qemu-e2k/memory.h
Avi Kivity e34911c420 memory: temporarily add memory_region_get_ram_addr()
This is a layering violation, but needed while the code contains
naked calls to qemu_get_ram_ptr() and the like.

Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-20 14:14:08 +02:00

696 lines
24 KiB
C

/*
* Physical memory management API
*
* Copyright 2011 Red Hat, Inc. and/or its affiliates
*
* Authors:
* Avi Kivity <avi@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#ifndef MEMORY_H
#define MEMORY_H
#ifndef CONFIG_USER_ONLY
#include <stdint.h>
#include <stdbool.h>
#include "qemu-common.h"
#include "cpu-common.h"
#include "targphys.h"
#include "qemu-queue.h"
#include "iorange.h"
#include "ioport.h"
#include "int128.h"
typedef struct MemoryRegionOps MemoryRegionOps;
typedef struct MemoryRegion MemoryRegion;
typedef struct MemoryRegionPortio MemoryRegionPortio;
typedef struct MemoryRegionMmio MemoryRegionMmio;
/* Must match *_DIRTY_FLAGS in cpu-all.h. To be replaced with dynamic
* registration.
*/
#define DIRTY_MEMORY_VGA 0
#define DIRTY_MEMORY_CODE 1
#define DIRTY_MEMORY_MIGRATION 3
struct MemoryRegionMmio {
CPUReadMemoryFunc *read[3];
CPUWriteMemoryFunc *write[3];
};
/*
* Memory region callbacks
*/
struct MemoryRegionOps {
/* Read from the memory region. @addr is relative to @mr; @size is
* in bytes. */
uint64_t (*read)(void *opaque,
target_phys_addr_t addr,
unsigned size);
/* Write to the memory region. @addr is relative to @mr; @size is
* in bytes. */
void (*write)(void *opaque,
target_phys_addr_t addr,
uint64_t data,
unsigned size);
enum device_endian endianness;
/* Guest-visible constraints: */
struct {
/* If nonzero, specify bounds on access sizes beyond which a machine
* check is thrown.
*/
unsigned min_access_size;
unsigned max_access_size;
/* If true, unaligned accesses are supported. Otherwise unaligned
* accesses throw machine checks.
*/
bool unaligned;
/*
* If present, and returns #false, the transaction is not accepted
* by the device (and results in machine dependent behaviour such
* as a machine check exception).
*/
bool (*accepts)(void *opaque, target_phys_addr_t addr,
unsigned size, bool is_write);
} valid;
/* Internal implementation constraints: */
struct {
/* If nonzero, specifies the minimum size implemented. Smaller sizes
* will be rounded upwards and a partial result will be returned.
*/
unsigned min_access_size;
/* If nonzero, specifies the maximum size implemented. Larger sizes
* will be done as a series of accesses with smaller sizes.
*/
unsigned max_access_size;
/* If true, unaligned accesses are supported. Otherwise all accesses
* are converted to (possibly multiple) naturally aligned accesses.
*/
bool unaligned;
} impl;
/* If .read and .write are not present, old_portio may be used for
* backwards compatibility with old portio registration
*/
const MemoryRegionPortio *old_portio;
/* If .read and .write are not present, old_mmio may be used for
* backwards compatibility with old mmio registration
*/
const MemoryRegionMmio old_mmio;
};
typedef struct CoalescedMemoryRange CoalescedMemoryRange;
typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
struct MemoryRegion {
/* All fields are private - violators will be prosecuted */
const MemoryRegionOps *ops;
void *opaque;
MemoryRegion *parent;
Int128 size;
target_phys_addr_t addr;
target_phys_addr_t offset;
bool backend_registered;
void (*destructor)(MemoryRegion *mr);
ram_addr_t ram_addr;
IORange iorange;
bool terminates;
bool readable;
bool ram;
bool readonly; /* For RAM regions */
bool enabled;
MemoryRegion *alias;
target_phys_addr_t alias_offset;
unsigned priority;
bool may_overlap;
QTAILQ_HEAD(subregions, MemoryRegion) subregions;
QTAILQ_ENTRY(MemoryRegion) subregions_link;
QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
const char *name;
uint8_t dirty_log_mask;
unsigned ioeventfd_nb;
MemoryRegionIoeventfd *ioeventfds;
};
struct MemoryRegionPortio {
uint32_t offset;
uint32_t len;
unsigned size;
IOPortReadFunc *read;
IOPortWriteFunc *write;
};
#define PORTIO_END_OF_LIST() { }
typedef struct MemoryRegionSection MemoryRegionSection;
/**
* MemoryRegionSection: describes a fragment of a #MemoryRegion
*
* @mr: the region, or %NULL if empty
* @address_space: the address space the region is mapped in
* @offset_within_region: the beginning of the section, relative to @mr's start
* @size: the size of the section; will not exceed @mr's boundaries
* @offset_within_address_space: the address of the first byte of the section
* relative to the region's address space
*/
struct MemoryRegionSection {
MemoryRegion *mr;
MemoryRegion *address_space;
target_phys_addr_t offset_within_region;
uint64_t size;
target_phys_addr_t offset_within_address_space;
};
typedef struct MemoryListener MemoryListener;
/**
* MemoryListener: callbacks structure for updates to the physical memory map
*
* Allows a component to adjust to changes in the guest-visible memory map.
* Use with memory_listener_register() and memory_listener_unregister().
*/
struct MemoryListener {
void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
void (*log_start)(MemoryListener *listener, MemoryRegionSection *section);
void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section);
void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
void (*log_global_start)(MemoryListener *listener);
void (*log_global_stop)(MemoryListener *listener);
QLIST_ENTRY(MemoryListener) link;
};
/**
* memory_region_init: Initialize a memory region
*
* The region typically acts as a container for other memory regions. Use
* memory_region_add_subregion() to add subregions.
*
* @mr: the #MemoryRegion to be initialized
* @name: used for debugging; not visible to the user or ABI
* @size: size of the region; any subregions beyond this size will be clipped
*/
void memory_region_init(MemoryRegion *mr,
const char *name,
uint64_t size);
/**
* memory_region_init_io: Initialize an I/O memory region.
*
* Accesses into the region will cause the callbacks in @ops to be called.
* if @size is nonzero, subregions will be clipped to @size.
*
* @mr: the #MemoryRegion to be initialized.
* @ops: a structure containing read and write callbacks to be used when
* I/O is performed on the region.
* @opaque: passed to to the read and write callbacks of the @ops structure.
* @name: used for debugging; not visible to the user or ABI
* @size: size of the region.
*/
void memory_region_init_io(MemoryRegion *mr,
const MemoryRegionOps *ops,
void *opaque,
const char *name,
uint64_t size);
/**
* memory_region_init_ram: Initialize RAM memory region. Accesses into the
* region will modify memory directly.
*
* @mr: the #MemoryRegion to be initialized.
* @dev: a device associated with the region; may be %NULL.
* @name: the name of the region; the pair (@dev, @name) must be globally
* unique. The name is part of the save/restore ABI and so cannot be
* changed.
* @size: size of the region.
*/
void memory_region_init_ram(MemoryRegion *mr,
DeviceState *dev, /* FIXME: layering violation */
const char *name,
uint64_t size);
/**
* memory_region_init_ram: Initialize RAM memory region from a user-provided.
* pointer. Accesses into the region will modify
* memory directly.
*
* @mr: the #MemoryRegion to be initialized.
* @dev: a device associated with the region; may be %NULL.
* @name: the name of the region; the pair (@dev, @name) must be globally
* unique. The name is part of the save/restore ABI and so cannot be
* changed.
* @size: size of the region.
* @ptr: memory to be mapped; must contain at least @size bytes.
*/
void memory_region_init_ram_ptr(MemoryRegion *mr,
DeviceState *dev, /* FIXME: layering violation */
const char *name,
uint64_t size,
void *ptr);
/**
* memory_region_init_alias: Initialize a memory region that aliases all or a
* part of another memory region.
*
* @mr: the #MemoryRegion to be initialized.
* @name: used for debugging; not visible to the user or ABI
* @orig: the region to be referenced; @mr will be equivalent to
* @orig between @offset and @offset + @size - 1.
* @offset: start of the section in @orig to be referenced.
* @size: size of the region.
*/
void memory_region_init_alias(MemoryRegion *mr,
const char *name,
MemoryRegion *orig,
target_phys_addr_t offset,
uint64_t size);
/**
* memory_region_init_rom_device: Initialize a ROM memory region. Writes are
* handled via callbacks.
*
* @mr: the #MemoryRegion to be initialized.
* @ops: callbacks for write access handling.
* @dev: a device associated with the region; may be %NULL.
* @name: the name of the region; the pair (@dev, @name) must be globally
* unique. The name is part of the save/restore ABI and so cannot be
* changed.
* @size: size of the region.
*/
void memory_region_init_rom_device(MemoryRegion *mr,
const MemoryRegionOps *ops,
void *opaque,
DeviceState *dev, /* FIXME: layering violation */
const char *name,
uint64_t size);
/**
* memory_region_destroy: Destroy a memory region and reclaim all resources.
*
* @mr: the region to be destroyed. May not currently be a subregion
* (see memory_region_add_subregion()) or referenced in an alias
* (see memory_region_init_alias()).
*/
void memory_region_destroy(MemoryRegion *mr);
/**
* memory_region_size: get a memory region's size.
*
* @mr: the memory region being queried.
*/
uint64_t memory_region_size(MemoryRegion *mr);
/**
* memory_region_is_ram: check whether a memory region is random access
*
* Returns %true is a memory region is random access.
*
* @mr: the memory region being queried
*/
bool memory_region_is_ram(MemoryRegion *mr);
/**
* memory_region_is_logging: return whether a memory region is logging writes
*
* Returns %true if the memory region is logging writes
*
* @mr: the memory region being queried
*/
bool memory_region_is_logging(MemoryRegion *mr);
/**
* memory_region_is_rom: check whether a memory region is ROM
*
* Returns %true is a memory region is read-only memory.
*
* @mr: the memory region being queried
*/
bool memory_region_is_rom(MemoryRegion *mr);
/**
* memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
*
* Returns a host pointer to a RAM memory region (created with
* memory_region_init_ram() or memory_region_init_ram_ptr()). Use with
* care.
*
* @mr: the memory region being queried.
*/
void *memory_region_get_ram_ptr(MemoryRegion *mr);
/**
* memory_region_set_offset: Sets an offset to be added to MemoryRegionOps
* callbacks.
*
* This function is deprecated and should not be used in new code.
*/
void memory_region_set_offset(MemoryRegion *mr, target_phys_addr_t offset);
/**
* memory_region_set_log: Turn dirty logging on or off for a region.
*
* Turns dirty logging on or off for a specified client (display, migration).
* Only meaningful for RAM regions.
*
* @mr: the memory region being updated.
* @log: whether dirty logging is to be enabled or disabled.
* @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
* %DIRTY_MEMORY_VGA.
*/
void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
/**
* memory_region_get_dirty: Check whether a page is dirty for a specified
* client.
*
* Checks whether a page has been written to since the last
* call to memory_region_reset_dirty() with the same @client. Dirty logging
* must be enabled.
*
* @mr: the memory region being queried.
* @addr: the address (relative to the start of the region) being queried.
* @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
* %DIRTY_MEMORY_VGA.
*/
bool memory_region_get_dirty(MemoryRegion *mr, target_phys_addr_t addr,
unsigned client);
/**
* memory_region_set_dirty: Mark a page as dirty in a memory region.
*
* Marks a page as dirty, after it has been dirtied outside guest code.
*
* @mr: the memory region being queried.
* @addr: the address (relative to the start of the region) being dirtied.
*/
void memory_region_set_dirty(MemoryRegion *mr, target_phys_addr_t addr);
/**
* memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
* any external TLBs (e.g. kvm)
*
* Flushes dirty information from accelerators such as kvm and vhost-net
* and makes it available to users of the memory API.
*
* @mr: the region being flushed.
*/
void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
/**
* memory_region_reset_dirty: Mark a range of pages as clean, for a specified
* client.
*
* Marks a range of pages as no longer dirty.
*
* @mr: the region being updated.
* @addr: the start of the subrange being cleaned.
* @size: the size of the subrange being cleaned.
* @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
* %DIRTY_MEMORY_VGA.
*/
void memory_region_reset_dirty(MemoryRegion *mr, target_phys_addr_t addr,
target_phys_addr_t size, unsigned client);
/**
* memory_region_set_readonly: Turn a memory region read-only (or read-write)
*
* Allows a memory region to be marked as read-only (turning it into a ROM).
* only useful on RAM regions.
*
* @mr: the region being updated.
* @readonly: whether rhe region is to be ROM or RAM.
*/
void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
/**
* memory_region_rom_device_set_readable: enable/disable ROM readability
*
* Allows a ROM device (initialized with memory_region_init_rom_device() to
* to be marked as readable (default) or not readable. When it is readable,
* the device is mapped to guest memory. When not readable, reads are
* forwarded to the #MemoryRegion.read function.
*
* @mr: the memory region to be updated
* @readable: whether reads are satisified directly (%true) or via callbacks
* (%false)
*/
void memory_region_rom_device_set_readable(MemoryRegion *mr, bool readable);
/**
* memory_region_set_coalescing: Enable memory coalescing for the region.
*
* Enabled writes to a region to be queued for later processing. MMIO ->write
* callbacks may be delayed until a non-coalesced MMIO is issued.
* Only useful for IO regions. Roughly similar to write-combining hardware.
*
* @mr: the memory region to be write coalesced
*/
void memory_region_set_coalescing(MemoryRegion *mr);
/**
* memory_region_add_coalescing: Enable memory coalescing for a sub-range of
* a region.
*
* Like memory_region_set_coalescing(), but works on a sub-range of a region.
* Multiple calls can be issued coalesced disjoint ranges.
*
* @mr: the memory region to be updated.
* @offset: the start of the range within the region to be coalesced.
* @size: the size of the subrange to be coalesced.
*/
void memory_region_add_coalescing(MemoryRegion *mr,
target_phys_addr_t offset,
uint64_t size);
/**
* memory_region_clear_coalescing: Disable MMIO coalescing for the region.
*
* Disables any coalescing caused by memory_region_set_coalescing() or
* memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
* hardware.
*
* @mr: the memory region to be updated.
*/
void memory_region_clear_coalescing(MemoryRegion *mr);
/**
* memory_region_add_eventfd: Request an eventfd to be triggered when a word
* is written to a location.
*
* Marks a word in an IO region (initialized with memory_region_init_io())
* as a trigger for an eventfd event. The I/O callback will not be called.
* The caller must be prepared to handle failure (that is, take the required
* action if the callback _is_ called).
*
* @mr: the memory region being updated.
* @addr: the address within @mr that is to be monitored
* @size: the size of the access to trigger the eventfd
* @match_data: whether to match against @data, instead of just @addr
* @data: the data to match against the guest write
* @fd: the eventfd to be triggered when @addr, @size, and @data all match.
**/
void memory_region_add_eventfd(MemoryRegion *mr,
target_phys_addr_t addr,
unsigned size,
bool match_data,
uint64_t data,
int fd);
/**
* memory_region_del_eventfd: Cancel an eventfd.
*
* Cancels an eventfd trigger requested by a previous
* memory_region_add_eventfd() call.
*
* @mr: the memory region being updated.
* @addr: the address within @mr that is to be monitored
* @size: the size of the access to trigger the eventfd
* @match_data: whether to match against @data, instead of just @addr
* @data: the data to match against the guest write
* @fd: the eventfd to be triggered when @addr, @size, and @data all match.
*/
void memory_region_del_eventfd(MemoryRegion *mr,
target_phys_addr_t addr,
unsigned size,
bool match_data,
uint64_t data,
int fd);
/**
* memory_region_add_subregion: Add a subregion to a container.
*
* Adds a subregion at @offset. The subregion may not overlap with other
* subregions (except for those explicitly marked as overlapping). A region
* may only be added once as a subregion (unless removed with
* memory_region_del_subregion()); use memory_region_init_alias() if you
* want a region to be a subregion in multiple locations.
*
* @mr: the region to contain the new subregion; must be a container
* initialized with memory_region_init().
* @offset: the offset relative to @mr where @subregion is added.
* @subregion: the subregion to be added.
*/
void memory_region_add_subregion(MemoryRegion *mr,
target_phys_addr_t offset,
MemoryRegion *subregion);
/**
* memory_region_add_subregion: Add a subregion to a container, with overlap.
*
* Adds a subregion at @offset. The subregion may overlap with other
* subregions. Conflicts are resolved by having a higher @priority hide a
* lower @priority. Subregions without priority are taken as @priority 0.
* A region may only be added once as a subregion (unless removed with
* memory_region_del_subregion()); use memory_region_init_alias() if you
* want a region to be a subregion in multiple locations.
*
* @mr: the region to contain the new subregion; must be a container
* initialized with memory_region_init().
* @offset: the offset relative to @mr where @subregion is added.
* @subregion: the subregion to be added.
* @priority: used for resolving overlaps; highest priority wins.
*/
void memory_region_add_subregion_overlap(MemoryRegion *mr,
target_phys_addr_t offset,
MemoryRegion *subregion,
unsigned priority);
/**
* memory_region_get_ram_addr: Get the ram address associated with a memory
* region
*
* DO NOT USE THIS FUCNTION. This is a temporary workaround while the Xen
* code is being reworked.
*/
ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
/**
* memory_region_del_subregion: Remove a subregion.
*
* Removes a subregion from its container.
*
* @mr: the container to be updated.
* @subregion: the region being removed; must be a current subregion of @mr.
*/
void memory_region_del_subregion(MemoryRegion *mr,
MemoryRegion *subregion);
/*
* memory_region_set_enabled: dynamically enable or disable a region
*
* Enables or disables a memory region. A disabled memory region
* ignores all accesses to itself and its subregions. It does not
* obscure sibling subregions with lower priority - it simply behaves as
* if it was removed from the hierarchy.
*
* Regions default to being enabled.
*
* @mr: the region to be updated
* @enabled: whether to enable or disable the region
*/
void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
/*
* memory_region_set_address: dynamically update the address of a region
*
* Dynamically updates the address of a region, relative to its parent.
* May be used on regions are currently part of a memory hierarchy.
*
* @mr: the region to be updated
* @addr: new address, relative to parent region
*/
void memory_region_set_address(MemoryRegion *mr, target_phys_addr_t addr);
/*
* memory_region_set_alias_offset: dynamically update a memory alias's offset
*
* Dynamically updates the offset into the target region that an alias points
* to, as if the fourth argument to memory_region_init_alias() has changed.
*
* @mr: the #MemoryRegion to be updated; should be an alias.
* @offset: the new offset into the target memory region
*/
void memory_region_set_alias_offset(MemoryRegion *mr,
target_phys_addr_t offset);
/**
* memory_region_find: locate a MemoryRegion in an address space
*
* Locates the first #MemoryRegion within an address space given by
* @address_space that overlaps the range given by @addr and @size.
*
* Returns a #MemoryRegionSection that describes a contiguous overlap.
* It will have the following characteristics:
* .@offset_within_address_space >= @addr
* .@offset_within_address_space + .@size <= @addr + @size
* .@size = 0 iff no overlap was found
* .@mr is non-%NULL iff an overlap was found
*
* @address_space: a top-level (i.e. parentless) region that contains
* the region to be found
* @addr: start of the area within @address_space to be searched
* @size: size of the area to be searched
*/
MemoryRegionSection memory_region_find(MemoryRegion *address_space,
target_phys_addr_t addr, uint64_t size);
/**
* memory_global_sync_dirty_bitmap: synchronize the dirty log for all memory
*
* Synchronizes the dirty page log for an entire address space.
* @address_space: a top-level (i.e. parentless) region that contains the
* memory being synchronized
*/
void memory_global_sync_dirty_bitmap(MemoryRegion *address_space);
/**
* memory_region_transaction_begin: Start a transaction.
*
* During a transaction, changes will be accumulated and made visible
* only when the transaction ends (is commited).
*/
void memory_region_transaction_begin(void);
/**
* memory_region_transaction_commit: Commit a transaction and make changes
* visible to the guest.
*/
void memory_region_transaction_commit(void);
/**
* memory_listener_register: register callbacks to be called when memory
* sections are mapped or unmapped into an address
* space
*
* @listener: an object containing the callbacks to be called
*/
void memory_listener_register(MemoryListener *listener);
/**
* memory_listener_unregister: undo the effect of memory_listener_register()
*
* @listener: an object containing the callbacks to be removed
*/
void memory_listener_unregister(MemoryListener *listener);
/**
* memory_global_dirty_log_start: begin dirty logging for all regions
*/
void memory_global_dirty_log_start(void);
/**
* memory_global_dirty_log_stop: begin dirty logging for all regions
*/
void memory_global_dirty_log_stop(void);
void mtree_info(fprintf_function mon_printf, void *f);
#endif
#endif