void OPPROTO op_440_dlmzb (void)
{
do_440_dlmzb();
RETURN();
}
void OPPROTO op_440_dlmzb_update_Rc (void)
{
if (T0 == 8)
T0 = 0x2;
else if (T0 < 4)
T0 = 0x4;
else
T0 = 0x8;
RETURN();
}
#if !defined(CONFIG_USER_ONLY)
void OPPROTO op_store_pir (void)
{
env->spr[SPR_PIR] = T0 & 0x0000000FUL;
RETURN();
}
void OPPROTO op_load_403_pb (void)
{
do_load_403_pb(PARAM1);
RETURN();
}
void OPPROTO op_store_403_pb (void)
{
do_store_403_pb(PARAM1);
RETURN();
}
void OPPROTO op_load_40x_pit (void)
{
T0 = load_40x_pit(env);
RETURN();
}
void OPPROTO op_store_40x_pit (void)
{
store_40x_pit(env, T0);
RETURN();
}
void OPPROTO op_store_40x_dbcr0 (void)
{
store_40x_dbcr0(env, T0);
RETURN();
}
void OPPROTO op_store_40x_sler (void)
{
store_40x_sler(env, T0);
RETURN();
}
void OPPROTO op_store_booke_tcr (void)
{
store_booke_tcr(env, T0);
RETURN();
}
void OPPROTO op_store_booke_tsr (void)
{
store_booke_tsr(env, T0);
RETURN();
}
#endif /* !defined(CONFIG_USER_ONLY) */
/* SPE extension */
void OPPROTO op_splatw_T1_64 (void)
{
T1_64 = (T1_64 << 32) | (T1_64 & 0x00000000FFFFFFFFULL);
RETURN();
}
void OPPROTO op_splatwi_T0_64 (void)
{
uint64_t tmp = PARAM1;
T0_64 = (tmp << 32) | tmp;
RETURN();
}
void OPPROTO op_splatwi_T1_64 (void)
{
uint64_t tmp = PARAM1;
T1_64 = (tmp << 32) | tmp;
RETURN();
}
void OPPROTO op_extsh_T1_64 (void)
{
T1_64 = (int32_t)((int16_t)T1_64);
RETURN();
}
void OPPROTO op_sli16_T1_64 (void)
{
T1_64 = T1_64 << 16;
RETURN();
}
void OPPROTO op_sli32_T1_64 (void)
{
T1_64 = T1_64 << 32;
RETURN();
}
void OPPROTO op_srli32_T1_64 (void)
{
T1_64 = T1_64 >> 32;
RETURN();
}
void OPPROTO op_evsel (void)
{
do_evsel();
RETURN();
}
void OPPROTO op_evaddw (void)
{
do_evaddw();
RETURN();
}
void OPPROTO op_evsubfw (void)
{
do_evsubfw();
RETURN();
}
void OPPROTO op_evneg (void)
{
do_evneg();
RETURN();
}
void OPPROTO op_evabs (void)
{
do_evabs();
RETURN();
}
void OPPROTO op_evextsh (void)
{
T0_64 = ((uint64_t)((int32_t)(int16_t)(T0_64 >> 32)) << 32) |
(uint64_t)((int32_t)(int16_t)T0_64);
RETURN();
}
void OPPROTO op_evextsb (void)
{
T0_64 = ((uint64_t)((int32_t)(int8_t)(T0_64 >> 32)) << 32) |
(uint64_t)((int32_t)(int8_t)T0_64);
RETURN();
}
void OPPROTO op_evcntlzw (void)
{
do_evcntlzw();
RETURN();
}
void OPPROTO op_evrndw (void)
{
do_evrndw();
RETURN();
}
void OPPROTO op_brinc (void)
{
do_brinc();
RETURN();
}
void OPPROTO op_evcntlsw (void)
{
do_evcntlsw();
RETURN();
}
void OPPROTO op_evand (void)
{
T0_64 &= T1_64;
RETURN();
}
void OPPROTO op_evandc (void)
{
T0_64 &= ~T1_64;
RETURN();
}
void OPPROTO op_evor (void)
{
T0_64 |= T1_64;
RETURN();
}
void OPPROTO op_evxor (void)
{
T0_64 ^= T1_64;
RETURN();
}
void OPPROTO op_eveqv (void)
{
T0_64 = ~(T0_64 ^ T1_64);
RETURN();
}
void OPPROTO op_evnor (void)
{
T0_64 = ~(T0_64 | T1_64);
RETURN();
}
void OPPROTO op_evorc (void)
{
T0_64 |= ~T1_64;
RETURN();
}
void OPPROTO op_evnand (void)
{
T0_64 = ~(T0_64 & T1_64);
RETURN();
}
void OPPROTO op_evsrws (void)
{
do_evsrws();
RETURN();
}
void OPPROTO op_evsrwu (void)
{
do_evsrwu();
RETURN();
}
void OPPROTO op_evslw (void)
{
do_evslw();
RETURN();
}
void OPPROTO op_evrlw (void)
{
do_evrlw();
RETURN();
}
void OPPROTO op_evmergelo (void)
{
T0_64 = (T0_64 << 32) | (T1_64 & 0x00000000FFFFFFFFULL);
RETURN();
}
void OPPROTO op_evmergehi (void)
{
T0_64 = (T0_64 & 0xFFFFFFFF00000000ULL) | (T1_64 >> 32);
RETURN();
}
void OPPROTO op_evmergelohi (void)
{
T0_64 = (T0_64 << 32) | (T1_64 >> 32);
RETURN();
}
void OPPROTO op_evmergehilo (void)
{
T0_64 = (T0_64 & 0xFFFFFFFF00000000ULL) | (T1_64 & 0x00000000FFFFFFFFULL);
RETURN();
}
void OPPROTO op_evcmpgts (void)
{
do_evcmpgts();
RETURN();
}
void OPPROTO op_evcmpgtu (void)
{
do_evcmpgtu();
RETURN();
}
void OPPROTO op_evcmplts (void)
{
do_evcmplts();
RETURN();
}
void OPPROTO op_evcmpltu (void)
{
do_evcmpltu();
RETURN();
}
void OPPROTO op_evcmpeq (void)
{
do_evcmpeq();
RETURN();
}
void OPPROTO op_evfssub (void)
{
do_evfssub();
RETURN();
}
void OPPROTO op_evfsadd (void)
{
do_evfsadd();
RETURN();
}
void OPPROTO op_evfsnabs (void)
{
do_evfsnabs();
RETURN();
}
void OPPROTO op_evfsabs (void)
{
do_evfsabs();
RETURN();
}
void OPPROTO op_evfsneg (void)
{
do_evfsneg();
RETURN();
}
void OPPROTO op_evfsdiv (void)
{
do_evfsdiv();
RETURN();
}
void OPPROTO op_evfsmul (void)
{
do_evfsmul();
RETURN();
}
void OPPROTO op_evfscmplt (void)
{
do_evfscmplt();
RETURN();
}
void OPPROTO op_evfscmpgt (void)
{
do_evfscmpgt();
RETURN();
}
void OPPROTO op_evfscmpeq (void)
{
do_evfscmpeq();
RETURN();
}
void OPPROTO op_evfscfsi (void)
{
do_evfscfsi();
RETURN();
}
void OPPROTO op_evfscfui (void)
{
do_evfscfui();
RETURN();
}
void OPPROTO op_evfscfsf (void)
{
do_evfscfsf();
RETURN();
}
void OPPROTO op_evfscfuf (void)
{
do_evfscfuf();
RETURN();
}
void OPPROTO op_evfsctsi (void)
{
do_evfsctsi();
RETURN();
}
void OPPROTO op_evfsctui (void)
{
do_evfsctui();
RETURN();
}
void OPPROTO op_evfsctsf (void)
{
do_evfsctsf();
RETURN();
}
void OPPROTO op_evfsctuf (void)
{
do_evfsctuf();
RETURN();
}
void OPPROTO op_evfsctuiz (void)
{
do_evfsctuiz();
RETURN();
}
void OPPROTO op_evfsctsiz (void)
{
do_evfsctsiz();
RETURN();
}
void OPPROTO op_evfststlt (void)
{
do_evfststlt();
RETURN();
}
void OPPROTO op_evfststgt (void)
{
do_evfststgt();
RETURN();
}
void OPPROTO op_evfststeq (void)
{
do_evfststeq();
RETURN();
}
void OPPROTO op_efssub (void)
{
T0_64 = _do_efssub(T0_64, T1_64);
RETURN();
}
void OPPROTO op_efsadd (void)
{
T0_64 = _do_efsadd(T0_64, T1_64);
RETURN();
}
void OPPROTO op_efsnabs (void)
{
T0_64 = _do_efsnabs(T0_64);
RETURN();
}
void OPPROTO op_efsabs (void)
{
T0_64 = _do_efsabs(T0_64);
RETURN();
}
void OPPROTO op_efsneg (void)
{
T0_64 = _do_efsneg(T0_64);
RETURN();
}
void OPPROTO op_efsdiv (void)
{
T0_64 = _do_efsdiv(T0_64, T1_64);
RETURN();
}
void OPPROTO op_efsmul (void)
{
T0_64 = _do_efsmul(T0_64, T1_64);
RETURN();
}
void OPPROTO op_efscmplt (void)
{
do_efscmplt();
RETURN();
}
void OPPROTO op_efscmpgt (void)
{
do_efscmpgt();
RETURN();
}
void OPPROTO op_efscfd (void)
{
do_efscfd();
RETURN();
}
void OPPROTO op_efscmpeq (void)
{
do_efscmpeq();
RETURN();
}
void OPPROTO op_efscfsi (void)
{
do_efscfsi();
RETURN();
}
void OPPROTO op_efscfui (void)
{
do_efscfui();
RETURN();
}
void OPPROTO op_efscfsf (void)
{
do_efscfsf();
RETURN();
}
void OPPROTO op_efscfuf (void)
{
do_efscfuf();
RETURN();
}
void OPPROTO op_efsctsi (void)
{
do_efsctsi();
RETURN();
}
void OPPROTO op_efsctui (void)
{
do_efsctui();
RETURN();
}
void OPPROTO op_efsctsf (void)
{
do_efsctsf();
RETURN();
}
void OPPROTO op_efsctuf (void)
{
do_efsctuf();
RETURN();
}
void OPPROTO op_efsctsiz (void)
{
do_efsctsiz();
RETURN();
}
void OPPROTO op_efsctuiz (void)
{
do_efsctuiz();
RETURN();
}
void OPPROTO op_efststlt (void)
{
T0 = _do_efststlt(T0_64, T1_64);
RETURN();
}
void OPPROTO op_efststgt (void)
{
T0 = _do_efststgt(T0_64, T1_64);
RETURN();
}
void OPPROTO op_efststeq (void)
{
T0 = _do_efststeq(T0_64, T1_64);
RETURN();
}
void OPPROTO op_efdsub (void)
{
union {
uint64_t u;
float64 f;
} u1, u2;
u1.u = T0_64;
u2.u = T1_64;
u1.f = float64_sub(u1.f, u2.f, &env->spe_status);
T0_64 = u1.u;
RETURN();
}
void OPPROTO op_efdadd (void)
{
union {
uint64_t u;
float64 f;
} u1, u2;
u1.u = T0_64;
u2.u = T1_64;
u1.f = float64_add(u1.f, u2.f, &env->spe_status);
T0_64 = u1.u;
RETURN();
}
void OPPROTO op_efdcfsid (void)
{
do_efdcfsi();
RETURN();
}
void OPPROTO op_efdcfuid (void)
{
do_efdcfui();
RETURN();
}
void OPPROTO op_efdnabs (void)
{
T0_64 |= 0x8000000000000000ULL;
RETURN();
}
void OPPROTO op_efdabs (void)
{
T0_64 &= ~0x8000000000000000ULL;
RETURN();
}
void OPPROTO op_efdneg (void)
{
T0_64 ^= 0x8000000000000000ULL;
RETURN();
}
void OPPROTO op_efddiv (void)
{
union {
uint64_t u;
float64 f;
} u1, u2;
u1.u = T0_64;
u2.u = T1_64;
u1.f = float64_div(u1.f, u2.f, &env->spe_status);
T0_64 = u1.u;
RETURN();
}
void OPPROTO op_efdmul (void)
{
union {
uint64_t u;
float64 f;
} u1, u2;
u1.u = T0_64;
u2.u = T1_64;
u1.f = float64_mul(u1.f, u2.f, &env->spe_status);
T0_64 = u1.u;
RETURN();
}
void OPPROTO op_efdctsidz (void)
{
do_efdctsiz();
RETURN();
}
void OPPROTO op_efdctuidz (void)
{
do_efdctuiz();
RETURN();
}
void OPPROTO op_efdcmplt (void)
{
do_efdcmplt();
RETURN();
}
void OPPROTO op_efdcmpgt (void)
{
do_efdcmpgt();
RETURN();
}
void OPPROTO op_efdcfs (void)
{
do_efdcfs();
RETURN();
}
void OPPROTO op_efdcmpeq (void)
{
do_efdcmpeq();
RETURN();
}
void OPPROTO op_efdcfsi (void)
{
do_efdcfsi();
RETURN();
}
void OPPROTO op_efdcfui (void)
{
do_efdcfui();
RETURN();
}
void OPPROTO op_efdcfsf (void)
{
do_efdcfsf();
RETURN();
}
void OPPROTO op_efdcfuf (void)
{
do_efdcfuf();
RETURN();
}
void OPPROTO op_efdctsi (void)
{
do_efdctsi();
RETURN();
}
void OPPROTO op_efdctui (void)
{
do_efdctui();
RETURN();
}
void OPPROTO op_efdctsf (void)
{
do_efdctsf();
RETURN();
}
void OPPROTO op_efdctuf (void)
{
do_efdctuf();
RETURN();
}
void OPPROTO op_efdctuiz (void)
{
do_efdctuiz();
RETURN();
}
void OPPROTO op_efdctsiz (void)
{
do_efdctsiz();
RETURN();
}
void OPPROTO op_efdtstlt (void)
{
T0 = _do_efdtstlt(T0_64, T1_64);
RETURN();
}
void OPPROTO op_efdtstgt (void)
{
T0 = _do_efdtstgt(T0_64, T1_64);
RETURN();
}
void OPPROTO op_efdtsteq (void)
{
T0 = _do_efdtsteq(T0_64, T1_64);
RETURN();
}