qemu-e2k/target/sparc/mmu_helper.c
Richard Henderson 71b7794bbe target/sparc: Use tlb_set_page_full
Pass CPUTLBEntryFull to get_physical_address instead
of a collection of pointers.

Acked-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2023-03-05 13:44:07 -08:00

931 lines
29 KiB
C

/*
* Sparc MMU helpers
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "qemu/qemu-print.h"
#include "trace.h"
/* Sparc MMU emulation */
#ifndef TARGET_SPARC64
/*
* Sparc V8 Reference MMU (SRMMU)
*/
static const int access_table[8][8] = {
{ 0, 0, 0, 0, 8, 0, 12, 12 },
{ 0, 0, 0, 0, 8, 0, 0, 0 },
{ 8, 8, 0, 0, 0, 8, 12, 12 },
{ 8, 8, 0, 0, 0, 8, 0, 0 },
{ 8, 0, 8, 0, 8, 8, 12, 12 },
{ 8, 0, 8, 0, 8, 0, 8, 0 },
{ 8, 8, 8, 0, 8, 8, 12, 12 },
{ 8, 8, 8, 0, 8, 8, 8, 0 }
};
static const int perm_table[2][8] = {
{
PAGE_READ,
PAGE_READ | PAGE_WRITE,
PAGE_READ | PAGE_EXEC,
PAGE_READ | PAGE_WRITE | PAGE_EXEC,
PAGE_EXEC,
PAGE_READ | PAGE_WRITE,
PAGE_READ | PAGE_EXEC,
PAGE_READ | PAGE_WRITE | PAGE_EXEC
},
{
PAGE_READ,
PAGE_READ | PAGE_WRITE,
PAGE_READ | PAGE_EXEC,
PAGE_READ | PAGE_WRITE | PAGE_EXEC,
PAGE_EXEC,
PAGE_READ,
0,
0,
}
};
static int get_physical_address(CPUSPARCState *env, CPUTLBEntryFull *full,
int *access_index, target_ulong address,
int rw, int mmu_idx)
{
int access_perms = 0;
hwaddr pde_ptr;
uint32_t pde;
int error_code = 0, is_dirty, is_user;
unsigned long page_offset;
CPUState *cs = env_cpu(env);
MemTxResult result;
is_user = mmu_idx == MMU_USER_IDX;
if (mmu_idx == MMU_PHYS_IDX) {
full->lg_page_size = TARGET_PAGE_BITS;
/* Boot mode: instruction fetches are taken from PROM */
if (rw == 2 && (env->mmuregs[0] & env->def.mmu_bm)) {
full->phys_addr = env->prom_addr | (address & 0x7ffffULL);
full->prot = PAGE_READ | PAGE_EXEC;
return 0;
}
full->phys_addr = address;
full->prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
return 0;
}
*access_index = ((rw & 1) << 2) | (rw & 2) | (is_user ? 0 : 1);
full->phys_addr = 0xffffffffffff0000ULL;
/* SPARC reference MMU table walk: Context table->L1->L2->PTE */
/* Context base + context number */
pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2);
pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result);
if (result != MEMTX_OK) {
return 4 << 2; /* Translation fault, L = 0 */
}
/* Ctx pde */
switch (pde & PTE_ENTRYTYPE_MASK) {
default:
case 0: /* Invalid */
return 1 << 2;
case 2: /* L0 PTE, maybe should not happen? */
case 3: /* Reserved */
return 4 << 2;
case 1: /* L0 PDE */
pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
pde = address_space_ldl(cs->as, pde_ptr,
MEMTXATTRS_UNSPECIFIED, &result);
if (result != MEMTX_OK) {
return (1 << 8) | (4 << 2); /* Translation fault, L = 1 */
}
switch (pde & PTE_ENTRYTYPE_MASK) {
default:
case 0: /* Invalid */
return (1 << 8) | (1 << 2);
case 3: /* Reserved */
return (1 << 8) | (4 << 2);
case 1: /* L1 PDE */
pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
pde = address_space_ldl(cs->as, pde_ptr,
MEMTXATTRS_UNSPECIFIED, &result);
if (result != MEMTX_OK) {
return (2 << 8) | (4 << 2); /* Translation fault, L = 2 */
}
switch (pde & PTE_ENTRYTYPE_MASK) {
default:
case 0: /* Invalid */
return (2 << 8) | (1 << 2);
case 3: /* Reserved */
return (2 << 8) | (4 << 2);
case 1: /* L2 PDE */
pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
pde = address_space_ldl(cs->as, pde_ptr,
MEMTXATTRS_UNSPECIFIED, &result);
if (result != MEMTX_OK) {
return (3 << 8) | (4 << 2); /* Translation fault, L = 3 */
}
switch (pde & PTE_ENTRYTYPE_MASK) {
default:
case 0: /* Invalid */
return (3 << 8) | (1 << 2);
case 1: /* PDE, should not happen */
case 3: /* Reserved */
return (3 << 8) | (4 << 2);
case 2: /* L3 PTE */
page_offset = 0;
}
full->lg_page_size = TARGET_PAGE_BITS;
break;
case 2: /* L2 PTE */
page_offset = address & 0x3f000;
full->lg_page_size = 18;
}
break;
case 2: /* L1 PTE */
page_offset = address & 0xfff000;
full->lg_page_size = 24;
break;
}
}
/* check access */
access_perms = (pde & PTE_ACCESS_MASK) >> PTE_ACCESS_SHIFT;
error_code = access_table[*access_index][access_perms];
if (error_code && !((env->mmuregs[0] & MMU_NF) && is_user)) {
return error_code;
}
/* update page modified and dirty bits */
is_dirty = (rw & 1) && !(pde & PG_MODIFIED_MASK);
if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
pde |= PG_ACCESSED_MASK;
if (is_dirty) {
pde |= PG_MODIFIED_MASK;
}
stl_phys_notdirty(cs->as, pde_ptr, pde);
}
/* the page can be put in the TLB */
full->prot = perm_table[is_user][access_perms];
if (!(pde & PG_MODIFIED_MASK)) {
/* only set write access if already dirty... otherwise wait
for dirty access */
full->prot &= ~PAGE_WRITE;
}
/* Even if large ptes, we map only one 4KB page in the cache to
avoid filling it too fast */
full->phys_addr = ((hwaddr)(pde & PTE_ADDR_MASK) << 4) + page_offset;
return error_code;
}
/* Perform address translation */
bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr)
{
SPARCCPU *cpu = SPARC_CPU(cs);
CPUSPARCState *env = &cpu->env;
CPUTLBEntryFull full = {};
target_ulong vaddr;
int error_code = 0, access_index;
/*
* TODO: If we ever need tlb_vaddr_to_host for this target,
* then we must figure out how to manipulate FSR and FAR
* when both MMU_NF and probe are set. In the meantime,
* do not support this use case.
*/
assert(!probe);
address &= TARGET_PAGE_MASK;
error_code = get_physical_address(env, &full, &access_index,
address, access_type, mmu_idx);
vaddr = address;
if (likely(error_code == 0)) {
qemu_log_mask(CPU_LOG_MMU,
"Translate at %" VADDR_PRIx " -> "
HWADDR_FMT_plx ", vaddr " TARGET_FMT_lx "\n",
address, full.phys_addr, vaddr);
tlb_set_page_full(cs, mmu_idx, vaddr, &full);
return true;
}
if (env->mmuregs[3]) { /* Fault status register */
env->mmuregs[3] = 1; /* overflow (not read before another fault) */
}
env->mmuregs[3] |= (access_index << 5) | error_code | 2;
env->mmuregs[4] = address; /* Fault address register */
if ((env->mmuregs[0] & MMU_NF) || env->psret == 0) {
/* No fault mode: if a mapping is available, just override
permissions. If no mapping is available, redirect accesses to
neverland. Fake/overridden mappings will be flushed when
switching to normal mode. */
full.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
tlb_set_page_full(cs, mmu_idx, vaddr, &full);
return true;
} else {
if (access_type == MMU_INST_FETCH) {
cs->exception_index = TT_TFAULT;
} else {
cs->exception_index = TT_DFAULT;
}
cpu_loop_exit_restore(cs, retaddr);
}
}
target_ulong mmu_probe(CPUSPARCState *env, target_ulong address, int mmulev)
{
CPUState *cs = env_cpu(env);
hwaddr pde_ptr;
uint32_t pde;
MemTxResult result;
/*
* TODO: MMU probe operations are supposed to set the fault
* status registers, but we don't do this.
*/
/* Context base + context number */
pde_ptr = (hwaddr)(env->mmuregs[1] << 4) +
(env->mmuregs[2] << 2);
pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result);
if (result != MEMTX_OK) {
return 0;
}
switch (pde & PTE_ENTRYTYPE_MASK) {
default:
case 0: /* Invalid */
case 2: /* PTE, maybe should not happen? */
case 3: /* Reserved */
return 0;
case 1: /* L1 PDE */
if (mmulev == 3) {
return pde;
}
pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
pde = address_space_ldl(cs->as, pde_ptr,
MEMTXATTRS_UNSPECIFIED, &result);
if (result != MEMTX_OK) {
return 0;
}
switch (pde & PTE_ENTRYTYPE_MASK) {
default:
case 0: /* Invalid */
case 3: /* Reserved */
return 0;
case 2: /* L1 PTE */
return pde;
case 1: /* L2 PDE */
if (mmulev == 2) {
return pde;
}
pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
pde = address_space_ldl(cs->as, pde_ptr,
MEMTXATTRS_UNSPECIFIED, &result);
if (result != MEMTX_OK) {
return 0;
}
switch (pde & PTE_ENTRYTYPE_MASK) {
default:
case 0: /* Invalid */
case 3: /* Reserved */
return 0;
case 2: /* L2 PTE */
return pde;
case 1: /* L3 PDE */
if (mmulev == 1) {
return pde;
}
pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
pde = address_space_ldl(cs->as, pde_ptr,
MEMTXATTRS_UNSPECIFIED, &result);
if (result != MEMTX_OK) {
return 0;
}
switch (pde & PTE_ENTRYTYPE_MASK) {
default:
case 0: /* Invalid */
case 1: /* PDE, should not happen */
case 3: /* Reserved */
return 0;
case 2: /* L3 PTE */
return pde;
}
}
}
}
return 0;
}
void dump_mmu(CPUSPARCState *env)
{
CPUState *cs = env_cpu(env);
target_ulong va, va1, va2;
unsigned int n, m, o;
hwaddr pa;
uint32_t pde;
qemu_printf("Root ptr: " HWADDR_FMT_plx ", ctx: %d\n",
(hwaddr)env->mmuregs[1] << 4, env->mmuregs[2]);
for (n = 0, va = 0; n < 256; n++, va += 16 * 1024 * 1024) {
pde = mmu_probe(env, va, 2);
if (pde) {
pa = cpu_get_phys_page_debug(cs, va);
qemu_printf("VA: " TARGET_FMT_lx ", PA: " HWADDR_FMT_plx
" PDE: " TARGET_FMT_lx "\n", va, pa, pde);
for (m = 0, va1 = va; m < 64; m++, va1 += 256 * 1024) {
pde = mmu_probe(env, va1, 1);
if (pde) {
pa = cpu_get_phys_page_debug(cs, va1);
qemu_printf(" VA: " TARGET_FMT_lx ", PA: "
HWADDR_FMT_plx " PDE: " TARGET_FMT_lx "\n",
va1, pa, pde);
for (o = 0, va2 = va1; o < 64; o++, va2 += 4 * 1024) {
pde = mmu_probe(env, va2, 0);
if (pde) {
pa = cpu_get_phys_page_debug(cs, va2);
qemu_printf(" VA: " TARGET_FMT_lx ", PA: "
HWADDR_FMT_plx " PTE: "
TARGET_FMT_lx "\n",
va2, pa, pde);
}
}
}
}
}
}
}
/* Gdb expects all registers windows to be flushed in ram. This function handles
* reads (and only reads) in stack frames as if windows were flushed. We assume
* that the sparc ABI is followed.
*/
int sparc_cpu_memory_rw_debug(CPUState *cs, vaddr address,
uint8_t *buf, int len, bool is_write)
{
SPARCCPU *cpu = SPARC_CPU(cs);
CPUSPARCState *env = &cpu->env;
target_ulong addr = address;
int i;
int len1;
int cwp = env->cwp;
if (!is_write) {
for (i = 0; i < env->nwindows; i++) {
int off;
target_ulong fp = env->regbase[cwp * 16 + 22];
/* Assume fp == 0 means end of frame. */
if (fp == 0) {
break;
}
cwp = cpu_cwp_inc(env, cwp + 1);
/* Invalid window ? */
if (env->wim & (1 << cwp)) {
break;
}
/* According to the ABI, the stack is growing downward. */
if (addr + len < fp) {
break;
}
/* Not in this frame. */
if (addr > fp + 64) {
continue;
}
/* Handle access before this window. */
if (addr < fp) {
len1 = fp - addr;
if (cpu_memory_rw_debug(cs, addr, buf, len1, is_write) != 0) {
return -1;
}
addr += len1;
len -= len1;
buf += len1;
}
/* Access byte per byte to registers. Not very efficient but speed
* is not critical.
*/
off = addr - fp;
len1 = 64 - off;
if (len1 > len) {
len1 = len;
}
for (; len1; len1--) {
int reg = cwp * 16 + 8 + (off >> 2);
union {
uint32_t v;
uint8_t c[4];
} u;
u.v = cpu_to_be32(env->regbase[reg]);
*buf++ = u.c[off & 3];
addr++;
len--;
off++;
}
if (len == 0) {
return 0;
}
}
}
return cpu_memory_rw_debug(cs, addr, buf, len, is_write);
}
#else /* !TARGET_SPARC64 */
/* 41 bit physical address space */
static inline hwaddr ultrasparc_truncate_physical(uint64_t x)
{
return x & 0x1ffffffffffULL;
}
/*
* UltraSparc IIi I/DMMUs
*/
/* Returns true if TTE tag is valid and matches virtual address value
in context requires virtual address mask value calculated from TTE
entry size */
static inline int ultrasparc_tag_match(SparcTLBEntry *tlb,
uint64_t address, uint64_t context,
hwaddr *physical)
{
uint64_t mask = -(8192ULL << 3 * TTE_PGSIZE(tlb->tte));
/* valid, context match, virtual address match? */
if (TTE_IS_VALID(tlb->tte) &&
(TTE_IS_GLOBAL(tlb->tte) || tlb_compare_context(tlb, context))
&& compare_masked(address, tlb->tag, mask)) {
/* decode physical address */
*physical = ((tlb->tte & mask) | (address & ~mask)) & 0x1ffffffe000ULL;
return 1;
}
return 0;
}
static uint64_t build_sfsr(CPUSPARCState *env, int mmu_idx, int rw)
{
uint64_t sfsr = SFSR_VALID_BIT;
switch (mmu_idx) {
case MMU_PHYS_IDX:
sfsr |= SFSR_CT_NOTRANS;
break;
case MMU_USER_IDX:
case MMU_KERNEL_IDX:
sfsr |= SFSR_CT_PRIMARY;
break;
case MMU_USER_SECONDARY_IDX:
case MMU_KERNEL_SECONDARY_IDX:
sfsr |= SFSR_CT_SECONDARY;
break;
case MMU_NUCLEUS_IDX:
sfsr |= SFSR_CT_NUCLEUS;
break;
default:
g_assert_not_reached();
}
if (rw == 1) {
sfsr |= SFSR_WRITE_BIT;
} else if (rw == 4) {
sfsr |= SFSR_NF_BIT;
}
if (env->pstate & PS_PRIV) {
sfsr |= SFSR_PR_BIT;
}
if (env->dmmu.sfsr & SFSR_VALID_BIT) { /* Fault status register */
sfsr |= SFSR_OW_BIT; /* overflow (not read before another fault) */
}
/* FIXME: ASI field in SFSR must be set */
return sfsr;
}
static int get_physical_address_data(CPUSPARCState *env, CPUTLBEntryFull *full,
target_ulong address, int rw, int mmu_idx)
{
CPUState *cs = env_cpu(env);
unsigned int i;
uint64_t sfsr;
uint64_t context;
bool is_user = false;
sfsr = build_sfsr(env, mmu_idx, rw);
switch (mmu_idx) {
case MMU_PHYS_IDX:
g_assert_not_reached();
case MMU_USER_IDX:
is_user = true;
/* fallthru */
case MMU_KERNEL_IDX:
context = env->dmmu.mmu_primary_context & 0x1fff;
break;
case MMU_USER_SECONDARY_IDX:
is_user = true;
/* fallthru */
case MMU_KERNEL_SECONDARY_IDX:
context = env->dmmu.mmu_secondary_context & 0x1fff;
break;
default:
context = 0;
break;
}
for (i = 0; i < 64; i++) {
/* ctx match, vaddr match, valid? */
if (ultrasparc_tag_match(&env->dtlb[i], address, context,
&full->phys_addr)) {
int do_fault = 0;
if (TTE_IS_IE(env->dtlb[i].tte)) {
full->attrs.byte_swap = true;
}
/* access ok? */
/* multiple bits in SFSR.FT may be set on TT_DFAULT */
if (TTE_IS_PRIV(env->dtlb[i].tte) && is_user) {
do_fault = 1;
sfsr |= SFSR_FT_PRIV_BIT; /* privilege violation */
trace_mmu_helper_dfault(address, context, mmu_idx, env->tl);
}
if (rw == 4) {
if (TTE_IS_SIDEEFFECT(env->dtlb[i].tte)) {
do_fault = 1;
sfsr |= SFSR_FT_NF_E_BIT;
}
} else {
if (TTE_IS_NFO(env->dtlb[i].tte)) {
do_fault = 1;
sfsr |= SFSR_FT_NFO_BIT;
}
}
if (do_fault) {
/* faults above are reported with TT_DFAULT. */
cs->exception_index = TT_DFAULT;
} else if (!TTE_IS_W_OK(env->dtlb[i].tte) && (rw == 1)) {
do_fault = 1;
cs->exception_index = TT_DPROT;
trace_mmu_helper_dprot(address, context, mmu_idx, env->tl);
}
if (!do_fault) {
full->prot = PAGE_READ;
if (TTE_IS_W_OK(env->dtlb[i].tte)) {
full->prot |= PAGE_WRITE;
}
TTE_SET_USED(env->dtlb[i].tte);
return 0;
}
env->dmmu.sfsr = sfsr;
env->dmmu.sfar = address; /* Fault address register */
env->dmmu.tag_access = (address & ~0x1fffULL) | context;
return 1;
}
}
trace_mmu_helper_dmiss(address, context);
/*
* On MMU misses:
* - UltraSPARC IIi: SFSR and SFAR unmodified
* - JPS1: SFAR updated and some fields of SFSR updated
*/
env->dmmu.tag_access = (address & ~0x1fffULL) | context;
cs->exception_index = TT_DMISS;
return 1;
}
static int get_physical_address_code(CPUSPARCState *env, CPUTLBEntryFull *full,
target_ulong address, int mmu_idx)
{
CPUState *cs = env_cpu(env);
unsigned int i;
uint64_t context;
bool is_user = false;
switch (mmu_idx) {
case MMU_PHYS_IDX:
case MMU_USER_SECONDARY_IDX:
case MMU_KERNEL_SECONDARY_IDX:
g_assert_not_reached();
case MMU_USER_IDX:
is_user = true;
/* fallthru */
case MMU_KERNEL_IDX:
context = env->dmmu.mmu_primary_context & 0x1fff;
break;
default:
context = 0;
break;
}
if (env->tl == 0) {
/* PRIMARY context */
context = env->dmmu.mmu_primary_context & 0x1fff;
} else {
/* NUCLEUS context */
context = 0;
}
for (i = 0; i < 64; i++) {
/* ctx match, vaddr match, valid? */
if (ultrasparc_tag_match(&env->itlb[i],
address, context, &full->phys_addr)) {
/* access ok? */
if (TTE_IS_PRIV(env->itlb[i].tte) && is_user) {
/* Fault status register */
if (env->immu.sfsr & SFSR_VALID_BIT) {
env->immu.sfsr = SFSR_OW_BIT; /* overflow (not read before
another fault) */
} else {
env->immu.sfsr = 0;
}
if (env->pstate & PS_PRIV) {
env->immu.sfsr |= SFSR_PR_BIT;
}
if (env->tl > 0) {
env->immu.sfsr |= SFSR_CT_NUCLEUS;
}
/* FIXME: ASI field in SFSR must be set */
env->immu.sfsr |= SFSR_FT_PRIV_BIT | SFSR_VALID_BIT;
cs->exception_index = TT_TFAULT;
env->immu.tag_access = (address & ~0x1fffULL) | context;
trace_mmu_helper_tfault(address, context);
return 1;
}
full->prot = PAGE_EXEC;
TTE_SET_USED(env->itlb[i].tte);
return 0;
}
}
trace_mmu_helper_tmiss(address, context);
/* Context is stored in DMMU (dmmuregs[1]) also for IMMU */
env->immu.tag_access = (address & ~0x1fffULL) | context;
cs->exception_index = TT_TMISS;
return 1;
}
static int get_physical_address(CPUSPARCState *env, CPUTLBEntryFull *full,
int *access_index, target_ulong address,
int rw, int mmu_idx)
{
/* ??? We treat everything as a small page, then explicitly flush
everything when an entry is evicted. */
full->lg_page_size = TARGET_PAGE_BITS;
/* safety net to catch wrong softmmu index use from dynamic code */
if (env->tl > 0 && mmu_idx != MMU_NUCLEUS_IDX) {
if (rw == 2) {
trace_mmu_helper_get_phys_addr_code(env->tl, mmu_idx,
env->dmmu.mmu_primary_context,
env->dmmu.mmu_secondary_context,
address);
} else {
trace_mmu_helper_get_phys_addr_data(env->tl, mmu_idx,
env->dmmu.mmu_primary_context,
env->dmmu.mmu_secondary_context,
address);
}
}
if (mmu_idx == MMU_PHYS_IDX) {
full->phys_addr = ultrasparc_truncate_physical(address);
full->prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
return 0;
}
if (rw == 2) {
return get_physical_address_code(env, full, address, mmu_idx);
} else {
return get_physical_address_data(env, full, address, rw, mmu_idx);
}
}
/* Perform address translation */
bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr)
{
SPARCCPU *cpu = SPARC_CPU(cs);
CPUSPARCState *env = &cpu->env;
CPUTLBEntryFull full = {};
int error_code = 0, access_index;
address &= TARGET_PAGE_MASK;
error_code = get_physical_address(env, &full, &access_index,
address, access_type, mmu_idx);
if (likely(error_code == 0)) {
trace_mmu_helper_mmu_fault(address, full.phys_addr, mmu_idx, env->tl,
env->dmmu.mmu_primary_context,
env->dmmu.mmu_secondary_context);
tlb_set_page_full(cs, mmu_idx, address, &full);
return true;
}
if (probe) {
return false;
}
cpu_loop_exit_restore(cs, retaddr);
}
void dump_mmu(CPUSPARCState *env)
{
unsigned int i;
const char *mask;
qemu_printf("MMU contexts: Primary: %" PRId64 ", Secondary: %"
PRId64 "\n",
env->dmmu.mmu_primary_context,
env->dmmu.mmu_secondary_context);
qemu_printf("DMMU Tag Access: %" PRIx64 ", TSB Tag Target: %" PRIx64
"\n", env->dmmu.tag_access, env->dmmu.tsb_tag_target);
if ((env->lsu & DMMU_E) == 0) {
qemu_printf("DMMU disabled\n");
} else {
qemu_printf("DMMU dump\n");
for (i = 0; i < 64; i++) {
switch (TTE_PGSIZE(env->dtlb[i].tte)) {
default:
case 0x0:
mask = " 8k";
break;
case 0x1:
mask = " 64k";
break;
case 0x2:
mask = "512k";
break;
case 0x3:
mask = " 4M";
break;
}
if (TTE_IS_VALID(env->dtlb[i].tte)) {
qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
", %s, %s, %s, %s, ie %s, ctx %" PRId64 " %s\n",
i,
env->dtlb[i].tag & (uint64_t)~0x1fffULL,
TTE_PA(env->dtlb[i].tte),
mask,
TTE_IS_PRIV(env->dtlb[i].tte) ? "priv" : "user",
TTE_IS_W_OK(env->dtlb[i].tte) ? "RW" : "RO",
TTE_IS_LOCKED(env->dtlb[i].tte) ?
"locked" : "unlocked",
TTE_IS_IE(env->dtlb[i].tte) ?
"yes" : "no",
env->dtlb[i].tag & (uint64_t)0x1fffULL,
TTE_IS_GLOBAL(env->dtlb[i].tte) ?
"global" : "local");
}
}
}
if ((env->lsu & IMMU_E) == 0) {
qemu_printf("IMMU disabled\n");
} else {
qemu_printf("IMMU dump\n");
for (i = 0; i < 64; i++) {
switch (TTE_PGSIZE(env->itlb[i].tte)) {
default:
case 0x0:
mask = " 8k";
break;
case 0x1:
mask = " 64k";
break;
case 0x2:
mask = "512k";
break;
case 0x3:
mask = " 4M";
break;
}
if (TTE_IS_VALID(env->itlb[i].tte)) {
qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
", %s, %s, %s, ctx %" PRId64 " %s\n",
i,
env->itlb[i].tag & (uint64_t)~0x1fffULL,
TTE_PA(env->itlb[i].tte),
mask,
TTE_IS_PRIV(env->itlb[i].tte) ? "priv" : "user",
TTE_IS_LOCKED(env->itlb[i].tte) ?
"locked" : "unlocked",
env->itlb[i].tag & (uint64_t)0x1fffULL,
TTE_IS_GLOBAL(env->itlb[i].tte) ?
"global" : "local");
}
}
}
}
#endif /* TARGET_SPARC64 */
static int cpu_sparc_get_phys_page(CPUSPARCState *env, hwaddr *phys,
target_ulong addr, int rw, int mmu_idx)
{
CPUTLBEntryFull full = {};
int access_index, ret;
ret = get_physical_address(env, &full, &access_index, addr, rw, mmu_idx);
if (ret == 0) {
*phys = full.phys_addr;
}
return ret;
}
#if defined(TARGET_SPARC64)
hwaddr cpu_get_phys_page_nofault(CPUSPARCState *env, target_ulong addr,
int mmu_idx)
{
hwaddr phys_addr;
if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 4, mmu_idx) != 0) {
return -1;
}
return phys_addr;
}
#endif
hwaddr sparc_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
SPARCCPU *cpu = SPARC_CPU(cs);
CPUSPARCState *env = &cpu->env;
hwaddr phys_addr;
int mmu_idx = cpu_mmu_index(env, false);
if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 2, mmu_idx) != 0) {
if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 0, mmu_idx) != 0) {
return -1;
}
}
return phys_addr;
}
G_NORETURN void sparc_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
MMUAccessType access_type,
int mmu_idx,
uintptr_t retaddr)
{
SPARCCPU *cpu = SPARC_CPU(cs);
CPUSPARCState *env = &cpu->env;
#ifdef TARGET_SPARC64
env->dmmu.sfsr = build_sfsr(env, mmu_idx, access_type);
env->dmmu.sfar = addr;
#else
env->mmuregs[4] = addr;
#endif
cpu_raise_exception_ra(env, TT_UNALIGNED, retaddr);
}