qemu-e2k/hw/arm/armsse.c
Richard Henderson 607ef5706c hw/arm: Constify VMState
Tested-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20231221031652.119827-19-richard.henderson@linaro.org>
2023-12-29 11:17:30 +11:00

1741 lines
60 KiB
C

/*
* Arm SSE (Subsystems for Embedded): IoTKit
*
* Copyright (c) 2018 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qemu/bitops.h"
#include "qemu/units.h"
#include "qapi/error.h"
#include "trace.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "hw/registerfields.h"
#include "hw/arm/armsse.h"
#include "hw/arm/armsse-version.h"
#include "hw/arm/boot.h"
#include "hw/irq.h"
#include "hw/qdev-clock.h"
/*
* The SSE-300 puts some devices in different places to the
* SSE-200 (and original IoTKit). We use an array of these structs
* to define how each variant lays out these devices. (Parts of the
* SoC that are the same for all variants aren't handled via these
* data structures.)
*/
#define NO_IRQ -1
#define NO_PPC -1
/*
* Special values for ARMSSEDeviceInfo::irq to indicate that this
* device uses one of the inputs to the OR gate that feeds into the
* CPU NMI input.
*/
#define NMI_0 10000
#define NMI_1 10001
typedef struct ARMSSEDeviceInfo {
const char *name; /* name to use for the QOM object; NULL terminates list */
const char *type; /* QOM type name */
unsigned int index; /* Which of the N devices of this type is this ? */
hwaddr addr;
hwaddr size; /* only needed for TYPE_UNIMPLEMENTED_DEVICE */
int ppc; /* Index of APB PPC this device is wired up to, or NO_PPC */
int ppc_port; /* Port number of this device on the PPC */
int irq; /* NO_IRQ, or 0..NUM_SSE_IRQS-1, or NMI_0 or NMI_1 */
bool slowclk; /* true if device uses the slow 32KHz clock */
} ARMSSEDeviceInfo;
struct ARMSSEInfo {
const char *name;
const char *cpu_type;
uint32_t sse_version;
int sram_banks;
uint32_t sram_bank_base;
int num_cpus;
uint32_t sys_version;
uint32_t iidr;
uint32_t cpuwait_rst;
bool has_mhus;
bool has_cachectrl;
bool has_cpusecctrl;
bool has_cpuid;
bool has_cpu_pwrctrl;
bool has_sse_counter;
bool has_tcms;
Property *props;
const ARMSSEDeviceInfo *devinfo;
const bool *irq_is_common;
};
static Property iotkit_properties[] = {
DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
MemoryRegion *),
DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
DEFINE_PROP_UINT32("CPU0_MPU_NS", ARMSSE, cpu_mpu_ns[0], 8),
DEFINE_PROP_UINT32("CPU0_MPU_S", ARMSSE, cpu_mpu_s[0], 8),
DEFINE_PROP_END_OF_LIST()
};
static Property sse200_properties[] = {
DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
MemoryRegion *),
DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
DEFINE_PROP_UINT32("CPU0_MPU_NS", ARMSSE, cpu_mpu_ns[0], 8),
DEFINE_PROP_UINT32("CPU0_MPU_S", ARMSSE, cpu_mpu_s[0], 8),
DEFINE_PROP_UINT32("CPU1_MPU_NS", ARMSSE, cpu_mpu_ns[1], 8),
DEFINE_PROP_UINT32("CPU1_MPU_S", ARMSSE, cpu_mpu_s[1], 8),
DEFINE_PROP_END_OF_LIST()
};
static Property sse300_properties[] = {
DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
MemoryRegion *),
DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 18),
DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
DEFINE_PROP_UINT32("CPU0_MPU_NS", ARMSSE, cpu_mpu_ns[0], 8),
DEFINE_PROP_UINT32("CPU0_MPU_S", ARMSSE, cpu_mpu_s[0], 8),
DEFINE_PROP_END_OF_LIST()
};
static const ARMSSEDeviceInfo iotkit_devices[] = {
{
.name = "timer0",
.type = TYPE_CMSDK_APB_TIMER,
.index = 0,
.addr = 0x40000000,
.ppc = 0,
.ppc_port = 0,
.irq = 3,
},
{
.name = "timer1",
.type = TYPE_CMSDK_APB_TIMER,
.index = 1,
.addr = 0x40001000,
.ppc = 0,
.ppc_port = 1,
.irq = 4,
},
{
.name = "s32ktimer",
.type = TYPE_CMSDK_APB_TIMER,
.index = 2,
.addr = 0x4002f000,
.ppc = 1,
.ppc_port = 0,
.irq = 2,
.slowclk = true,
},
{
.name = "dualtimer",
.type = TYPE_CMSDK_APB_DUALTIMER,
.index = 0,
.addr = 0x40002000,
.ppc = 0,
.ppc_port = 2,
.irq = 5,
},
{
.name = "s32kwatchdog",
.type = TYPE_CMSDK_APB_WATCHDOG,
.index = 0,
.addr = 0x5002e000,
.ppc = NO_PPC,
.irq = NMI_0,
.slowclk = true,
},
{
.name = "nswatchdog",
.type = TYPE_CMSDK_APB_WATCHDOG,
.index = 1,
.addr = 0x40081000,
.ppc = NO_PPC,
.irq = 1,
},
{
.name = "swatchdog",
.type = TYPE_CMSDK_APB_WATCHDOG,
.index = 2,
.addr = 0x50081000,
.ppc = NO_PPC,
.irq = NMI_1,
},
{
.name = "armsse-sysinfo",
.type = TYPE_IOTKIT_SYSINFO,
.index = 0,
.addr = 0x40020000,
.ppc = NO_PPC,
.irq = NO_IRQ,
},
{
.name = "armsse-sysctl",
.type = TYPE_IOTKIT_SYSCTL,
.index = 0,
.addr = 0x50021000,
.ppc = NO_PPC,
.irq = NO_IRQ,
},
{
.name = NULL,
}
};
static const ARMSSEDeviceInfo sse200_devices[] = {
{
.name = "timer0",
.type = TYPE_CMSDK_APB_TIMER,
.index = 0,
.addr = 0x40000000,
.ppc = 0,
.ppc_port = 0,
.irq = 3,
},
{
.name = "timer1",
.type = TYPE_CMSDK_APB_TIMER,
.index = 1,
.addr = 0x40001000,
.ppc = 0,
.ppc_port = 1,
.irq = 4,
},
{
.name = "s32ktimer",
.type = TYPE_CMSDK_APB_TIMER,
.index = 2,
.addr = 0x4002f000,
.ppc = 1,
.ppc_port = 0,
.irq = 2,
.slowclk = true,
},
{
.name = "dualtimer",
.type = TYPE_CMSDK_APB_DUALTIMER,
.index = 0,
.addr = 0x40002000,
.ppc = 0,
.ppc_port = 2,
.irq = 5,
},
{
.name = "s32kwatchdog",
.type = TYPE_CMSDK_APB_WATCHDOG,
.index = 0,
.addr = 0x5002e000,
.ppc = NO_PPC,
.irq = NMI_0,
.slowclk = true,
},
{
.name = "nswatchdog",
.type = TYPE_CMSDK_APB_WATCHDOG,
.index = 1,
.addr = 0x40081000,
.ppc = NO_PPC,
.irq = 1,
},
{
.name = "swatchdog",
.type = TYPE_CMSDK_APB_WATCHDOG,
.index = 2,
.addr = 0x50081000,
.ppc = NO_PPC,
.irq = NMI_1,
},
{
.name = "armsse-sysinfo",
.type = TYPE_IOTKIT_SYSINFO,
.index = 0,
.addr = 0x40020000,
.ppc = NO_PPC,
.irq = NO_IRQ,
},
{
.name = "armsse-sysctl",
.type = TYPE_IOTKIT_SYSCTL,
.index = 0,
.addr = 0x50021000,
.ppc = NO_PPC,
.irq = NO_IRQ,
},
{
.name = "CPU0CORE_PPU",
.type = TYPE_UNIMPLEMENTED_DEVICE,
.index = 0,
.addr = 0x50023000,
.size = 0x1000,
.ppc = NO_PPC,
.irq = NO_IRQ,
},
{
.name = "CPU1CORE_PPU",
.type = TYPE_UNIMPLEMENTED_DEVICE,
.index = 1,
.addr = 0x50025000,
.size = 0x1000,
.ppc = NO_PPC,
.irq = NO_IRQ,
},
{
.name = "DBG_PPU",
.type = TYPE_UNIMPLEMENTED_DEVICE,
.index = 2,
.addr = 0x50029000,
.size = 0x1000,
.ppc = NO_PPC,
.irq = NO_IRQ,
},
{
.name = "RAM0_PPU",
.type = TYPE_UNIMPLEMENTED_DEVICE,
.index = 3,
.addr = 0x5002a000,
.size = 0x1000,
.ppc = NO_PPC,
.irq = NO_IRQ,
},
{
.name = "RAM1_PPU",
.type = TYPE_UNIMPLEMENTED_DEVICE,
.index = 4,
.addr = 0x5002b000,
.size = 0x1000,
.ppc = NO_PPC,
.irq = NO_IRQ,
},
{
.name = "RAM2_PPU",
.type = TYPE_UNIMPLEMENTED_DEVICE,
.index = 5,
.addr = 0x5002c000,
.size = 0x1000,
.ppc = NO_PPC,
.irq = NO_IRQ,
},
{
.name = "RAM3_PPU",
.type = TYPE_UNIMPLEMENTED_DEVICE,
.index = 6,
.addr = 0x5002d000,
.size = 0x1000,
.ppc = NO_PPC,
.irq = NO_IRQ,
},
{
.name = "SYS_PPU",
.type = TYPE_UNIMPLEMENTED_DEVICE,
.index = 7,
.addr = 0x50022000,
.size = 0x1000,
.ppc = NO_PPC,
.irq = NO_IRQ,
},
{
.name = NULL,
}
};
static const ARMSSEDeviceInfo sse300_devices[] = {
{
.name = "timer0",
.type = TYPE_SSE_TIMER,
.index = 0,
.addr = 0x48000000,
.ppc = 0,
.ppc_port = 0,
.irq = 3,
},
{
.name = "timer1",
.type = TYPE_SSE_TIMER,
.index = 1,
.addr = 0x48001000,
.ppc = 0,
.ppc_port = 1,
.irq = 4,
},
{
.name = "timer2",
.type = TYPE_SSE_TIMER,
.index = 2,
.addr = 0x48002000,
.ppc = 0,
.ppc_port = 2,
.irq = 5,
},
{
.name = "timer3",
.type = TYPE_SSE_TIMER,
.index = 3,
.addr = 0x48003000,
.ppc = 0,
.ppc_port = 5,
.irq = 27,
},
{
.name = "s32ktimer",
.type = TYPE_CMSDK_APB_TIMER,
.index = 0,
.addr = 0x4802f000,
.ppc = 1,
.ppc_port = 0,
.irq = 2,
.slowclk = true,
},
{
.name = "s32kwatchdog",
.type = TYPE_CMSDK_APB_WATCHDOG,
.index = 0,
.addr = 0x4802e000,
.ppc = NO_PPC,
.irq = NMI_0,
.slowclk = true,
},
{
.name = "watchdog",
.type = TYPE_UNIMPLEMENTED_DEVICE,
.index = 0,
.addr = 0x48040000,
.size = 0x2000,
.ppc = NO_PPC,
.irq = NO_IRQ,
},
{
.name = "armsse-sysinfo",
.type = TYPE_IOTKIT_SYSINFO,
.index = 0,
.addr = 0x48020000,
.ppc = NO_PPC,
.irq = NO_IRQ,
},
{
.name = "armsse-sysctl",
.type = TYPE_IOTKIT_SYSCTL,
.index = 0,
.addr = 0x58021000,
.ppc = NO_PPC,
.irq = NO_IRQ,
},
{
.name = "SYS_PPU",
.type = TYPE_UNIMPLEMENTED_DEVICE,
.index = 1,
.addr = 0x58022000,
.size = 0x1000,
.ppc = NO_PPC,
.irq = NO_IRQ,
},
{
.name = "CPU0CORE_PPU",
.type = TYPE_UNIMPLEMENTED_DEVICE,
.index = 2,
.addr = 0x50023000,
.size = 0x1000,
.ppc = NO_PPC,
.irq = NO_IRQ,
},
{
.name = "MGMT_PPU",
.type = TYPE_UNIMPLEMENTED_DEVICE,
.index = 3,
.addr = 0x50028000,
.size = 0x1000,
.ppc = NO_PPC,
.irq = NO_IRQ,
},
{
.name = "DEBUG_PPU",
.type = TYPE_UNIMPLEMENTED_DEVICE,
.index = 4,
.addr = 0x50029000,
.size = 0x1000,
.ppc = NO_PPC,
.irq = NO_IRQ,
},
{
.name = NULL,
}
};
/* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
static const bool sse200_irq_is_common[32] = {
[0 ... 5] = true,
/* 6, 7: per-CPU MHU interrupts */
[8 ... 12] = true,
/* 13: per-CPU icache interrupt */
/* 14: reserved */
[15 ... 20] = true,
/* 21: reserved */
[22 ... 26] = true,
/* 27: reserved */
/* 28, 29: per-CPU CTI interrupts */
/* 30, 31: reserved */
};
static const bool sse300_irq_is_common[32] = {
[0 ... 5] = true,
/* 6, 7: per-CPU MHU interrupts */
[8 ... 12] = true,
/* 13: reserved */
[14 ... 16] = true,
/* 17-25: reserved */
[26 ... 27] = true,
/* 28, 29: per-CPU CTI interrupts */
/* 30, 31: reserved */
};
static const ARMSSEInfo armsse_variants[] = {
{
.name = TYPE_IOTKIT,
.sse_version = ARMSSE_IOTKIT,
.cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"),
.sram_banks = 1,
.sram_bank_base = 0x20000000,
.num_cpus = 1,
.sys_version = 0x41743,
.iidr = 0,
.cpuwait_rst = 0,
.has_mhus = false,
.has_cachectrl = false,
.has_cpusecctrl = false,
.has_cpuid = false,
.has_cpu_pwrctrl = false,
.has_sse_counter = false,
.has_tcms = false,
.props = iotkit_properties,
.devinfo = iotkit_devices,
.irq_is_common = sse200_irq_is_common,
},
{
.name = TYPE_SSE200,
.sse_version = ARMSSE_SSE200,
.cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"),
.sram_banks = 4,
.sram_bank_base = 0x20000000,
.num_cpus = 2,
.sys_version = 0x22041743,
.iidr = 0,
.cpuwait_rst = 2,
.has_mhus = true,
.has_cachectrl = true,
.has_cpusecctrl = true,
.has_cpuid = true,
.has_cpu_pwrctrl = false,
.has_sse_counter = false,
.has_tcms = false,
.props = sse200_properties,
.devinfo = sse200_devices,
.irq_is_common = sse200_irq_is_common,
},
{
.name = TYPE_SSE300,
.sse_version = ARMSSE_SSE300,
.cpu_type = ARM_CPU_TYPE_NAME("cortex-m55"),
.sram_banks = 2,
.sram_bank_base = 0x21000000,
.num_cpus = 1,
.sys_version = 0x7e00043b,
.iidr = 0x74a0043b,
.cpuwait_rst = 0,
.has_mhus = false,
.has_cachectrl = false,
.has_cpusecctrl = true,
.has_cpuid = true,
.has_cpu_pwrctrl = true,
.has_sse_counter = true,
.has_tcms = true,
.props = sse300_properties,
.devinfo = sse300_devices,
.irq_is_common = sse300_irq_is_common,
},
};
static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
{
/* Return the SYS_CONFIG value for this SSE */
uint32_t sys_config;
switch (info->sse_version) {
case ARMSSE_IOTKIT:
sys_config = 0;
sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
break;
case ARMSSE_SSE200:
sys_config = 0;
sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
sys_config = deposit32(sys_config, 24, 4, 2);
if (info->num_cpus > 1) {
sys_config = deposit32(sys_config, 10, 1, 1);
sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
sys_config = deposit32(sys_config, 28, 4, 2);
}
break;
case ARMSSE_SSE300:
sys_config = 0;
sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
sys_config = deposit32(sys_config, 16, 3, 3); /* CPU0 = Cortex-M55 */
break;
default:
g_assert_not_reached();
}
return sys_config;
}
/* Clock frequency in HZ of the 32KHz "slow clock" */
#define S32KCLK (32 * 1000)
/*
* Create an alias region in @container of @size bytes starting at @base
* which mirrors the memory starting at @orig.
*/
static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
const char *name, hwaddr base, hwaddr size, hwaddr orig)
{
memory_region_init_alias(mr, NULL, name, container, orig, size);
/* The alias is even lower priority than unimplemented_device regions */
memory_region_add_subregion_overlap(container, base, mr, -1500);
}
static void irq_status_forwarder(void *opaque, int n, int level)
{
qemu_irq destirq = opaque;
qemu_set_irq(destirq, level);
}
static void nsccfg_handler(void *opaque, int n, int level)
{
ARMSSE *s = ARM_SSE(opaque);
s->nsccfg = level;
}
static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
{
/* Each of the 4 AHB and 4 APB PPCs that might be present in a
* system using the ARMSSE has a collection of control lines which
* are provided by the security controller and which we want to
* expose as control lines on the ARMSSE device itself, so the
* code using the ARMSSE can wire them up to the PPCs.
*/
SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
DeviceState *armssedev = DEVICE(s);
DeviceState *dev_secctl = DEVICE(&s->secctl);
DeviceState *dev_splitter = DEVICE(splitter);
char *name;
name = g_strdup_printf("%s_nonsec", ppcname);
qdev_pass_gpios(dev_secctl, armssedev, name);
g_free(name);
name = g_strdup_printf("%s_ap", ppcname);
qdev_pass_gpios(dev_secctl, armssedev, name);
g_free(name);
name = g_strdup_printf("%s_irq_enable", ppcname);
qdev_pass_gpios(dev_secctl, armssedev, name);
g_free(name);
name = g_strdup_printf("%s_irq_clear", ppcname);
qdev_pass_gpios(dev_secctl, armssedev, name);
g_free(name);
/* irq_status is a little more tricky, because we need to
* split it so we can send it both to the security controller
* and to our OR gate for the NVIC interrupt line.
* Connect up the splitter's outputs, and create a GPIO input
* which will pass the line state to the input splitter.
*/
name = g_strdup_printf("%s_irq_status", ppcname);
qdev_connect_gpio_out(dev_splitter, 0,
qdev_get_gpio_in_named(dev_secctl,
name, 0));
qdev_connect_gpio_out(dev_splitter, 1,
qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
s->irq_status_in[ppcnum], name, 1);
g_free(name);
}
static void armsse_forward_sec_resp_cfg(ARMSSE *s)
{
/* Forward the 3rd output from the splitter device as a
* named GPIO output of the armsse object.
*/
DeviceState *dev = DEVICE(s);
DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
s->sec_resp_cfg, 1);
qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
}
static void armsse_init(Object *obj)
{
ARMSSE *s = ARM_SSE(obj);
ARMSSEClass *asc = ARM_SSE_GET_CLASS(obj);
const ARMSSEInfo *info = asc->info;
const ARMSSEDeviceInfo *devinfo;
int i;
assert(info->sram_banks <= MAX_SRAM_BANKS);
assert(info->num_cpus <= SSE_MAX_CPUS);
s->mainclk = qdev_init_clock_in(DEVICE(s), "MAINCLK", NULL, NULL, 0);
s->s32kclk = qdev_init_clock_in(DEVICE(s), "S32KCLK", NULL, NULL, 0);
memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
for (i = 0; i < info->num_cpus; i++) {
/*
* We put each CPU in its own cluster as they are logically
* distinct and may be configured differently.
*/
char *name;
name = g_strdup_printf("cluster%d", i);
object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
g_free(name);
name = g_strdup_printf("armv7m%d", i);
object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i],
TYPE_ARMV7M);
qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type", info->cpu_type);
g_free(name);
name = g_strdup_printf("arm-sse-cpu-container%d", i);
memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
g_free(name);
if (i > 0) {
name = g_strdup_printf("arm-sse-container-alias%d", i);
memory_region_init_alias(&s->container_alias[i - 1], obj,
name, &s->container, 0, UINT64_MAX);
g_free(name);
}
}
for (devinfo = info->devinfo; devinfo->name; devinfo++) {
assert(devinfo->ppc == NO_PPC || devinfo->ppc < ARRAY_SIZE(s->apb_ppc));
if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) {
assert(devinfo->index < ARRAY_SIZE(s->timer));
object_initialize_child(obj, devinfo->name,
&s->timer[devinfo->index],
TYPE_CMSDK_APB_TIMER);
} else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) {
assert(devinfo->index == 0);
object_initialize_child(obj, devinfo->name, &s->dualtimer,
TYPE_CMSDK_APB_DUALTIMER);
} else if (!strcmp(devinfo->type, TYPE_SSE_TIMER)) {
assert(devinfo->index < ARRAY_SIZE(s->sse_timer));
object_initialize_child(obj, devinfo->name,
&s->sse_timer[devinfo->index],
TYPE_SSE_TIMER);
} else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) {
assert(devinfo->index < ARRAY_SIZE(s->cmsdk_watchdog));
object_initialize_child(obj, devinfo->name,
&s->cmsdk_watchdog[devinfo->index],
TYPE_CMSDK_APB_WATCHDOG);
} else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) {
assert(devinfo->index == 0);
object_initialize_child(obj, devinfo->name, &s->sysinfo,
TYPE_IOTKIT_SYSINFO);
} else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) {
assert(devinfo->index == 0);
object_initialize_child(obj, devinfo->name, &s->sysctl,
TYPE_IOTKIT_SYSCTL);
} else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) {
assert(devinfo->index < ARRAY_SIZE(s->unimp));
object_initialize_child(obj, devinfo->name,
&s->unimp[devinfo->index],
TYPE_UNIMPLEMENTED_DEVICE);
} else {
g_assert_not_reached();
}
}
object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
for (i = 0; i < ARRAY_SIZE(s->apb_ppc); i++) {
g_autofree char *name = g_strdup_printf("apb-ppc%d", i);
object_initialize_child(obj, name, &s->apb_ppc[i], TYPE_TZ_PPC);
}
for (i = 0; i < info->sram_banks; i++) {
char *name = g_strdup_printf("mpc%d", i);
object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
g_free(name);
}
object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
TYPE_OR_IRQ);
for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
SplitIRQ *splitter = &s->mpc_irq_splitter[i];
object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
g_free(name);
}
if (info->has_mhus) {
object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU);
object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU);
}
if (info->has_cachectrl) {
for (i = 0; i < info->num_cpus; i++) {
char *name = g_strdup_printf("cachectrl%d", i);
object_initialize_child(obj, name, &s->cachectrl[i],
TYPE_UNIMPLEMENTED_DEVICE);
g_free(name);
}
}
if (info->has_cpusecctrl) {
for (i = 0; i < info->num_cpus; i++) {
char *name = g_strdup_printf("cpusecctrl%d", i);
object_initialize_child(obj, name, &s->cpusecctrl[i],
TYPE_UNIMPLEMENTED_DEVICE);
g_free(name);
}
}
if (info->has_cpuid) {
for (i = 0; i < info->num_cpus; i++) {
char *name = g_strdup_printf("cpuid%d", i);
object_initialize_child(obj, name, &s->cpuid[i],
TYPE_ARMSSE_CPUID);
g_free(name);
}
}
if (info->has_cpu_pwrctrl) {
for (i = 0; i < info->num_cpus; i++) {
char *name = g_strdup_printf("cpu_pwrctrl%d", i);
object_initialize_child(obj, name, &s->cpu_pwrctrl[i],
TYPE_ARMSSE_CPU_PWRCTRL);
g_free(name);
}
}
if (info->has_sse_counter) {
object_initialize_child(obj, "sse-counter", &s->sse_counter,
TYPE_SSE_COUNTER);
}
object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
TYPE_OR_IRQ);
object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
TYPE_SPLIT_IRQ);
for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
SplitIRQ *splitter = &s->ppc_irq_splitter[i];
object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
g_free(name);
}
if (info->num_cpus > 1) {
for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
if (info->irq_is_common[i]) {
char *name = g_strdup_printf("cpu-irq-splitter%d", i);
SplitIRQ *splitter = &s->cpu_irq_splitter[i];
object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
g_free(name);
}
}
}
}
static void armsse_exp_irq(void *opaque, int n, int level)
{
qemu_irq *irqarray = opaque;
qemu_set_irq(irqarray[n], level);
}
static void armsse_mpcexp_status(void *opaque, int n, int level)
{
ARMSSE *s = ARM_SSE(opaque);
qemu_set_irq(s->mpcexp_status_in[n], level);
}
static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
{
/*
* Return a qemu_irq which can be used to signal IRQ n to
* all CPUs in the SSE.
*/
ARMSSEClass *asc = ARM_SSE_GET_CLASS(s);
const ARMSSEInfo *info = asc->info;
assert(info->irq_is_common[irqno]);
if (info->num_cpus == 1) {
/* Only one CPU -- just connect directly to it */
return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
} else {
/* Connect to the splitter which feeds all CPUs */
return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
}
}
static void armsse_realize(DeviceState *dev, Error **errp)
{
ERRP_GUARD();
ARMSSE *s = ARM_SSE(dev);
ARMSSEClass *asc = ARM_SSE_GET_CLASS(dev);
const ARMSSEInfo *info = asc->info;
const ARMSSEDeviceInfo *devinfo;
int i;
MemoryRegion *mr;
SysBusDevice *sbd_apb_ppc0;
SysBusDevice *sbd_secctl;
DeviceState *dev_apb_ppc0;
DeviceState *dev_apb_ppc1;
DeviceState *dev_secctl;
DeviceState *dev_splitter;
uint32_t addr_width_max;
if (!s->board_memory) {
error_setg(errp, "memory property was not set");
return;
}
if (!clock_has_source(s->mainclk)) {
error_setg(errp, "MAINCLK clock was not connected");
}
if (!clock_has_source(s->s32kclk)) {
error_setg(errp, "S32KCLK clock was not connected");
}
assert(info->num_cpus <= SSE_MAX_CPUS);
/* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
assert(is_power_of_2(info->sram_banks));
addr_width_max = 24 - ctz32(info->sram_banks);
if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
addr_width_max);
return;
}
/* Handling of which devices should be available only to secure
* code is usually done differently for M profile than for A profile.
* Instead of putting some devices only into the secure address space,
* devices exist in both address spaces but with hard-wired security
* permissions that will cause the CPU to fault for non-secure accesses.
*
* The ARMSSE has an IDAU (Implementation Defined Access Unit),
* which specifies hard-wired security permissions for different
* areas of the physical address space. For the ARMSSE IDAU, the
* top 4 bits of the physical address are the IDAU region ID, and
* if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
* region, otherwise it is an S region.
*
* The various devices and RAMs are generally all mapped twice,
* once into a region that the IDAU defines as secure and once
* into a non-secure region. They sit behind either a Memory
* Protection Controller (for RAM) or a Peripheral Protection
* Controller (for devices), which allow a more fine grained
* configuration of whether non-secure accesses are permitted.
*
* (The other place that guest software can configure security
* permissions is in the architected SAU (Security Attribution
* Unit), which is entirely inside the CPU. The IDAU can upgrade
* the security attributes for a region to more restrictive than
* the SAU specifies, but cannot downgrade them.)
*
* 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
* 0x20000000..0x2007ffff 32KB FPGA block RAM
* 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
* 0x40000000..0x4000ffff base peripheral region 1
* 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
* 0x40020000..0x4002ffff system control element peripherals
* 0x40080000..0x400fffff base peripheral region 2
* 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
*/
memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
for (i = 0; i < info->num_cpus; i++) {
DeviceState *cpudev = DEVICE(&s->armv7m[i]);
Object *cpuobj = OBJECT(&s->armv7m[i]);
int j;
char *gpioname;
qdev_connect_clock_in(cpudev, "cpuclk", s->mainclk);
/* The SSE subsystems do not wire up a systick refclk */
qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + NUM_SSE_IRQS);
/*
* In real hardware the initial Secure VTOR is set from the INITSVTOR*
* registers in the IoT Kit System Control Register block. In QEMU
* we set the initial value here, and also the reset value of the
* sysctl register, from this object's QOM init-svtor property.
* If the guest changes the INITSVTOR* registers at runtime then the
* code in iotkit-sysctl.c will update the CPU init-svtor property
* (which will then take effect on the next CPU warm-reset).
*
* Note that typically a board using the SSE-200 will have a system
* control processor whose boot firmware initializes the INITSVTOR*
* registers before powering up the CPUs. QEMU doesn't emulate
* the control processor, so instead we behave in the way that the
* firmware does: the initial value should be set by the board code
* (using the init-svtor property on the ARMSSE object) to match
* whatever its firmware does.
*/
qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
/*
* CPUs start powered down if the corresponding bit in the CPUWAIT
* register is 1. In real hardware the CPUWAIT register reset value is
* a configurable property of the SSE-200 (via the CPUWAIT0_RST and
* CPUWAIT1_RST parameters), but since all the boards we care about
* start CPU0 and leave CPU1 powered off, we hard-code that in
* info->cpuwait_rst for now. We can add QOM properties for this
* later if necessary.
*/
if (extract32(info->cpuwait_rst, i, 1)) {
if (!object_property_set_bool(cpuobj, "start-powered-off", true,
errp)) {
return;
}
}
if (!s->cpu_fpu[i]) {
if (!object_property_set_bool(cpuobj, "vfp", false, errp)) {
return;
}
}
if (!s->cpu_dsp[i]) {
if (!object_property_set_bool(cpuobj, "dsp", false, errp)) {
return;
}
}
if (!object_property_set_uint(cpuobj, "mpu-ns-regions",
s->cpu_mpu_ns[i], errp)) {
return;
}
if (!object_property_set_uint(cpuobj, "mpu-s-regions",
s->cpu_mpu_s[i], errp)) {
return;
}
if (i > 0) {
memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
&s->container_alias[i - 1], -1);
} else {
memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
&s->container, -1);
}
object_property_set_link(cpuobj, "memory",
OBJECT(&s->cpu_container[i]), &error_abort);
object_property_set_link(cpuobj, "idau", OBJECT(s), &error_abort);
if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj), errp)) {
return;
}
/*
* The cluster must be realized after the armv7m container, as
* the container's CPU object is only created on realize, and the
* CPU must exist and have been parented into the cluster before
* the cluster is realized.
*/
if (!qdev_realize(DEVICE(&s->cluster[i]), NULL, errp)) {
return;
}
/* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
for (j = 0; j < s->exp_numirq; j++) {
s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + NUM_SSE_IRQS);
}
if (i == 0) {
gpioname = g_strdup("EXP_IRQ");
} else {
gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
}
qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
s->exp_irqs[i],
gpioname, s->exp_numirq);
g_free(gpioname);
}
/* Wire up the splitters that connect common IRQs to all CPUs */
if (info->num_cpus > 1) {
for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
if (info->irq_is_common[i]) {
Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
DeviceState *devs = DEVICE(splitter);
int cpunum;
if (!object_property_set_int(splitter, "num-lines",
info->num_cpus, errp)) {
return;
}
if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
return;
}
for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
qdev_connect_gpio_out(devs, cpunum,
qdev_get_gpio_in(cpudev, i));
}
}
}
}
/* Set up the big aliases first */
make_alias(s, &s->alias1, &s->container, "alias 1",
0x10000000, 0x10000000, 0x00000000);
make_alias(s, &s->alias2, &s->container,
"alias 2", 0x30000000, 0x10000000, 0x20000000);
/* The 0x50000000..0x5fffffff region is not a pure alias: it has
* a few extra devices that only appear there (generally the
* control interfaces for the protection controllers).
* We implement this by mapping those devices over the top of this
* alias MR at a higher priority. Some of the devices in this range
* are per-CPU, so we must put this alias in the per-cpu containers.
*/
for (i = 0; i < info->num_cpus; i++) {
make_alias(s, &s->alias3[i], &s->cpu_container[i],
"alias 3", 0x50000000, 0x10000000, 0x40000000);
}
/* Security controller */
object_property_set_int(OBJECT(&s->secctl), "sse-version",
info->sse_version, &error_abort);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->secctl), errp)) {
return;
}
sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
dev_secctl = DEVICE(&s->secctl);
sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
/* The sec_resp_cfg output from the security controller must be split into
* multiple lines, one for each of the PPCs within the ARMSSE and one
* that will be an output from the ARMSSE to the system.
*/
if (!object_property_set_int(OBJECT(&s->sec_resp_splitter),
"num-lines", 3, errp)) {
return;
}
if (!qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, errp)) {
return;
}
dev_splitter = DEVICE(&s->sec_resp_splitter);
qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
qdev_get_gpio_in(dev_splitter, 0));
/* Each SRAM bank lives behind its own Memory Protection Controller */
for (i = 0; i < info->sram_banks; i++) {
char *ramname = g_strdup_printf("armsse.sram%d", i);
SysBusDevice *sbd_mpc;
uint32_t sram_bank_size = 1 << s->sram_addr_width;
memory_region_init_ram(&s->sram[i], NULL, ramname,
sram_bank_size, errp);
g_free(ramname);
if (*errp) {
return;
}
object_property_set_link(OBJECT(&s->mpc[i]), "downstream",
OBJECT(&s->sram[i]), &error_abort);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), errp)) {
return;
}
/* Map the upstream end of the MPC into the right place... */
sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
memory_region_add_subregion(&s->container,
info->sram_bank_base + i * sram_bank_size,
sysbus_mmio_get_region(sbd_mpc, 1));
/* ...and its register interface */
memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
sysbus_mmio_get_region(sbd_mpc, 0));
}
/* We must OR together lines from the MPC splitters to go to the NVIC */
if (!object_property_set_int(OBJECT(&s->mpc_irq_orgate), "num-lines",
IOTS_NUM_EXP_MPC + info->sram_banks,
errp)) {
return;
}
if (!qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, errp)) {
return;
}
qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
armsse_get_common_irq_in(s, 9));
/* This OR gate wires together outputs from the secure watchdogs to NMI */
if (!object_property_set_int(OBJECT(&s->nmi_orgate), "num-lines", 2,
errp)) {
return;
}
if (!qdev_realize(DEVICE(&s->nmi_orgate), NULL, errp)) {
return;
}
qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
/* The SSE-300 has a System Counter / System Timestamp Generator */
if (info->has_sse_counter) {
SysBusDevice *sbd = SYS_BUS_DEVICE(&s->sse_counter);
qdev_connect_clock_in(DEVICE(sbd), "CLK", s->mainclk);
if (!sysbus_realize(sbd, errp)) {
return;
}
/*
* The control frame is only in the Secure region;
* the status frame is in the NS region (and visible in the
* S region via the alias mapping).
*/
memory_region_add_subregion(&s->container, 0x58100000,
sysbus_mmio_get_region(sbd, 0));
memory_region_add_subregion(&s->container, 0x48101000,
sysbus_mmio_get_region(sbd, 1));
}
if (info->has_tcms) {
/* The SSE-300 has an ITCM at 0x0000_0000 and a DTCM at 0x2000_0000 */
memory_region_init_ram(&s->itcm, NULL, "sse300-itcm", 512 * KiB, errp);
if (*errp) {
return;
}
memory_region_init_ram(&s->dtcm, NULL, "sse300-dtcm", 512 * KiB, errp);
if (*errp) {
return;
}
memory_region_add_subregion(&s->container, 0x00000000, &s->itcm);
memory_region_add_subregion(&s->container, 0x20000000, &s->dtcm);
}
/* Devices behind APB PPC0:
* 0x40000000: timer0
* 0x40001000: timer1
* 0x40002000: dual timer
* 0x40003000: MHU0 (SSE-200 only)
* 0x40004000: MHU1 (SSE-200 only)
* We must configure and realize each downstream device and connect
* it to the appropriate PPC port; then we can realize the PPC and
* map its upstream ends to the right place in the container.
*/
for (devinfo = info->devinfo; devinfo->name; devinfo++) {
SysBusDevice *sbd;
qemu_irq irq;
if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) {
sbd = SYS_BUS_DEVICE(&s->timer[devinfo->index]);
qdev_connect_clock_in(DEVICE(sbd), "pclk",
devinfo->slowclk ? s->s32kclk : s->mainclk);
if (!sysbus_realize(sbd, errp)) {
return;
}
mr = sysbus_mmio_get_region(sbd, 0);
} else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) {
sbd = SYS_BUS_DEVICE(&s->dualtimer);
qdev_connect_clock_in(DEVICE(sbd), "TIMCLK", s->mainclk);
if (!sysbus_realize(sbd, errp)) {
return;
}
mr = sysbus_mmio_get_region(sbd, 0);
} else if (!strcmp(devinfo->type, TYPE_SSE_TIMER)) {
sbd = SYS_BUS_DEVICE(&s->sse_timer[devinfo->index]);
assert(info->has_sse_counter);
object_property_set_link(OBJECT(sbd), "counter",
OBJECT(&s->sse_counter), &error_abort);
if (!sysbus_realize(sbd, errp)) {
return;
}
mr = sysbus_mmio_get_region(sbd, 0);
} else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) {
sbd = SYS_BUS_DEVICE(&s->cmsdk_watchdog[devinfo->index]);
qdev_connect_clock_in(DEVICE(sbd), "WDOGCLK",
devinfo->slowclk ? s->s32kclk : s->mainclk);
if (!sysbus_realize(sbd, errp)) {
return;
}
mr = sysbus_mmio_get_region(sbd, 0);
} else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) {
sbd = SYS_BUS_DEVICE(&s->sysinfo);
object_property_set_int(OBJECT(&s->sysinfo), "SYS_VERSION",
info->sys_version, &error_abort);
object_property_set_int(OBJECT(&s->sysinfo), "SYS_CONFIG",
armsse_sys_config_value(s, info),
&error_abort);
object_property_set_int(OBJECT(&s->sysinfo), "sse-version",
info->sse_version, &error_abort);
object_property_set_int(OBJECT(&s->sysinfo), "IIDR",
info->iidr, &error_abort);
if (!sysbus_realize(sbd, errp)) {
return;
}
mr = sysbus_mmio_get_region(sbd, 0);
} else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) {
/* System control registers */
sbd = SYS_BUS_DEVICE(&s->sysctl);
object_property_set_int(OBJECT(&s->sysctl), "sse-version",
info->sse_version, &error_abort);
object_property_set_int(OBJECT(&s->sysctl), "CPUWAIT_RST",
info->cpuwait_rst, &error_abort);
object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR0_RST",
s->init_svtor, &error_abort);
object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR1_RST",
s->init_svtor, &error_abort);
if (!sysbus_realize(sbd, errp)) {
return;
}
mr = sysbus_mmio_get_region(sbd, 0);
} else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) {
sbd = SYS_BUS_DEVICE(&s->unimp[devinfo->index]);
qdev_prop_set_string(DEVICE(sbd), "name", devinfo->name);
qdev_prop_set_uint64(DEVICE(sbd), "size", devinfo->size);
if (!sysbus_realize(sbd, errp)) {
return;
}
mr = sysbus_mmio_get_region(sbd, 0);
} else {
g_assert_not_reached();
}
switch (devinfo->irq) {
case NO_IRQ:
irq = NULL;
break;
case 0 ... NUM_SSE_IRQS - 1:
irq = armsse_get_common_irq_in(s, devinfo->irq);
break;
case NMI_0:
case NMI_1:
irq = qdev_get_gpio_in(DEVICE(&s->nmi_orgate),
devinfo->irq - NMI_0);
break;
default:
g_assert_not_reached();
}
if (irq) {
sysbus_connect_irq(sbd, 0, irq);
}
/*
* Devices connected to a PPC are connected to the port here;
* we will map the upstream end of that port to the right address
* in the container later after the PPC has been realized.
* Devices not connected to a PPC can be mapped immediately.
*/
if (devinfo->ppc != NO_PPC) {
TZPPC *ppc = &s->apb_ppc[devinfo->ppc];
g_autofree char *portname = g_strdup_printf("port[%d]",
devinfo->ppc_port);
object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
&error_abort);
} else {
memory_region_add_subregion(&s->container, devinfo->addr, mr);
}
}
if (info->has_mhus) {
/*
* An SSE-200 with only one CPU should have only one MHU created,
* with the region where the second MHU usually is being RAZ/WI.
* We don't implement that SSE-200 config; if we want to support
* it then this code needs to be enhanced to handle creating the
* RAZ/WI region instead of the second MHU.
*/
assert(info->num_cpus == ARRAY_SIZE(s->mhu));
for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
char *port;
int cpunum;
SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), errp)) {
return;
}
port = g_strdup_printf("port[%d]", i + 3);
mr = sysbus_mmio_get_region(mhu_sbd, 0);
object_property_set_link(OBJECT(&s->apb_ppc[0]), port, OBJECT(mr),
&error_abort);
g_free(port);
/*
* Each MHU has an irq line for each CPU:
* MHU 0 irq line 0 -> CPU 0 IRQ 6
* MHU 0 irq line 1 -> CPU 1 IRQ 6
* MHU 1 irq line 0 -> CPU 0 IRQ 7
* MHU 1 irq line 1 -> CPU 1 IRQ 7
*/
for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
sysbus_connect_irq(mhu_sbd, cpunum,
qdev_get_gpio_in(cpudev, 6 + i));
}
}
}
if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[0]), errp)) {
return;
}
sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc[0]);
dev_apb_ppc0 = DEVICE(&s->apb_ppc[0]);
if (info->has_mhus) {
mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
memory_region_add_subregion(&s->container, 0x40003000, mr);
mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
memory_region_add_subregion(&s->container, 0x40004000, mr);
}
for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
qdev_get_gpio_in_named(dev_apb_ppc0,
"cfg_nonsec", i));
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
qdev_get_gpio_in_named(dev_apb_ppc0,
"cfg_ap", i));
}
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
qdev_get_gpio_in_named(dev_apb_ppc0,
"irq_enable", 0));
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
qdev_get_gpio_in_named(dev_apb_ppc0,
"irq_clear", 0));
qdev_connect_gpio_out(dev_splitter, 0,
qdev_get_gpio_in_named(dev_apb_ppc0,
"cfg_sec_resp", 0));
/* All the PPC irq lines (from the 2 internal PPCs and the 8 external
* ones) are sent individually to the security controller, and also
* ORed together to give a single combined PPC interrupt to the NVIC.
*/
if (!object_property_set_int(OBJECT(&s->ppc_irq_orgate),
"num-lines", NUM_PPCS, errp)) {
return;
}
if (!qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, errp)) {
return;
}
qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
armsse_get_common_irq_in(s, 10));
/*
* 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
* private per-CPU region (all these devices are SSE-200 only):
* 0x50010000: L1 icache control registers
* 0x50011000: CPUSECCTRL (CPU local security control registers)
* 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
* The SSE-300 has an extra:
* 0x40012000 and 0x50012000: CPU_PWRCTRL register block
*/
if (info->has_cachectrl) {
for (i = 0; i < info->num_cpus; i++) {
char *name = g_strdup_printf("cachectrl%d", i);
qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
g_free(name);
qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), errp)) {
return;
}
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
}
}
if (info->has_cpusecctrl) {
for (i = 0; i < info->num_cpus; i++) {
char *name = g_strdup_printf("CPUSECCTRL%d", i);
qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
g_free(name);
qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), errp)) {
return;
}
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
}
}
if (info->has_cpuid) {
for (i = 0; i < info->num_cpus; i++) {
qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), errp)) {
return;
}
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
}
}
if (info->has_cpu_pwrctrl) {
for (i = 0; i < info->num_cpus; i++) {
if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpu_pwrctrl[i]), errp)) {
return;
}
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpu_pwrctrl[i]), 0);
memory_region_add_subregion(&s->cpu_container[i], 0x40012000, mr);
}
}
if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[1]), errp)) {
return;
}
dev_apb_ppc1 = DEVICE(&s->apb_ppc[1]);
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
qdev_get_gpio_in_named(dev_apb_ppc1,
"cfg_nonsec", 0));
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
qdev_get_gpio_in_named(dev_apb_ppc1,
"cfg_ap", 0));
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
qdev_get_gpio_in_named(dev_apb_ppc1,
"irq_enable", 0));
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
qdev_get_gpio_in_named(dev_apb_ppc1,
"irq_clear", 0));
qdev_connect_gpio_out(dev_splitter, 1,
qdev_get_gpio_in_named(dev_apb_ppc1,
"cfg_sec_resp", 0));
/*
* Now both PPCs are realized we can map the upstream ends of
* ports which correspond to entries in the devinfo array.
* The ports which are connected to non-devinfo devices have
* already been mapped.
*/
for (devinfo = info->devinfo; devinfo->name; devinfo++) {
SysBusDevice *ppc_sbd;
if (devinfo->ppc == NO_PPC) {
continue;
}
ppc_sbd = SYS_BUS_DEVICE(&s->apb_ppc[devinfo->ppc]);
mr = sysbus_mmio_get_region(ppc_sbd, devinfo->ppc_port);
memory_region_add_subregion(&s->container, devinfo->addr, mr);
}
for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
if (!object_property_set_int(splitter, "num-lines", 2, errp)) {
return;
}
if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
return;
}
}
for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
armsse_forward_ppc(s, ppcname, i);
g_free(ppcname);
}
for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
g_free(ppcname);
}
for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
/* Wire up IRQ splitter for internal PPCs */
DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
i - NUM_EXTERNAL_PPCS);
TZPPC *ppc = &s->apb_ppc[i - NUM_EXTERNAL_PPCS];
qdev_connect_gpio_out(devs, 0,
qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
qdev_connect_gpio_out(devs, 1,
qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
qdev_get_gpio_in(devs, 0));
g_free(gpioname);
}
/* Wire up the splitters for the MPC IRQs */
for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
SplitIRQ *splitter = &s->mpc_irq_splitter[i];
DeviceState *devs = DEVICE(splitter);
if (!object_property_set_int(OBJECT(splitter), "num-lines", 2,
errp)) {
return;
}
if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
return;
}
if (i < IOTS_NUM_EXP_MPC) {
/* Splitter input is from GPIO input line */
s->mpcexp_status_in[i] = qdev_get_gpio_in(devs, 0);
qdev_connect_gpio_out(devs, 0,
qdev_get_gpio_in_named(dev_secctl,
"mpcexp_status", i));
} else {
/* Splitter input is from our own MPC */
qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
"irq", 0,
qdev_get_gpio_in(devs, 0));
qdev_connect_gpio_out(devs, 0,
qdev_get_gpio_in_named(dev_secctl,
"mpc_status",
i - IOTS_NUM_EXP_MPC));
}
qdev_connect_gpio_out(devs, 1,
qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
}
/* Create GPIO inputs which will pass the line state for our
* mpcexp_irq inputs to the correct splitter devices.
*/
qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
IOTS_NUM_EXP_MPC);
armsse_forward_sec_resp_cfg(s);
/* Forward the MSC related signals */
qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
armsse_get_common_irq_in(s, 11));
/*
* Expose our container region to the board model; this corresponds
* to the AHB Slave Expansion ports which allow bus master devices
* (eg DMA controllers) in the board model to make transactions into
* devices in the ARMSSE.
*/
sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
}
static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
int *iregion, bool *exempt, bool *ns, bool *nsc)
{
/*
* For ARMSSE systems the IDAU responses are simple logical functions
* of the address bits. The NSC attribute is guest-adjustable via the
* NSCCFG register in the security controller.
*/
ARMSSE *s = ARM_SSE(ii);
int region = extract32(address, 28, 4);
*ns = !(region & 1);
*nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
/* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
*exempt = (address & 0xeff00000) == 0xe0000000;
*iregion = region;
}
static const VMStateDescription armsse_vmstate = {
.name = "iotkit",
.version_id = 2,
.minimum_version_id = 2,
.fields = (const VMStateField[]) {
VMSTATE_CLOCK(mainclk, ARMSSE),
VMSTATE_CLOCK(s32kclk, ARMSSE),
VMSTATE_UINT32(nsccfg, ARMSSE),
VMSTATE_END_OF_LIST()
}
};
static void armsse_reset(DeviceState *dev)
{
ARMSSE *s = ARM_SSE(dev);
s->nsccfg = 0;
}
static void armsse_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
ARMSSEClass *asc = ARM_SSE_CLASS(klass);
const ARMSSEInfo *info = data;
dc->realize = armsse_realize;
dc->vmsd = &armsse_vmstate;
device_class_set_props(dc, info->props);
dc->reset = armsse_reset;
iic->check = armsse_idau_check;
asc->info = info;
}
static const TypeInfo armsse_info = {
.name = TYPE_ARM_SSE,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(ARMSSE),
.class_size = sizeof(ARMSSEClass),
.instance_init = armsse_init,
.abstract = true,
.interfaces = (InterfaceInfo[]) {
{ TYPE_IDAU_INTERFACE },
{ }
}
};
static void armsse_register_types(void)
{
int i;
type_register_static(&armsse_info);
for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
TypeInfo ti = {
.name = armsse_variants[i].name,
.parent = TYPE_ARM_SSE,
.class_init = armsse_class_init,
.class_data = (void *)&armsse_variants[i],
};
type_register(&ti);
}
}
type_init(armsse_register_types);