qemu-e2k/include/exec/ram_addr.h
Michael S. Tsirkin 62be4e3a50 exec: qemu_ram_alloc_resizeable, qemu_ram_resize
Add API to allocate "resizeable" RAM.
This looks just like regular RAM generally, but
has a special property that only a portion of it
(used_length) is actually used, and migrated.

This used_length size can change across reboots.

Follow up patches will change used_length for such blocks at migration,
making it easier to extend devices using such RAM (notably ACPI,
but in the future thinkably other ROMs) without breaking migration
compatibility or wasting ROM (guest) memory.

Device is notified on resize, so it can adjust if necessary.

qemu_ram_alloc_resizeable allocates this memory, qemu_ram_resize resizes
it.

Note: nothing prevents making all RAM resizeable in this way.
However, reviewers felt that only enabling this selectively will
make some class of errors easier to detect.

Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
2015-01-08 13:17:54 +02:00

208 lines
7.6 KiB
C

/*
* Declarations for cpu physical memory functions
*
* Copyright 2011 Red Hat, Inc. and/or its affiliates
*
* Authors:
* Avi Kivity <avi@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or
* later. See the COPYING file in the top-level directory.
*
*/
/*
* This header is for use by exec.c and memory.c ONLY. Do not include it.
* The functions declared here will be removed soon.
*/
#ifndef RAM_ADDR_H
#define RAM_ADDR_H
#ifndef CONFIG_USER_ONLY
#include "hw/xen/xen.h"
ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
bool share, const char *mem_path,
Error **errp);
ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
MemoryRegion *mr, Error **errp);
ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp);
ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
void (*resized)(const char*,
uint64_t length,
void *host),
MemoryRegion *mr, Error **errp);
int qemu_get_ram_fd(ram_addr_t addr);
void *qemu_get_ram_block_host_ptr(ram_addr_t addr);
void *qemu_get_ram_ptr(ram_addr_t addr);
void qemu_ram_free(ram_addr_t addr);
void qemu_ram_free_from_ptr(ram_addr_t addr);
int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp);
static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
ram_addr_t length,
unsigned client)
{
unsigned long end, page, next;
assert(client < DIRTY_MEMORY_NUM);
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
page = start >> TARGET_PAGE_BITS;
next = find_next_bit(ram_list.dirty_memory[client], end, page);
return next < end;
}
static inline bool cpu_physical_memory_get_clean(ram_addr_t start,
ram_addr_t length,
unsigned client)
{
unsigned long end, page, next;
assert(client < DIRTY_MEMORY_NUM);
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
page = start >> TARGET_PAGE_BITS;
next = find_next_zero_bit(ram_list.dirty_memory[client], end, page);
return next < end;
}
static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
unsigned client)
{
return cpu_physical_memory_get_dirty(addr, 1, client);
}
static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
{
bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
bool migration =
cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
return !(vga && code && migration);
}
static inline bool cpu_physical_memory_range_includes_clean(ram_addr_t start,
ram_addr_t length)
{
bool vga = cpu_physical_memory_get_clean(start, length, DIRTY_MEMORY_VGA);
bool code = cpu_physical_memory_get_clean(start, length, DIRTY_MEMORY_CODE);
bool migration =
cpu_physical_memory_get_clean(start, length, DIRTY_MEMORY_MIGRATION);
return vga || code || migration;
}
static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
unsigned client)
{
assert(client < DIRTY_MEMORY_NUM);
set_bit(addr >> TARGET_PAGE_BITS, ram_list.dirty_memory[client]);
}
static inline void cpu_physical_memory_set_dirty_range_nocode(ram_addr_t start,
ram_addr_t length)
{
unsigned long end, page;
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
page = start >> TARGET_PAGE_BITS;
bitmap_set(ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION], page, end - page);
bitmap_set(ram_list.dirty_memory[DIRTY_MEMORY_VGA], page, end - page);
}
static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
ram_addr_t length)
{
unsigned long end, page;
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
page = start >> TARGET_PAGE_BITS;
bitmap_set(ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION], page, end - page);
bitmap_set(ram_list.dirty_memory[DIRTY_MEMORY_VGA], page, end - page);
bitmap_set(ram_list.dirty_memory[DIRTY_MEMORY_CODE], page, end - page);
xen_modified_memory(start, length);
}
#if !defined(_WIN32)
static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
ram_addr_t start,
ram_addr_t pages)
{
unsigned long i, j;
unsigned long page_number, c;
hwaddr addr;
ram_addr_t ram_addr;
unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
/* start address is aligned at the start of a word? */
if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
(hpratio == 1)) {
long k;
long nr = BITS_TO_LONGS(pages);
for (k = 0; k < nr; k++) {
if (bitmap[k]) {
unsigned long temp = leul_to_cpu(bitmap[k]);
ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION][page + k] |= temp;
ram_list.dirty_memory[DIRTY_MEMORY_VGA][page + k] |= temp;
ram_list.dirty_memory[DIRTY_MEMORY_CODE][page + k] |= temp;
}
}
xen_modified_memory(start, pages);
} else {
/*
* bitmap-traveling is faster than memory-traveling (for addr...)
* especially when most of the memory is not dirty.
*/
for (i = 0; i < len; i++) {
if (bitmap[i] != 0) {
c = leul_to_cpu(bitmap[i]);
do {
j = ctzl(c);
c &= ~(1ul << j);
page_number = (i * HOST_LONG_BITS + j) * hpratio;
addr = page_number * TARGET_PAGE_SIZE;
ram_addr = start + addr;
cpu_physical_memory_set_dirty_range(ram_addr,
TARGET_PAGE_SIZE * hpratio);
} while (c != 0);
}
}
}
}
#endif /* not _WIN32 */
static inline void cpu_physical_memory_clear_dirty_range_type(ram_addr_t start,
ram_addr_t length,
unsigned client)
{
unsigned long end, page;
assert(client < DIRTY_MEMORY_NUM);
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
page = start >> TARGET_PAGE_BITS;
bitmap_clear(ram_list.dirty_memory[client], page, end - page);
}
static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
ram_addr_t length)
{
cpu_physical_memory_clear_dirty_range_type(start, length, DIRTY_MEMORY_MIGRATION);
cpu_physical_memory_clear_dirty_range_type(start, length, DIRTY_MEMORY_VGA);
cpu_physical_memory_clear_dirty_range_type(start, length, DIRTY_MEMORY_CODE);
}
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t length,
unsigned client);
#endif
#endif