qemu-e2k/hw/riscv/numa.c
Thomas Huth 19f4ed3652 hw: Do not include qemu/log.h if it is not necessary
Many files include qemu/log.h without needing it. Remove the superfluous
include statements.

Signed-off-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <20210328054833.2351597-1-thuth@redhat.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2021-05-02 17:24:50 +02:00

242 lines
6.5 KiB
C

/*
* QEMU RISC-V NUMA Helper
*
* Copyright (c) 2020 Western Digital Corporation or its affiliates.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "hw/boards.h"
#include "hw/qdev-properties.h"
#include "hw/riscv/numa.h"
#include "sysemu/device_tree.h"
static bool numa_enabled(const MachineState *ms)
{
return (ms->numa_state && ms->numa_state->num_nodes) ? true : false;
}
int riscv_socket_count(const MachineState *ms)
{
return (numa_enabled(ms)) ? ms->numa_state->num_nodes : 1;
}
int riscv_socket_first_hartid(const MachineState *ms, int socket_id)
{
int i, first_hartid = ms->smp.cpus;
if (!numa_enabled(ms)) {
return (!socket_id) ? 0 : -1;
}
for (i = 0; i < ms->smp.cpus; i++) {
if (ms->possible_cpus->cpus[i].props.node_id != socket_id) {
continue;
}
if (i < first_hartid) {
first_hartid = i;
}
}
return (first_hartid < ms->smp.cpus) ? first_hartid : -1;
}
int riscv_socket_last_hartid(const MachineState *ms, int socket_id)
{
int i, last_hartid = -1;
if (!numa_enabled(ms)) {
return (!socket_id) ? ms->smp.cpus - 1 : -1;
}
for (i = 0; i < ms->smp.cpus; i++) {
if (ms->possible_cpus->cpus[i].props.node_id != socket_id) {
continue;
}
if (i > last_hartid) {
last_hartid = i;
}
}
return (last_hartid < ms->smp.cpus) ? last_hartid : -1;
}
int riscv_socket_hart_count(const MachineState *ms, int socket_id)
{
int first_hartid, last_hartid;
if (!numa_enabled(ms)) {
return (!socket_id) ? ms->smp.cpus : -1;
}
first_hartid = riscv_socket_first_hartid(ms, socket_id);
if (first_hartid < 0) {
return -1;
}
last_hartid = riscv_socket_last_hartid(ms, socket_id);
if (last_hartid < 0) {
return -1;
}
if (first_hartid > last_hartid) {
return -1;
}
return last_hartid - first_hartid + 1;
}
bool riscv_socket_check_hartids(const MachineState *ms, int socket_id)
{
int i, first_hartid, last_hartid;
if (!numa_enabled(ms)) {
return (!socket_id) ? true : false;
}
first_hartid = riscv_socket_first_hartid(ms, socket_id);
if (first_hartid < 0) {
return false;
}
last_hartid = riscv_socket_last_hartid(ms, socket_id);
if (last_hartid < 0) {
return false;
}
for (i = first_hartid; i <= last_hartid; i++) {
if (ms->possible_cpus->cpus[i].props.node_id != socket_id) {
return false;
}
}
return true;
}
uint64_t riscv_socket_mem_offset(const MachineState *ms, int socket_id)
{
int i;
uint64_t mem_offset = 0;
if (!numa_enabled(ms)) {
return 0;
}
for (i = 0; i < ms->numa_state->num_nodes; i++) {
if (i == socket_id) {
break;
}
mem_offset += ms->numa_state->nodes[i].node_mem;
}
return (i == socket_id) ? mem_offset : 0;
}
uint64_t riscv_socket_mem_size(const MachineState *ms, int socket_id)
{
if (!numa_enabled(ms)) {
return (!socket_id) ? ms->ram_size : 0;
}
return (socket_id < ms->numa_state->num_nodes) ?
ms->numa_state->nodes[socket_id].node_mem : 0;
}
void riscv_socket_fdt_write_id(const MachineState *ms, void *fdt,
const char *node_name, int socket_id)
{
if (numa_enabled(ms)) {
qemu_fdt_setprop_cell(fdt, node_name, "numa-node-id", socket_id);
}
}
void riscv_socket_fdt_write_distance_matrix(const MachineState *ms, void *fdt)
{
int i, j, idx;
uint32_t *dist_matrix, dist_matrix_size;
if (numa_enabled(ms) && ms->numa_state->have_numa_distance) {
dist_matrix_size = riscv_socket_count(ms) * riscv_socket_count(ms);
dist_matrix_size *= (3 * sizeof(uint32_t));
dist_matrix = g_malloc0(dist_matrix_size);
for (i = 0; i < riscv_socket_count(ms); i++) {
for (j = 0; j < riscv_socket_count(ms); j++) {
idx = (i * riscv_socket_count(ms) + j) * 3;
dist_matrix[idx + 0] = cpu_to_be32(i);
dist_matrix[idx + 1] = cpu_to_be32(j);
dist_matrix[idx + 2] =
cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
}
}
qemu_fdt_add_subnode(fdt, "/distance-map");
qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
"numa-distance-map-v1");
qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
dist_matrix, dist_matrix_size);
g_free(dist_matrix);
}
}
CpuInstanceProperties
riscv_numa_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
{
MachineClass *mc = MACHINE_GET_CLASS(ms);
const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
assert(cpu_index < possible_cpus->len);
return possible_cpus->cpus[cpu_index].props;
}
int64_t riscv_numa_get_default_cpu_node_id(const MachineState *ms, int idx)
{
int64_t nidx = 0;
if (ms->numa_state->num_nodes) {
nidx = idx / (ms->smp.cpus / ms->numa_state->num_nodes);
if (ms->numa_state->num_nodes <= nidx) {
nidx = ms->numa_state->num_nodes - 1;
}
}
return nidx;
}
const CPUArchIdList *riscv_numa_possible_cpu_arch_ids(MachineState *ms)
{
int n;
unsigned int max_cpus = ms->smp.max_cpus;
if (ms->possible_cpus) {
assert(ms->possible_cpus->len == max_cpus);
return ms->possible_cpus;
}
ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
sizeof(CPUArchId) * max_cpus);
ms->possible_cpus->len = max_cpus;
for (n = 0; n < ms->possible_cpus->len; n++) {
ms->possible_cpus->cpus[n].type = ms->cpu_type;
ms->possible_cpus->cpus[n].arch_id = n;
ms->possible_cpus->cpus[n].props.has_core_id = true;
ms->possible_cpus->cpus[n].props.core_id = n;
}
return ms->possible_cpus;
}