qemu-e2k/target-ppc/machine.c
David Gibson cd6a9bb6e9 target-ppc: Rework SLB page size lookup
Currently, the ppc_hash64_page_shift() function looks up a page size based
on information in an SLB entry.  It open codes the bit translation for
existing CPUs, however different CPU models can have different SLB
encodings.  We already store those in the 'sps' table in CPUPPCState, but
we don't currently enforce that that actually matches the logic in
ppc_hash64_page_shift.

This patch reworks lookup of page size from SLB in several ways:
  * ppc_store_slb() will now fail (triggering an illegal instruction
    exception) if given a bad SLB page size encoding
  * On success ppc_store_slb() stores a pointer to the relevant entry in
    the page size table in the SLB entry.  This is looked up directly from
    the published table of page size encodings, so can't get out ot sync.
  * ppc_hash64_htab_lookup() and others now use this precached page size
    information rather than decoding the SLB values
  * Now that callers have easy access to the page_shift,
    ppc_hash64_pte_raddr() amounts to just a deposit64(), so remove it and
    have the callers use deposit64() directly.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Reviewed-by: Alexander Graf <agraf@suse.de>
2016-01-30 23:37:38 +11:00

578 lines
16 KiB
C

#include "qemu/osdep.h"
#include "hw/hw.h"
#include "hw/boards.h"
#include "sysemu/kvm.h"
#include "helper_regs.h"
#include "mmu-hash64.h"
static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
unsigned int i, j;
target_ulong sdr1;
uint32_t fpscr;
target_ulong xer;
for (i = 0; i < 32; i++)
qemu_get_betls(f, &env->gpr[i]);
#if !defined(TARGET_PPC64)
for (i = 0; i < 32; i++)
qemu_get_betls(f, &env->gprh[i]);
#endif
qemu_get_betls(f, &env->lr);
qemu_get_betls(f, &env->ctr);
for (i = 0; i < 8; i++)
qemu_get_be32s(f, &env->crf[i]);
qemu_get_betls(f, &xer);
cpu_write_xer(env, xer);
qemu_get_betls(f, &env->reserve_addr);
qemu_get_betls(f, &env->msr);
for (i = 0; i < 4; i++)
qemu_get_betls(f, &env->tgpr[i]);
for (i = 0; i < 32; i++) {
union {
float64 d;
uint64_t l;
} u;
u.l = qemu_get_be64(f);
env->fpr[i] = u.d;
}
qemu_get_be32s(f, &fpscr);
env->fpscr = fpscr;
qemu_get_sbe32s(f, &env->access_type);
#if defined(TARGET_PPC64)
qemu_get_betls(f, &env->spr[SPR_ASR]);
qemu_get_sbe32s(f, &env->slb_nr);
#endif
qemu_get_betls(f, &sdr1);
for (i = 0; i < 32; i++)
qemu_get_betls(f, &env->sr[i]);
for (i = 0; i < 2; i++)
for (j = 0; j < 8; j++)
qemu_get_betls(f, &env->DBAT[i][j]);
for (i = 0; i < 2; i++)
for (j = 0; j < 8; j++)
qemu_get_betls(f, &env->IBAT[i][j]);
qemu_get_sbe32s(f, &env->nb_tlb);
qemu_get_sbe32s(f, &env->tlb_per_way);
qemu_get_sbe32s(f, &env->nb_ways);
qemu_get_sbe32s(f, &env->last_way);
qemu_get_sbe32s(f, &env->id_tlbs);
qemu_get_sbe32s(f, &env->nb_pids);
if (env->tlb.tlb6) {
// XXX assumes 6xx
for (i = 0; i < env->nb_tlb; i++) {
qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
}
}
for (i = 0; i < 4; i++)
qemu_get_betls(f, &env->pb[i]);
for (i = 0; i < 1024; i++)
qemu_get_betls(f, &env->spr[i]);
if (!env->external_htab) {
ppc_store_sdr1(env, sdr1);
}
qemu_get_be32s(f, &env->vscr);
qemu_get_be64s(f, &env->spe_acc);
qemu_get_be32s(f, &env->spe_fscr);
qemu_get_betls(f, &env->msr_mask);
qemu_get_be32s(f, &env->flags);
qemu_get_sbe32s(f, &env->error_code);
qemu_get_be32s(f, &env->pending_interrupts);
qemu_get_be32s(f, &env->irq_input_state);
for (i = 0; i < POWERPC_EXCP_NB; i++)
qemu_get_betls(f, &env->excp_vectors[i]);
qemu_get_betls(f, &env->excp_prefix);
qemu_get_betls(f, &env->ivor_mask);
qemu_get_betls(f, &env->ivpr_mask);
qemu_get_betls(f, &env->hreset_vector);
qemu_get_betls(f, &env->nip);
qemu_get_betls(f, &env->hflags);
qemu_get_betls(f, &env->hflags_nmsr);
qemu_get_sbe32s(f, &env->mmu_idx);
qemu_get_sbe32(f); /* Discard unused power_mode */
return 0;
}
static int get_avr(QEMUFile *f, void *pv, size_t size)
{
ppc_avr_t *v = pv;
v->u64[0] = qemu_get_be64(f);
v->u64[1] = qemu_get_be64(f);
return 0;
}
static void put_avr(QEMUFile *f, void *pv, size_t size)
{
ppc_avr_t *v = pv;
qemu_put_be64(f, v->u64[0]);
qemu_put_be64(f, v->u64[1]);
}
static const VMStateInfo vmstate_info_avr = {
.name = "avr",
.get = get_avr,
.put = put_avr,
};
#define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \
VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_avr, ppc_avr_t)
#define VMSTATE_AVR_ARRAY(_f, _s, _n) \
VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
static void cpu_pre_save(void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
int i;
env->spr[SPR_LR] = env->lr;
env->spr[SPR_CTR] = env->ctr;
env->spr[SPR_XER] = env->xer;
#if defined(TARGET_PPC64)
env->spr[SPR_CFAR] = env->cfar;
#endif
env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
env->spr[SPR_DBAT0U + 2*i] = env->DBAT[0][i];
env->spr[SPR_DBAT0U + 2*i + 1] = env->DBAT[1][i];
env->spr[SPR_IBAT0U + 2*i] = env->IBAT[0][i];
env->spr[SPR_IBAT0U + 2*i + 1] = env->IBAT[1][i];
}
for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
env->spr[SPR_DBAT4U + 2*i] = env->DBAT[0][i+4];
env->spr[SPR_DBAT4U + 2*i + 1] = env->DBAT[1][i+4];
env->spr[SPR_IBAT4U + 2*i] = env->IBAT[0][i+4];
env->spr[SPR_IBAT4U + 2*i + 1] = env->IBAT[1][i+4];
}
}
static int cpu_post_load(void *opaque, int version_id)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
int i;
target_ulong msr;
/*
* We always ignore the source PVR. The user or management
* software has to take care of running QEMU in a compatible mode.
*/
env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
env->lr = env->spr[SPR_LR];
env->ctr = env->spr[SPR_CTR];
cpu_write_xer(env, env->spr[SPR_XER]);
#if defined(TARGET_PPC64)
env->cfar = env->spr[SPR_CFAR];
#endif
env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2*i];
env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2*i + 1];
env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2*i];
env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2*i + 1];
}
for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
env->DBAT[0][i+4] = env->spr[SPR_DBAT4U + 2*i];
env->DBAT[1][i+4] = env->spr[SPR_DBAT4U + 2*i + 1];
env->IBAT[0][i+4] = env->spr[SPR_IBAT4U + 2*i];
env->IBAT[1][i+4] = env->spr[SPR_IBAT4U + 2*i + 1];
}
if (!env->external_htab) {
/* Restore htab_base and htab_mask variables */
ppc_store_sdr1(env, env->spr[SPR_SDR1]);
}
/* Invalidate all msr bits except MSR_TGPR/MSR_HVB before restoring */
msr = env->msr;
env->msr ^= ~((1ULL << MSR_TGPR) | MSR_HVB);
ppc_store_msr(env, msr);
hreg_compute_mem_idx(env);
return 0;
}
static bool fpu_needed(void *opaque)
{
PowerPCCPU *cpu = opaque;
return (cpu->env.insns_flags & PPC_FLOAT);
}
static const VMStateDescription vmstate_fpu = {
.name = "cpu/fpu",
.version_id = 1,
.minimum_version_id = 1,
.needed = fpu_needed,
.fields = (VMStateField[]) {
VMSTATE_FLOAT64_ARRAY(env.fpr, PowerPCCPU, 32),
VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
VMSTATE_END_OF_LIST()
},
};
static bool altivec_needed(void *opaque)
{
PowerPCCPU *cpu = opaque;
return (cpu->env.insns_flags & PPC_ALTIVEC);
}
static const VMStateDescription vmstate_altivec = {
.name = "cpu/altivec",
.version_id = 1,
.minimum_version_id = 1,
.needed = altivec_needed,
.fields = (VMStateField[]) {
VMSTATE_AVR_ARRAY(env.avr, PowerPCCPU, 32),
VMSTATE_UINT32(env.vscr, PowerPCCPU),
VMSTATE_END_OF_LIST()
},
};
static bool vsx_needed(void *opaque)
{
PowerPCCPU *cpu = opaque;
return (cpu->env.insns_flags2 & PPC2_VSX);
}
static const VMStateDescription vmstate_vsx = {
.name = "cpu/vsx",
.version_id = 1,
.minimum_version_id = 1,
.needed = vsx_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64_ARRAY(env.vsr, PowerPCCPU, 32),
VMSTATE_END_OF_LIST()
},
};
#ifdef TARGET_PPC64
/* Transactional memory state */
static bool tm_needed(void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
return msr_ts;
}
static const VMStateDescription vmstate_tm = {
.name = "cpu/tm",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.needed = tm_needed,
.fields = (VMStateField []) {
VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
VMSTATE_END_OF_LIST()
},
};
#endif
static bool sr_needed(void *opaque)
{
#ifdef TARGET_PPC64
PowerPCCPU *cpu = opaque;
return !(cpu->env.mmu_model & POWERPC_MMU_64);
#else
return true;
#endif
}
static const VMStateDescription vmstate_sr = {
.name = "cpu/sr",
.version_id = 1,
.minimum_version_id = 1,
.needed = sr_needed,
.fields = (VMStateField[]) {
VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
VMSTATE_END_OF_LIST()
},
};
#ifdef TARGET_PPC64
static int get_slbe(QEMUFile *f, void *pv, size_t size)
{
ppc_slb_t *v = pv;
v->esid = qemu_get_be64(f);
v->vsid = qemu_get_be64(f);
return 0;
}
static void put_slbe(QEMUFile *f, void *pv, size_t size)
{
ppc_slb_t *v = pv;
qemu_put_be64(f, v->esid);
qemu_put_be64(f, v->vsid);
}
static const VMStateInfo vmstate_info_slbe = {
.name = "slbe",
.get = get_slbe,
.put = put_slbe,
};
#define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \
VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
#define VMSTATE_SLB_ARRAY(_f, _s, _n) \
VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
static bool slb_needed(void *opaque)
{
PowerPCCPU *cpu = opaque;
/* We don't support any of the old segment table based 64-bit CPUs */
return (cpu->env.mmu_model & POWERPC_MMU_64);
}
static int slb_post_load(void *opaque, int version_id)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
int i;
/* We've pulled in the raw esid and vsid values from the migration
* stream, but we need to recompute the page size pointers */
for (i = 0; i < env->slb_nr; i++) {
if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
/* Migration source had bad values in its SLB */
return -1;
}
}
return 0;
}
static const VMStateDescription vmstate_slb = {
.name = "cpu/slb",
.version_id = 1,
.minimum_version_id = 1,
.needed = slb_needed,
.post_load = slb_post_load,
.fields = (VMStateField[]) {
VMSTATE_INT32_EQUAL(env.slb_nr, PowerPCCPU),
VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
VMSTATE_END_OF_LIST()
}
};
#endif /* TARGET_PPC64 */
static const VMStateDescription vmstate_tlb6xx_entry = {
.name = "cpu/tlb6xx_entry",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
VMSTATE_END_OF_LIST()
},
};
static bool tlb6xx_needed(void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
return env->nb_tlb && (env->tlb_type == TLB_6XX);
}
static const VMStateDescription vmstate_tlb6xx = {
.name = "cpu/tlb6xx",
.version_id = 1,
.minimum_version_id = 1,
.needed = tlb6xx_needed,
.fields = (VMStateField[]) {
VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU),
VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
env.nb_tlb,
vmstate_tlb6xx_entry,
ppc6xx_tlb_t),
VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_tlbemb_entry = {
.name = "cpu/tlbemb_entry",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT64(RPN, ppcemb_tlb_t),
VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
VMSTATE_UINTTL(PID, ppcemb_tlb_t),
VMSTATE_UINTTL(size, ppcemb_tlb_t),
VMSTATE_UINT32(prot, ppcemb_tlb_t),
VMSTATE_UINT32(attr, ppcemb_tlb_t),
VMSTATE_END_OF_LIST()
},
};
static bool tlbemb_needed(void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
return env->nb_tlb && (env->tlb_type == TLB_EMB);
}
static bool pbr403_needed(void *opaque)
{
PowerPCCPU *cpu = opaque;
uint32_t pvr = cpu->env.spr[SPR_PVR];
return (pvr & 0xffff0000) == 0x00200000;
}
static const VMStateDescription vmstate_pbr403 = {
.name = "cpu/pbr403",
.version_id = 1,
.minimum_version_id = 1,
.needed = pbr403_needed,
.fields = (VMStateField[]) {
VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
VMSTATE_END_OF_LIST()
},
};
static const VMStateDescription vmstate_tlbemb = {
.name = "cpu/tlb6xx",
.version_id = 1,
.minimum_version_id = 1,
.needed = tlbemb_needed,
.fields = (VMStateField[]) {
VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU),
VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
env.nb_tlb,
vmstate_tlbemb_entry,
ppcemb_tlb_t),
/* 403 protection registers */
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_pbr403,
NULL
}
};
static const VMStateDescription vmstate_tlbmas_entry = {
.name = "cpu/tlbmas_entry",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(mas8, ppcmas_tlb_t),
VMSTATE_UINT32(mas1, ppcmas_tlb_t),
VMSTATE_UINT64(mas2, ppcmas_tlb_t),
VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
VMSTATE_END_OF_LIST()
},
};
static bool tlbmas_needed(void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
return env->nb_tlb && (env->tlb_type == TLB_MAS);
}
static const VMStateDescription vmstate_tlbmas = {
.name = "cpu/tlbmas",
.version_id = 1,
.minimum_version_id = 1,
.needed = tlbmas_needed,
.fields = (VMStateField[]) {
VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU),
VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
env.nb_tlb,
vmstate_tlbmas_entry,
ppcmas_tlb_t),
VMSTATE_END_OF_LIST()
}
};
const VMStateDescription vmstate_ppc_cpu = {
.name = "cpu",
.version_id = 5,
.minimum_version_id = 5,
.minimum_version_id_old = 4,
.load_state_old = cpu_load_old,
.pre_save = cpu_pre_save,
.post_load = cpu_post_load,
.fields = (VMStateField[]) {
VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
/* User mode architected state */
VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
#if !defined(TARGET_PPC64)
VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
#endif
VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
VMSTATE_UINTTL(env.nip, PowerPCCPU),
/* SPRs */
VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
/* Reservation */
VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
/* Supervisor mode architected state */
VMSTATE_UINTTL(env.msr, PowerPCCPU),
/* Internal state */
VMSTATE_UINTTL(env.hflags_nmsr, PowerPCCPU),
/* FIXME: access_type? */
/* Sanity checking */
VMSTATE_UINTTL_EQUAL(env.msr_mask, PowerPCCPU),
VMSTATE_UINT64_EQUAL(env.insns_flags, PowerPCCPU),
VMSTATE_UINT64_EQUAL(env.insns_flags2, PowerPCCPU),
VMSTATE_UINT32_EQUAL(env.nb_BATs, PowerPCCPU),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_fpu,
&vmstate_altivec,
&vmstate_vsx,
&vmstate_sr,
#ifdef TARGET_PPC64
&vmstate_tm,
&vmstate_slb,
#endif /* TARGET_PPC64 */
&vmstate_tlb6xx,
&vmstate_tlbemb,
&vmstate_tlbmas,
NULL
}
};