qemu-e2k/target-arm/op.c
bellard 2c0262afa7 new directory structure
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@385 c046a42c-6fe2-441c-8c8c-71466251a162
2003-09-30 20:34:21 +00:00

674 lines
13 KiB
C

/*
* ARM micro operations
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "exec.h"
#define REGNAME r0
#define REG (env->regs[0])
#include "op_template.h"
#define REGNAME r1
#define REG (env->regs[1])
#include "op_template.h"
#define REGNAME r2
#define REG (env->regs[2])
#include "op_template.h"
#define REGNAME r3
#define REG (env->regs[3])
#include "op_template.h"
#define REGNAME r4
#define REG (env->regs[4])
#include "op_template.h"
#define REGNAME r5
#define REG (env->regs[5])
#include "op_template.h"
#define REGNAME r6
#define REG (env->regs[6])
#include "op_template.h"
#define REGNAME r7
#define REG (env->regs[7])
#include "op_template.h"
#define REGNAME r8
#define REG (env->regs[8])
#include "op_template.h"
#define REGNAME r9
#define REG (env->regs[9])
#include "op_template.h"
#define REGNAME r10
#define REG (env->regs[10])
#include "op_template.h"
#define REGNAME r11
#define REG (env->regs[11])
#include "op_template.h"
#define REGNAME r12
#define REG (env->regs[12])
#include "op_template.h"
#define REGNAME r13
#define REG (env->regs[13])
#include "op_template.h"
#define REGNAME r14
#define REG (env->regs[14])
#include "op_template.h"
#define REGNAME r15
#define REG (env->regs[15])
#include "op_template.h"
void OPPROTO op_movl_T0_0(void)
{
T0 = 0;
}
void OPPROTO op_movl_T0_im(void)
{
T0 = PARAM1;
}
void OPPROTO op_movl_T1_im(void)
{
T1 = PARAM1;
}
void OPPROTO op_movl_T2_im(void)
{
T2 = PARAM1;
}
void OPPROTO op_addl_T1_im(void)
{
T1 += PARAM1;
}
void OPPROTO op_addl_T1_T2(void)
{
T1 += T2;
}
void OPPROTO op_subl_T1_T2(void)
{
T1 -= T2;
}
void OPPROTO op_addl_T0_T1(void)
{
T0 += T1;
}
void OPPROTO op_addl_T0_T1_cc(void)
{
unsigned int src1;
src1 = T0;
T0 += T1;
env->NZF = T0;
env->CF = T0 < src1;
env->VF = (src1 ^ T1 ^ -1) & (src1 ^ T0);
}
void OPPROTO op_adcl_T0_T1(void)
{
T0 += T1 + env->CF;
}
void OPPROTO op_adcl_T0_T1_cc(void)
{
unsigned int src1;
src1 = T0;
if (!env->CF) {
T0 += T1;
env->CF = T0 < src1;
} else {
T0 += T1 + 1;
env->CF = T0 <= src1;
}
env->VF = (src1 ^ T1 ^ -1) & (src1 ^ T0);
env->NZF = T0;
FORCE_RET();
}
#define OPSUB(sub, sbc, res, T0, T1) \
\
void OPPROTO op_ ## sub ## l_T0_T1(void) \
{ \
res = T0 - T1; \
} \
\
void OPPROTO op_ ## sub ## l_T0_T1_cc(void) \
{ \
unsigned int src1; \
src1 = T0; \
T0 -= T1; \
env->NZF = T0; \
env->CF = src1 >= T1; \
env->VF = (src1 ^ T1) & (src1 ^ T0); \
res = T0; \
} \
\
void OPPROTO op_ ## sbc ## l_T0_T1(void) \
{ \
res = T0 - T1 + env->CF - 1; \
} \
\
void OPPROTO op_ ## sbc ## l_T0_T1_cc(void) \
{ \
unsigned int src1; \
src1 = T0; \
if (!env->CF) { \
T0 = T0 - T1 - 1; \
env->CF = src1 >= T1; \
} else { \
T0 = T0 - T1; \
env->CF = src1 > T1; \
} \
env->VF = (src1 ^ T1) & (src1 ^ T0); \
env->NZF = T0; \
res = T0; \
FORCE_RET(); \
}
OPSUB(sub, sbc, T0, T0, T1)
OPSUB(rsb, rsc, T0, T1, T0)
void OPPROTO op_andl_T0_T1(void)
{
T0 &= T1;
}
void OPPROTO op_xorl_T0_T1(void)
{
T0 ^= T1;
}
void OPPROTO op_orl_T0_T1(void)
{
T0 |= T1;
}
void OPPROTO op_bicl_T0_T1(void)
{
T0 &= ~T1;
}
void OPPROTO op_notl_T1(void)
{
T1 = ~T1;
}
void OPPROTO op_logic_T0_cc(void)
{
env->NZF = T0;
}
void OPPROTO op_logic_T1_cc(void)
{
env->NZF = T1;
}
#define EIP (env->regs[15])
void OPPROTO op_test_eq(void)
{
if (env->NZF == 0)
JUMP_TB(op_test_eq, PARAM1, 0, PARAM2);
FORCE_RET();
}
void OPPROTO op_test_ne(void)
{
if (env->NZF != 0)
JUMP_TB(op_test_ne, PARAM1, 0, PARAM2);
FORCE_RET();
}
void OPPROTO op_test_cs(void)
{
if (env->CF != 0)
JUMP_TB(op_test_cs, PARAM1, 0, PARAM2);
FORCE_RET();
}
void OPPROTO op_test_cc(void)
{
if (env->CF == 0)
JUMP_TB(op_test_cc, PARAM1, 0, PARAM2);
FORCE_RET();
}
void OPPROTO op_test_mi(void)
{
if ((env->NZF & 0x80000000) != 0)
JUMP_TB(op_test_mi, PARAM1, 0, PARAM2);
FORCE_RET();
}
void OPPROTO op_test_pl(void)
{
if ((env->NZF & 0x80000000) == 0)
JUMP_TB(op_test_pl, PARAM1, 0, PARAM2);
FORCE_RET();
}
void OPPROTO op_test_vs(void)
{
if ((env->VF & 0x80000000) != 0)
JUMP_TB(op_test_vs, PARAM1, 0, PARAM2);
FORCE_RET();
}
void OPPROTO op_test_vc(void)
{
if ((env->VF & 0x80000000) == 0)
JUMP_TB(op_test_vc, PARAM1, 0, PARAM2);
FORCE_RET();
}
void OPPROTO op_test_hi(void)
{
if (env->CF != 0 && env->NZF != 0)
JUMP_TB(op_test_hi, PARAM1, 0, PARAM2);
FORCE_RET();
}
void OPPROTO op_test_ls(void)
{
if (env->CF == 0 || env->NZF == 0)
JUMP_TB(op_test_ls, PARAM1, 0, PARAM2);
FORCE_RET();
}
void OPPROTO op_test_ge(void)
{
if (((env->VF ^ env->NZF) & 0x80000000) == 0)
JUMP_TB(op_test_ge, PARAM1, 0, PARAM2);
FORCE_RET();
}
void OPPROTO op_test_lt(void)
{
if (((env->VF ^ env->NZF) & 0x80000000) != 0)
JUMP_TB(op_test_lt, PARAM1, 0, PARAM2);
FORCE_RET();
}
void OPPROTO op_test_gt(void)
{
if (env->NZF != 0 && ((env->VF ^ env->NZF) & 0x80000000) == 0)
JUMP_TB(op_test_gt, PARAM1, 0, PARAM2);
FORCE_RET();
}
void OPPROTO op_test_le(void)
{
if (env->NZF == 0 || ((env->VF ^ env->NZF) & 0x80000000) != 0)
JUMP_TB(op_test_le, PARAM1, 0, PARAM2);
FORCE_RET();
}
void OPPROTO op_jmp(void)
{
JUMP_TB(op_jmp, PARAM1, 1, PARAM2);
}
void OPPROTO op_exit_tb(void)
{
EXIT_TB();
}
void OPPROTO op_movl_T0_psr(void)
{
T0 = compute_cpsr();
}
/* NOTE: N = 1 and Z = 1 cannot be stored currently */
void OPPROTO op_movl_psr_T0(void)
{
unsigned int psr;
psr = T0;
env->CF = (psr >> 29) & 1;
env->NZF = (psr & 0xc0000000) ^ 0x40000000;
env->VF = (psr << 3) & 0x80000000;
/* for user mode we do not update other state info */
}
void OPPROTO op_mul_T0_T1(void)
{
T0 = T0 * T1;
}
/* 64 bit unsigned mul */
void OPPROTO op_mull_T0_T1(void)
{
uint64_t res;
res = T0 * T1;
T1 = res >> 32;
T0 = res;
}
/* 64 bit signed mul */
void OPPROTO op_imull_T0_T1(void)
{
uint64_t res;
res = (int32_t)T0 * (int32_t)T1;
T1 = res >> 32;
T0 = res;
}
void OPPROTO op_addq_T0_T1(void)
{
uint64_t res;
res = ((uint64_t)T1 << 32) | T0;
res += ((uint64_t)(env->regs[PARAM2]) << 32) | (env->regs[PARAM1]);
T1 = res >> 32;
T0 = res;
}
void OPPROTO op_logicq_cc(void)
{
env->NZF = (T1 & 0x80000000) | ((T0 | T1) != 0);
}
/* memory access */
void OPPROTO op_ldub_T0_T1(void)
{
T0 = ldub((void *)T1);
}
void OPPROTO op_ldsb_T0_T1(void)
{
T0 = ldsb((void *)T1);
}
void OPPROTO op_lduw_T0_T1(void)
{
T0 = lduw((void *)T1);
}
void OPPROTO op_ldsw_T0_T1(void)
{
T0 = ldsw((void *)T1);
}
void OPPROTO op_ldl_T0_T1(void)
{
T0 = ldl((void *)T1);
}
void OPPROTO op_stb_T0_T1(void)
{
stb((void *)T1, T0);
}
void OPPROTO op_stw_T0_T1(void)
{
stw((void *)T1, T0);
}
void OPPROTO op_stl_T0_T1(void)
{
stl((void *)T1, T0);
}
void OPPROTO op_swpb_T0_T1(void)
{
int tmp;
cpu_lock();
tmp = ldub((void *)T1);
stb((void *)T1, T0);
T0 = tmp;
cpu_unlock();
}
void OPPROTO op_swpl_T0_T1(void)
{
int tmp;
cpu_lock();
tmp = ldl((void *)T1);
stl((void *)T1, T0);
T0 = tmp;
cpu_unlock();
}
/* shifts */
/* T1 based */
void OPPROTO op_shll_T1_im(void)
{
T1 = T1 << PARAM1;
}
void OPPROTO op_shrl_T1_im(void)
{
T1 = (uint32_t)T1 >> PARAM1;
}
void OPPROTO op_sarl_T1_im(void)
{
T1 = (int32_t)T1 >> PARAM1;
}
void OPPROTO op_rorl_T1_im(void)
{
int shift;
shift = PARAM1;
T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
}
/* T1 based, set C flag */
void OPPROTO op_shll_T1_im_cc(void)
{
env->CF = (T1 >> (32 - PARAM1)) & 1;
T1 = T1 << PARAM1;
}
void OPPROTO op_shrl_T1_im_cc(void)
{
env->CF = (T1 >> (PARAM1 - 1)) & 1;
T1 = (uint32_t)T1 >> PARAM1;
}
void OPPROTO op_sarl_T1_im_cc(void)
{
env->CF = (T1 >> (PARAM1 - 1)) & 1;
T1 = (int32_t)T1 >> PARAM1;
}
void OPPROTO op_rorl_T1_im_cc(void)
{
int shift;
shift = PARAM1;
env->CF = (T1 >> (shift - 1)) & 1;
T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
}
/* T2 based */
void OPPROTO op_shll_T2_im(void)
{
T2 = T2 << PARAM1;
}
void OPPROTO op_shrl_T2_im(void)
{
T2 = (uint32_t)T2 >> PARAM1;
}
void OPPROTO op_sarl_T2_im(void)
{
T2 = (int32_t)T2 >> PARAM1;
}
void OPPROTO op_rorl_T2_im(void)
{
int shift;
shift = PARAM1;
T2 = ((uint32_t)T2 >> shift) | (T2 << (32 - shift));
}
/* T1 based, use T0 as shift count */
void OPPROTO op_shll_T1_T0(void)
{
int shift;
shift = T0 & 0xff;
if (shift >= 32)
T1 = 0;
else
T1 = T1 << shift;
FORCE_RET();
}
void OPPROTO op_shrl_T1_T0(void)
{
int shift;
shift = T0 & 0xff;
if (shift >= 32)
T1 = 0;
else
T1 = (uint32_t)T1 >> shift;
FORCE_RET();
}
void OPPROTO op_sarl_T1_T0(void)
{
int shift;
shift = T0 & 0xff;
if (shift >= 32)
shift = 31;
T1 = (int32_t)T1 >> shift;
}
void OPPROTO op_rorl_T1_T0(void)
{
int shift;
shift = T0 & 0x1f;
if (shift) {
T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
}
FORCE_RET();
}
/* T1 based, use T0 as shift count and compute CF */
void OPPROTO op_shll_T1_T0_cc(void)
{
int shift;
shift = T0 & 0xff;
if (shift >= 32) {
if (shift == 32)
env->CF = T1 & 1;
else
env->CF = 0;
T1 = 0;
} else if (shift != 0) {
env->CF = (T1 >> (32 - shift)) & 1;
T1 = T1 << shift;
}
FORCE_RET();
}
void OPPROTO op_shrl_T1_T0_cc(void)
{
int shift;
shift = T0 & 0xff;
if (shift >= 32) {
if (shift == 32)
env->CF = (T1 >> 31) & 1;
else
env->CF = 0;
T1 = 0;
} else if (shift != 0) {
env->CF = (T1 >> (shift - 1)) & 1;
T1 = (uint32_t)T1 >> shift;
}
FORCE_RET();
}
void OPPROTO op_sarl_T1_T0_cc(void)
{
int shift;
shift = T0 & 0xff;
if (shift >= 32) {
env->CF = (T1 >> 31) & 1;
T1 = (int32_t)T1 >> 31;
} else {
env->CF = (T1 >> (shift - 1)) & 1;
T1 = (int32_t)T1 >> shift;
}
FORCE_RET();
}
void OPPROTO op_rorl_T1_T0_cc(void)
{
int shift1, shift;
shift1 = T0 & 0xff;
shift = shift1 & 0x1f;
if (shift == 0) {
if (shift1 != 0)
env->CF = (T1 >> 31) & 1;
} else {
env->CF = (T1 >> (shift - 1)) & 1;
T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
}
FORCE_RET();
}
/* exceptions */
void OPPROTO op_swi(void)
{
env->exception_index = EXCP_SWI;
cpu_loop_exit();
}
void OPPROTO op_undef_insn(void)
{
env->exception_index = EXCP_UDEF;
cpu_loop_exit();
}
/* thread support */
spinlock_t global_cpu_lock = SPIN_LOCK_UNLOCKED;
void cpu_lock(void)
{
spin_lock(&global_cpu_lock);
}
void cpu_unlock(void)
{
spin_unlock(&global_cpu_lock);
}