qemu-e2k/hw/arm/mps2-tz.c
Thomas Huth fcf13ca556 hw/arm/mps2-tz: Replace init_sysbus_child() with sysbus_init_child_obj()
Now that we've got the common sysbus_init_child_obj() function, we do
not need the local init_sysbus_child() anymore.

Signed-off-by: Thomas Huth <thuth@redhat.com>
Message-id: 1534420566-15799-1-git-send-email-thuth@redhat.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2018-08-16 14:29:58 +01:00

524 lines
21 KiB
C

/*
* ARM V2M MPS2 board emulation, trustzone aware FPGA images
*
* Copyright (c) 2017 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
/* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
* FPGA but is otherwise the same as the 2). Since the CPU itself
* and most of the devices are in the FPGA, the details of the board
* as seen by the guest depend significantly on the FPGA image.
* This source file covers the following FPGA images, for TrustZone cores:
* "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
*
* Links to the TRM for the board itself and to the various Application
* Notes which document the FPGA images can be found here:
* https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
*
* Board TRM:
* http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
* Application Note AN505:
* http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
*
* The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
* (ARM ECM0601256) for the details of some of the device layout:
* http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "hw/arm/arm.h"
#include "hw/arm/armv7m.h"
#include "hw/or-irq.h"
#include "hw/boards.h"
#include "exec/address-spaces.h"
#include "sysemu/sysemu.h"
#include "hw/misc/unimp.h"
#include "hw/char/cmsdk-apb-uart.h"
#include "hw/timer/cmsdk-apb-timer.h"
#include "hw/misc/mps2-scc.h"
#include "hw/misc/mps2-fpgaio.h"
#include "hw/misc/tz-mpc.h"
#include "hw/arm/iotkit.h"
#include "hw/devices.h"
#include "net/net.h"
#include "hw/core/split-irq.h"
typedef enum MPS2TZFPGAType {
FPGA_AN505,
} MPS2TZFPGAType;
typedef struct {
MachineClass parent;
MPS2TZFPGAType fpga_type;
uint32_t scc_id;
} MPS2TZMachineClass;
typedef struct {
MachineState parent;
IoTKit iotkit;
MemoryRegion psram;
MemoryRegion ssram[3];
MemoryRegion ssram1_m;
MPS2SCC scc;
MPS2FPGAIO fpgaio;
TZPPC ppc[5];
TZMPC ssram_mpc[3];
UnimplementedDeviceState spi[5];
UnimplementedDeviceState i2c[4];
UnimplementedDeviceState i2s_audio;
UnimplementedDeviceState gpio[4];
UnimplementedDeviceState dma[4];
UnimplementedDeviceState gfx;
CMSDKAPBUART uart[5];
SplitIRQ sec_resp_splitter;
qemu_or_irq uart_irq_orgate;
DeviceState *lan9118;
} MPS2TZMachineState;
#define TYPE_MPS2TZ_MACHINE "mps2tz"
#define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
#define MPS2TZ_MACHINE(obj) \
OBJECT_CHECK(MPS2TZMachineState, obj, TYPE_MPS2TZ_MACHINE)
#define MPS2TZ_MACHINE_GET_CLASS(obj) \
OBJECT_GET_CLASS(MPS2TZMachineClass, obj, TYPE_MPS2TZ_MACHINE)
#define MPS2TZ_MACHINE_CLASS(klass) \
OBJECT_CLASS_CHECK(MPS2TZMachineClass, klass, TYPE_MPS2TZ_MACHINE)
/* Main SYSCLK frequency in Hz */
#define SYSCLK_FRQ 20000000
/* Create an alias of an entire original MemoryRegion @orig
* located at @base in the memory map.
*/
static void make_ram_alias(MemoryRegion *mr, const char *name,
MemoryRegion *orig, hwaddr base)
{
memory_region_init_alias(mr, NULL, name, orig, 0,
memory_region_size(orig));
memory_region_add_subregion(get_system_memory(), base, mr);
}
/* Most of the devices in the AN505 FPGA image sit behind
* Peripheral Protection Controllers. These data structures
* define the layout of which devices sit behind which PPCs.
* The devfn for each port is a function which creates, configures
* and initializes the device, returning the MemoryRegion which
* needs to be plugged into the downstream end of the PPC port.
*/
typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
const char *name, hwaddr size);
typedef struct PPCPortInfo {
const char *name;
MakeDevFn *devfn;
void *opaque;
hwaddr addr;
hwaddr size;
} PPCPortInfo;
typedef struct PPCInfo {
const char *name;
PPCPortInfo ports[TZ_NUM_PORTS];
} PPCInfo;
static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
void *opaque,
const char *name, hwaddr size)
{
/* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
* and return a pointer to its MemoryRegion.
*/
UnimplementedDeviceState *uds = opaque;
sysbus_init_child_obj(OBJECT(mms), name, uds,
sizeof(UnimplementedDeviceState),
TYPE_UNIMPLEMENTED_DEVICE);
qdev_prop_set_string(DEVICE(uds), "name", name);
qdev_prop_set_uint64(DEVICE(uds), "size", size);
object_property_set_bool(OBJECT(uds), true, "realized", &error_fatal);
return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
}
static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
const char *name, hwaddr size)
{
CMSDKAPBUART *uart = opaque;
int i = uart - &mms->uart[0];
int rxirqno = i * 2;
int txirqno = i * 2 + 1;
int combirqno = i + 10;
SysBusDevice *s;
DeviceState *iotkitdev = DEVICE(&mms->iotkit);
DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
sysbus_init_child_obj(OBJECT(mms), name, uart, sizeof(mms->uart[0]),
TYPE_CMSDK_APB_UART);
qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ);
object_property_set_bool(OBJECT(uart), true, "realized", &error_fatal);
s = SYS_BUS_DEVICE(uart);
sysbus_connect_irq(s, 0, qdev_get_gpio_in_named(iotkitdev,
"EXP_IRQ", txirqno));
sysbus_connect_irq(s, 1, qdev_get_gpio_in_named(iotkitdev,
"EXP_IRQ", rxirqno));
sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
sysbus_connect_irq(s, 4, qdev_get_gpio_in_named(iotkitdev,
"EXP_IRQ", combirqno));
return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
}
static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
const char *name, hwaddr size)
{
MPS2SCC *scc = opaque;
DeviceState *sccdev;
MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
object_initialize(scc, sizeof(mms->scc), TYPE_MPS2_SCC);
sccdev = DEVICE(scc);
qdev_set_parent_bus(sccdev, sysbus_get_default());
qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
qdev_prop_set_uint32(sccdev, "scc-aid", 0x02000008);
qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
object_property_set_bool(OBJECT(scc), true, "realized", &error_fatal);
return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
}
static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
const char *name, hwaddr size)
{
MPS2FPGAIO *fpgaio = opaque;
object_initialize(fpgaio, sizeof(mms->fpgaio), TYPE_MPS2_FPGAIO);
qdev_set_parent_bus(DEVICE(fpgaio), sysbus_get_default());
object_property_set_bool(OBJECT(fpgaio), true, "realized", &error_fatal);
return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
}
static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
const char *name, hwaddr size)
{
SysBusDevice *s;
DeviceState *iotkitdev = DEVICE(&mms->iotkit);
NICInfo *nd = &nd_table[0];
/* In hardware this is a LAN9220; the LAN9118 is software compatible
* except that it doesn't support the checksum-offload feature.
*/
qemu_check_nic_model(nd, "lan9118");
mms->lan9118 = qdev_create(NULL, "lan9118");
qdev_set_nic_properties(mms->lan9118, nd);
qdev_init_nofail(mms->lan9118);
s = SYS_BUS_DEVICE(mms->lan9118);
sysbus_connect_irq(s, 0, qdev_get_gpio_in_named(iotkitdev, "EXP_IRQ", 16));
return sysbus_mmio_get_region(s, 0);
}
static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
const char *name, hwaddr size)
{
TZMPC *mpc = opaque;
int i = mpc - &mms->ssram_mpc[0];
MemoryRegion *ssram = &mms->ssram[i];
MemoryRegion *upstream;
char *mpcname = g_strdup_printf("%s-mpc", name);
static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 };
static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 };
memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal);
sysbus_init_child_obj(OBJECT(mms), mpcname, mpc, sizeof(mms->ssram_mpc[0]),
TYPE_TZ_MPC);
object_property_set_link(OBJECT(mpc), OBJECT(ssram),
"downstream", &error_fatal);
object_property_set_bool(OBJECT(mpc), true, "realized", &error_fatal);
/* Map the upstream end of the MPC into system memory */
upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
memory_region_add_subregion(get_system_memory(), rambase[i], upstream);
/* and connect its interrupt to the IoTKit */
qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
"mpcexp_status", i));
/* The first SSRAM is a special case as it has an alias; accesses to
* the alias region at 0x00400000 must also go to the MPC upstream.
*/
if (i == 0) {
make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000);
}
g_free(mpcname);
/* Return the register interface MR for our caller to map behind the PPC */
return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
}
static void mps2tz_common_init(MachineState *machine)
{
MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
MachineClass *mc = MACHINE_GET_CLASS(machine);
MemoryRegion *system_memory = get_system_memory();
DeviceState *iotkitdev;
DeviceState *dev_splitter;
int i;
if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
error_report("This board can only be used with CPU %s",
mc->default_cpu_type);
exit(1);
}
sysbus_init_child_obj(OBJECT(machine), "iotkit", &mms->iotkit,
sizeof(mms->iotkit), TYPE_IOTKIT);
iotkitdev = DEVICE(&mms->iotkit);
object_property_set_link(OBJECT(&mms->iotkit), OBJECT(system_memory),
"memory", &error_abort);
qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", 92);
qdev_prop_set_uint32(iotkitdev, "MAINCLK", SYSCLK_FRQ);
object_property_set_bool(OBJECT(&mms->iotkit), true, "realized",
&error_fatal);
/* The sec_resp_cfg output from the IoTKit must be split into multiple
* lines, one for each of the PPCs we create here.
*/
object_initialize(&mms->sec_resp_splitter, sizeof(mms->sec_resp_splitter),
TYPE_SPLIT_IRQ);
object_property_add_child(OBJECT(machine), "sec-resp-splitter",
OBJECT(&mms->sec_resp_splitter), &error_abort);
object_property_set_int(OBJECT(&mms->sec_resp_splitter), 5,
"num-lines", &error_fatal);
object_property_set_bool(OBJECT(&mms->sec_resp_splitter), true,
"realized", &error_fatal);
dev_splitter = DEVICE(&mms->sec_resp_splitter);
qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
qdev_get_gpio_in(dev_splitter, 0));
/* The IoTKit sets up much of the memory layout, including
* the aliases between secure and non-secure regions in the
* address space. The FPGA itself contains:
*
* 0x00000000..0x003fffff SSRAM1
* 0x00400000..0x007fffff alias of SSRAM1
* 0x28000000..0x283fffff 4MB SSRAM2 + SSRAM3
* 0x40100000..0x4fffffff AHB Master Expansion 1 interface devices
* 0x80000000..0x80ffffff 16MB PSRAM
*/
/* The FPGA images have an odd combination of different RAMs,
* because in hardware they are different implementations and
* connected to different buses, giving varying performance/size
* tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
* call the 16MB our "system memory", as it's the largest lump.
*/
memory_region_allocate_system_memory(&mms->psram,
NULL, "mps.ram", 0x01000000);
memory_region_add_subregion(system_memory, 0x80000000, &mms->psram);
/* The overflow IRQs for all UARTs are ORed together.
* Tx, Rx and "combined" IRQs are sent to the NVIC separately.
* Create the OR gate for this.
*/
object_initialize(&mms->uart_irq_orgate, sizeof(mms->uart_irq_orgate),
TYPE_OR_IRQ);
object_property_add_child(OBJECT(mms), "uart-irq-orgate",
OBJECT(&mms->uart_irq_orgate), &error_abort);
object_property_set_int(OBJECT(&mms->uart_irq_orgate), 10, "num-lines",
&error_fatal);
object_property_set_bool(OBJECT(&mms->uart_irq_orgate), true,
"realized", &error_fatal);
qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
qdev_get_gpio_in_named(iotkitdev, "EXP_IRQ", 15));
/* Most of the devices in the FPGA are behind Peripheral Protection
* Controllers. The required order for initializing things is:
* + initialize the PPC
* + initialize, configure and realize downstream devices
* + connect downstream device MemoryRegions to the PPC
* + realize the PPC
* + map the PPC's MemoryRegions to the places in the address map
* where the downstream devices should appear
* + wire up the PPC's control lines to the IoTKit object
*/
const PPCInfo ppcs[] = { {
.name = "apb_ppcexp0",
.ports = {
{ "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 },
{ "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 },
{ "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 },
},
}, {
.name = "apb_ppcexp1",
.ports = {
{ "spi0", make_unimp_dev, &mms->spi[0], 0x40205000, 0x1000 },
{ "spi1", make_unimp_dev, &mms->spi[1], 0x40206000, 0x1000 },
{ "spi2", make_unimp_dev, &mms->spi[2], 0x40209000, 0x1000 },
{ "spi3", make_unimp_dev, &mms->spi[3], 0x4020a000, 0x1000 },
{ "spi4", make_unimp_dev, &mms->spi[4], 0x4020b000, 0x1000 },
{ "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 },
{ "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 },
{ "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 },
{ "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 },
{ "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 },
{ "i2c0", make_unimp_dev, &mms->i2c[0], 0x40207000, 0x1000 },
{ "i2c1", make_unimp_dev, &mms->i2c[1], 0x40208000, 0x1000 },
{ "i2c2", make_unimp_dev, &mms->i2c[2], 0x4020c000, 0x1000 },
{ "i2c3", make_unimp_dev, &mms->i2c[3], 0x4020d000, 0x1000 },
},
}, {
.name = "apb_ppcexp2",
.ports = {
{ "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
{ "i2s-audio", make_unimp_dev, &mms->i2s_audio,
0x40301000, 0x1000 },
{ "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
},
}, {
.name = "ahb_ppcexp0",
.ports = {
{ "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
{ "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
{ "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
{ "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
{ "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
{ "eth", make_eth_dev, NULL, 0x42000000, 0x100000 },
},
}, {
.name = "ahb_ppcexp1",
.ports = {
{ "dma0", make_unimp_dev, &mms->dma[0], 0x40110000, 0x1000 },
{ "dma1", make_unimp_dev, &mms->dma[1], 0x40111000, 0x1000 },
{ "dma2", make_unimp_dev, &mms->dma[2], 0x40112000, 0x1000 },
{ "dma3", make_unimp_dev, &mms->dma[3], 0x40113000, 0x1000 },
},
},
};
for (i = 0; i < ARRAY_SIZE(ppcs); i++) {
const PPCInfo *ppcinfo = &ppcs[i];
TZPPC *ppc = &mms->ppc[i];
DeviceState *ppcdev;
int port;
char *gpioname;
sysbus_init_child_obj(OBJECT(machine), ppcinfo->name, ppc,
sizeof(TZPPC), TYPE_TZ_PPC);
ppcdev = DEVICE(ppc);
for (port = 0; port < TZ_NUM_PORTS; port++) {
const PPCPortInfo *pinfo = &ppcinfo->ports[port];
MemoryRegion *mr;
char *portname;
if (!pinfo->devfn) {
continue;
}
mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
portname = g_strdup_printf("port[%d]", port);
object_property_set_link(OBJECT(ppc), OBJECT(mr),
portname, &error_fatal);
g_free(portname);
}
object_property_set_bool(OBJECT(ppc), true, "realized", &error_fatal);
for (port = 0; port < TZ_NUM_PORTS; port++) {
const PPCPortInfo *pinfo = &ppcinfo->ports[port];
if (!pinfo->devfn) {
continue;
}
sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
qdev_get_gpio_in_named(ppcdev,
"cfg_nonsec",
port));
g_free(gpioname);
gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
qdev_get_gpio_in_named(ppcdev,
"cfg_ap", port));
g_free(gpioname);
}
gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
qdev_get_gpio_in_named(ppcdev,
"irq_enable", 0));
g_free(gpioname);
gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
qdev_get_gpio_in_named(ppcdev,
"irq_clear", 0));
g_free(gpioname);
gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
qdev_connect_gpio_out_named(ppcdev, "irq", 0,
qdev_get_gpio_in_named(iotkitdev,
gpioname, 0));
g_free(gpioname);
qdev_connect_gpio_out(dev_splitter, i,
qdev_get_gpio_in_named(ppcdev,
"cfg_sec_resp", 0));
}
create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000);
}
static void mps2tz_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->init = mps2tz_common_init;
mc->max_cpus = 1;
}
static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
mmc->fpga_type = FPGA_AN505;
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
mmc->scc_id = 0x41040000 | (505 << 4);
}
static const TypeInfo mps2tz_info = {
.name = TYPE_MPS2TZ_MACHINE,
.parent = TYPE_MACHINE,
.abstract = true,
.instance_size = sizeof(MPS2TZMachineState),
.class_size = sizeof(MPS2TZMachineClass),
.class_init = mps2tz_class_init,
};
static const TypeInfo mps2tz_an505_info = {
.name = TYPE_MPS2TZ_AN505_MACHINE,
.parent = TYPE_MPS2TZ_MACHINE,
.class_init = mps2tz_an505_class_init,
};
static void mps2tz_machine_init(void)
{
type_register_static(&mps2tz_info);
type_register_static(&mps2tz_an505_info);
}
type_init(mps2tz_machine_init);