190cd0215b
Signed-off-by: Paul Brook <paul@codesourcery.com> git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@7090 c046a42c-6fe2-441c-8c8c-71466251a162
1408 lines
37 KiB
C
1408 lines
37 KiB
C
/*
|
|
* Luminary Micro Stellaris peripherals
|
|
*
|
|
* Copyright (c) 2006 CodeSourcery.
|
|
* Written by Paul Brook
|
|
*
|
|
* This code is licenced under the GPL.
|
|
*/
|
|
|
|
#include "hw.h"
|
|
#include "arm-misc.h"
|
|
#include "primecell.h"
|
|
#include "devices.h"
|
|
#include "qemu-timer.h"
|
|
#include "i2c.h"
|
|
#include "net.h"
|
|
#include "sd.h"
|
|
#include "sysemu.h"
|
|
#include "boards.h"
|
|
|
|
#define GPIO_A 0
|
|
#define GPIO_B 1
|
|
#define GPIO_C 2
|
|
#define GPIO_D 3
|
|
#define GPIO_E 4
|
|
#define GPIO_F 5
|
|
#define GPIO_G 6
|
|
|
|
#define BP_OLED_I2C 0x01
|
|
#define BP_OLED_SSI 0x02
|
|
#define BP_GAMEPAD 0x04
|
|
|
|
typedef const struct {
|
|
const char *name;
|
|
uint32_t did0;
|
|
uint32_t did1;
|
|
uint32_t dc0;
|
|
uint32_t dc1;
|
|
uint32_t dc2;
|
|
uint32_t dc3;
|
|
uint32_t dc4;
|
|
uint32_t peripherals;
|
|
} stellaris_board_info;
|
|
|
|
/* General purpose timer module. */
|
|
|
|
typedef struct gptm_state {
|
|
uint32_t config;
|
|
uint32_t mode[2];
|
|
uint32_t control;
|
|
uint32_t state;
|
|
uint32_t mask;
|
|
uint32_t load[2];
|
|
uint32_t match[2];
|
|
uint32_t prescale[2];
|
|
uint32_t match_prescale[2];
|
|
uint32_t rtc;
|
|
int64_t tick[2];
|
|
struct gptm_state *opaque[2];
|
|
QEMUTimer *timer[2];
|
|
/* The timers have an alternate output used to trigger the ADC. */
|
|
qemu_irq trigger;
|
|
qemu_irq irq;
|
|
} gptm_state;
|
|
|
|
static void gptm_update_irq(gptm_state *s)
|
|
{
|
|
int level;
|
|
level = (s->state & s->mask) != 0;
|
|
qemu_set_irq(s->irq, level);
|
|
}
|
|
|
|
static void gptm_stop(gptm_state *s, int n)
|
|
{
|
|
qemu_del_timer(s->timer[n]);
|
|
}
|
|
|
|
static void gptm_reload(gptm_state *s, int n, int reset)
|
|
{
|
|
int64_t tick;
|
|
if (reset)
|
|
tick = qemu_get_clock(vm_clock);
|
|
else
|
|
tick = s->tick[n];
|
|
|
|
if (s->config == 0) {
|
|
/* 32-bit CountDown. */
|
|
uint32_t count;
|
|
count = s->load[0] | (s->load[1] << 16);
|
|
tick += (int64_t)count * system_clock_scale;
|
|
} else if (s->config == 1) {
|
|
/* 32-bit RTC. 1Hz tick. */
|
|
tick += ticks_per_sec;
|
|
} else if (s->mode[n] == 0xa) {
|
|
/* PWM mode. Not implemented. */
|
|
} else {
|
|
cpu_abort(cpu_single_env, "TODO: 16-bit timer mode 0x%x\n",
|
|
s->mode[n]);
|
|
}
|
|
s->tick[n] = tick;
|
|
qemu_mod_timer(s->timer[n], tick);
|
|
}
|
|
|
|
static void gptm_tick(void *opaque)
|
|
{
|
|
gptm_state **p = (gptm_state **)opaque;
|
|
gptm_state *s;
|
|
int n;
|
|
|
|
s = *p;
|
|
n = p - s->opaque;
|
|
if (s->config == 0) {
|
|
s->state |= 1;
|
|
if ((s->control & 0x20)) {
|
|
/* Output trigger. */
|
|
qemu_irq_raise(s->trigger);
|
|
qemu_irq_lower(s->trigger);
|
|
}
|
|
if (s->mode[0] & 1) {
|
|
/* One-shot. */
|
|
s->control &= ~1;
|
|
} else {
|
|
/* Periodic. */
|
|
gptm_reload(s, 0, 0);
|
|
}
|
|
} else if (s->config == 1) {
|
|
/* RTC. */
|
|
uint32_t match;
|
|
s->rtc++;
|
|
match = s->match[0] | (s->match[1] << 16);
|
|
if (s->rtc > match)
|
|
s->rtc = 0;
|
|
if (s->rtc == 0) {
|
|
s->state |= 8;
|
|
}
|
|
gptm_reload(s, 0, 0);
|
|
} else if (s->mode[n] == 0xa) {
|
|
/* PWM mode. Not implemented. */
|
|
} else {
|
|
cpu_abort(cpu_single_env, "TODO: 16-bit timer mode 0x%x\n",
|
|
s->mode[n]);
|
|
}
|
|
gptm_update_irq(s);
|
|
}
|
|
|
|
static uint32_t gptm_read(void *opaque, target_phys_addr_t offset)
|
|
{
|
|
gptm_state *s = (gptm_state *)opaque;
|
|
|
|
switch (offset) {
|
|
case 0x00: /* CFG */
|
|
return s->config;
|
|
case 0x04: /* TAMR */
|
|
return s->mode[0];
|
|
case 0x08: /* TBMR */
|
|
return s->mode[1];
|
|
case 0x0c: /* CTL */
|
|
return s->control;
|
|
case 0x18: /* IMR */
|
|
return s->mask;
|
|
case 0x1c: /* RIS */
|
|
return s->state;
|
|
case 0x20: /* MIS */
|
|
return s->state & s->mask;
|
|
case 0x24: /* CR */
|
|
return 0;
|
|
case 0x28: /* TAILR */
|
|
return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
|
|
case 0x2c: /* TBILR */
|
|
return s->load[1];
|
|
case 0x30: /* TAMARCHR */
|
|
return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
|
|
case 0x34: /* TBMATCHR */
|
|
return s->match[1];
|
|
case 0x38: /* TAPR */
|
|
return s->prescale[0];
|
|
case 0x3c: /* TBPR */
|
|
return s->prescale[1];
|
|
case 0x40: /* TAPMR */
|
|
return s->match_prescale[0];
|
|
case 0x44: /* TBPMR */
|
|
return s->match_prescale[1];
|
|
case 0x48: /* TAR */
|
|
if (s->control == 1)
|
|
return s->rtc;
|
|
case 0x4c: /* TBR */
|
|
cpu_abort(cpu_single_env, "TODO: Timer value read\n");
|
|
default:
|
|
cpu_abort(cpu_single_env, "gptm_read: Bad offset 0x%x\n", (int)offset);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void gptm_write(void *opaque, target_phys_addr_t offset, uint32_t value)
|
|
{
|
|
gptm_state *s = (gptm_state *)opaque;
|
|
uint32_t oldval;
|
|
|
|
/* The timers should be disabled before changing the configuration.
|
|
We take advantage of this and defer everything until the timer
|
|
is enabled. */
|
|
switch (offset) {
|
|
case 0x00: /* CFG */
|
|
s->config = value;
|
|
break;
|
|
case 0x04: /* TAMR */
|
|
s->mode[0] = value;
|
|
break;
|
|
case 0x08: /* TBMR */
|
|
s->mode[1] = value;
|
|
break;
|
|
case 0x0c: /* CTL */
|
|
oldval = s->control;
|
|
s->control = value;
|
|
/* TODO: Implement pause. */
|
|
if ((oldval ^ value) & 1) {
|
|
if (value & 1) {
|
|
gptm_reload(s, 0, 1);
|
|
} else {
|
|
gptm_stop(s, 0);
|
|
}
|
|
}
|
|
if (((oldval ^ value) & 0x100) && s->config >= 4) {
|
|
if (value & 0x100) {
|
|
gptm_reload(s, 1, 1);
|
|
} else {
|
|
gptm_stop(s, 1);
|
|
}
|
|
}
|
|
break;
|
|
case 0x18: /* IMR */
|
|
s->mask = value & 0x77;
|
|
gptm_update_irq(s);
|
|
break;
|
|
case 0x24: /* CR */
|
|
s->state &= ~value;
|
|
break;
|
|
case 0x28: /* TAILR */
|
|
s->load[0] = value & 0xffff;
|
|
if (s->config < 4) {
|
|
s->load[1] = value >> 16;
|
|
}
|
|
break;
|
|
case 0x2c: /* TBILR */
|
|
s->load[1] = value & 0xffff;
|
|
break;
|
|
case 0x30: /* TAMARCHR */
|
|
s->match[0] = value & 0xffff;
|
|
if (s->config < 4) {
|
|
s->match[1] = value >> 16;
|
|
}
|
|
break;
|
|
case 0x34: /* TBMATCHR */
|
|
s->match[1] = value >> 16;
|
|
break;
|
|
case 0x38: /* TAPR */
|
|
s->prescale[0] = value;
|
|
break;
|
|
case 0x3c: /* TBPR */
|
|
s->prescale[1] = value;
|
|
break;
|
|
case 0x40: /* TAPMR */
|
|
s->match_prescale[0] = value;
|
|
break;
|
|
case 0x44: /* TBPMR */
|
|
s->match_prescale[0] = value;
|
|
break;
|
|
default:
|
|
cpu_abort(cpu_single_env, "gptm_write: Bad offset 0x%x\n", (int)offset);
|
|
}
|
|
gptm_update_irq(s);
|
|
}
|
|
|
|
static CPUReadMemoryFunc *gptm_readfn[] = {
|
|
gptm_read,
|
|
gptm_read,
|
|
gptm_read
|
|
};
|
|
|
|
static CPUWriteMemoryFunc *gptm_writefn[] = {
|
|
gptm_write,
|
|
gptm_write,
|
|
gptm_write
|
|
};
|
|
|
|
static void gptm_save(QEMUFile *f, void *opaque)
|
|
{
|
|
gptm_state *s = (gptm_state *)opaque;
|
|
|
|
qemu_put_be32(f, s->config);
|
|
qemu_put_be32(f, s->mode[0]);
|
|
qemu_put_be32(f, s->mode[1]);
|
|
qemu_put_be32(f, s->control);
|
|
qemu_put_be32(f, s->state);
|
|
qemu_put_be32(f, s->mask);
|
|
qemu_put_be32(f, s->mode[0]);
|
|
qemu_put_be32(f, s->mode[0]);
|
|
qemu_put_be32(f, s->load[0]);
|
|
qemu_put_be32(f, s->load[1]);
|
|
qemu_put_be32(f, s->match[0]);
|
|
qemu_put_be32(f, s->match[1]);
|
|
qemu_put_be32(f, s->prescale[0]);
|
|
qemu_put_be32(f, s->prescale[1]);
|
|
qemu_put_be32(f, s->match_prescale[0]);
|
|
qemu_put_be32(f, s->match_prescale[1]);
|
|
qemu_put_be32(f, s->rtc);
|
|
qemu_put_be64(f, s->tick[0]);
|
|
qemu_put_be64(f, s->tick[1]);
|
|
qemu_put_timer(f, s->timer[0]);
|
|
qemu_put_timer(f, s->timer[1]);
|
|
}
|
|
|
|
static int gptm_load(QEMUFile *f, void *opaque, int version_id)
|
|
{
|
|
gptm_state *s = (gptm_state *)opaque;
|
|
|
|
if (version_id != 1)
|
|
return -EINVAL;
|
|
|
|
s->config = qemu_get_be32(f);
|
|
s->mode[0] = qemu_get_be32(f);
|
|
s->mode[1] = qemu_get_be32(f);
|
|
s->control = qemu_get_be32(f);
|
|
s->state = qemu_get_be32(f);
|
|
s->mask = qemu_get_be32(f);
|
|
s->mode[0] = qemu_get_be32(f);
|
|
s->mode[0] = qemu_get_be32(f);
|
|
s->load[0] = qemu_get_be32(f);
|
|
s->load[1] = qemu_get_be32(f);
|
|
s->match[0] = qemu_get_be32(f);
|
|
s->match[1] = qemu_get_be32(f);
|
|
s->prescale[0] = qemu_get_be32(f);
|
|
s->prescale[1] = qemu_get_be32(f);
|
|
s->match_prescale[0] = qemu_get_be32(f);
|
|
s->match_prescale[1] = qemu_get_be32(f);
|
|
s->rtc = qemu_get_be32(f);
|
|
s->tick[0] = qemu_get_be64(f);
|
|
s->tick[1] = qemu_get_be64(f);
|
|
qemu_get_timer(f, s->timer[0]);
|
|
qemu_get_timer(f, s->timer[1]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void stellaris_gptm_init(uint32_t base, qemu_irq irq, qemu_irq trigger)
|
|
{
|
|
int iomemtype;
|
|
gptm_state *s;
|
|
|
|
s = (gptm_state *)qemu_mallocz(sizeof(gptm_state));
|
|
s->irq = irq;
|
|
s->trigger = trigger;
|
|
s->opaque[0] = s->opaque[1] = s;
|
|
|
|
iomemtype = cpu_register_io_memory(0, gptm_readfn,
|
|
gptm_writefn, s);
|
|
cpu_register_physical_memory(base, 0x00001000, iomemtype);
|
|
s->timer[0] = qemu_new_timer(vm_clock, gptm_tick, &s->opaque[0]);
|
|
s->timer[1] = qemu_new_timer(vm_clock, gptm_tick, &s->opaque[1]);
|
|
register_savevm("stellaris_gptm", -1, 1, gptm_save, gptm_load, s);
|
|
}
|
|
|
|
|
|
/* System controller. */
|
|
|
|
typedef struct {
|
|
uint32_t pborctl;
|
|
uint32_t ldopctl;
|
|
uint32_t int_status;
|
|
uint32_t int_mask;
|
|
uint32_t resc;
|
|
uint32_t rcc;
|
|
uint32_t rcgc[3];
|
|
uint32_t scgc[3];
|
|
uint32_t dcgc[3];
|
|
uint32_t clkvclr;
|
|
uint32_t ldoarst;
|
|
uint32_t user0;
|
|
uint32_t user1;
|
|
qemu_irq irq;
|
|
stellaris_board_info *board;
|
|
} ssys_state;
|
|
|
|
static void ssys_update(ssys_state *s)
|
|
{
|
|
qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
|
|
}
|
|
|
|
static uint32_t pllcfg_sandstorm[16] = {
|
|
0x31c0, /* 1 Mhz */
|
|
0x1ae0, /* 1.8432 Mhz */
|
|
0x18c0, /* 2 Mhz */
|
|
0xd573, /* 2.4576 Mhz */
|
|
0x37a6, /* 3.57954 Mhz */
|
|
0x1ae2, /* 3.6864 Mhz */
|
|
0x0c40, /* 4 Mhz */
|
|
0x98bc, /* 4.906 Mhz */
|
|
0x935b, /* 4.9152 Mhz */
|
|
0x09c0, /* 5 Mhz */
|
|
0x4dee, /* 5.12 Mhz */
|
|
0x0c41, /* 6 Mhz */
|
|
0x75db, /* 6.144 Mhz */
|
|
0x1ae6, /* 7.3728 Mhz */
|
|
0x0600, /* 8 Mhz */
|
|
0x585b /* 8.192 Mhz */
|
|
};
|
|
|
|
static uint32_t pllcfg_fury[16] = {
|
|
0x3200, /* 1 Mhz */
|
|
0x1b20, /* 1.8432 Mhz */
|
|
0x1900, /* 2 Mhz */
|
|
0xf42b, /* 2.4576 Mhz */
|
|
0x37e3, /* 3.57954 Mhz */
|
|
0x1b21, /* 3.6864 Mhz */
|
|
0x0c80, /* 4 Mhz */
|
|
0x98ee, /* 4.906 Mhz */
|
|
0xd5b4, /* 4.9152 Mhz */
|
|
0x0a00, /* 5 Mhz */
|
|
0x4e27, /* 5.12 Mhz */
|
|
0x1902, /* 6 Mhz */
|
|
0xec1c, /* 6.144 Mhz */
|
|
0x1b23, /* 7.3728 Mhz */
|
|
0x0640, /* 8 Mhz */
|
|
0xb11c /* 8.192 Mhz */
|
|
};
|
|
|
|
static uint32_t ssys_read(void *opaque, target_phys_addr_t offset)
|
|
{
|
|
ssys_state *s = (ssys_state *)opaque;
|
|
|
|
switch (offset) {
|
|
case 0x000: /* DID0 */
|
|
return s->board->did0;
|
|
case 0x004: /* DID1 */
|
|
return s->board->did1;
|
|
case 0x008: /* DC0 */
|
|
return s->board->dc0;
|
|
case 0x010: /* DC1 */
|
|
return s->board->dc1;
|
|
case 0x014: /* DC2 */
|
|
return s->board->dc2;
|
|
case 0x018: /* DC3 */
|
|
return s->board->dc3;
|
|
case 0x01c: /* DC4 */
|
|
return s->board->dc4;
|
|
case 0x030: /* PBORCTL */
|
|
return s->pborctl;
|
|
case 0x034: /* LDOPCTL */
|
|
return s->ldopctl;
|
|
case 0x040: /* SRCR0 */
|
|
return 0;
|
|
case 0x044: /* SRCR1 */
|
|
return 0;
|
|
case 0x048: /* SRCR2 */
|
|
return 0;
|
|
case 0x050: /* RIS */
|
|
return s->int_status;
|
|
case 0x054: /* IMC */
|
|
return s->int_mask;
|
|
case 0x058: /* MISC */
|
|
return s->int_status & s->int_mask;
|
|
case 0x05c: /* RESC */
|
|
return s->resc;
|
|
case 0x060: /* RCC */
|
|
return s->rcc;
|
|
case 0x064: /* PLLCFG */
|
|
{
|
|
int xtal;
|
|
xtal = (s->rcc >> 6) & 0xf;
|
|
if (s->board->did0 & (1 << 16)) {
|
|
return pllcfg_fury[xtal];
|
|
} else {
|
|
return pllcfg_sandstorm[xtal];
|
|
}
|
|
}
|
|
case 0x100: /* RCGC0 */
|
|
return s->rcgc[0];
|
|
case 0x104: /* RCGC1 */
|
|
return s->rcgc[1];
|
|
case 0x108: /* RCGC2 */
|
|
return s->rcgc[2];
|
|
case 0x110: /* SCGC0 */
|
|
return s->scgc[0];
|
|
case 0x114: /* SCGC1 */
|
|
return s->scgc[1];
|
|
case 0x118: /* SCGC2 */
|
|
return s->scgc[2];
|
|
case 0x120: /* DCGC0 */
|
|
return s->dcgc[0];
|
|
case 0x124: /* DCGC1 */
|
|
return s->dcgc[1];
|
|
case 0x128: /* DCGC2 */
|
|
return s->dcgc[2];
|
|
case 0x150: /* CLKVCLR */
|
|
return s->clkvclr;
|
|
case 0x160: /* LDOARST */
|
|
return s->ldoarst;
|
|
case 0x1e0: /* USER0 */
|
|
return s->user0;
|
|
case 0x1e4: /* USER1 */
|
|
return s->user1;
|
|
default:
|
|
cpu_abort(cpu_single_env, "ssys_read: Bad offset 0x%x\n", (int)offset);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void ssys_calculate_system_clock(ssys_state *s)
|
|
{
|
|
system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
|
|
}
|
|
|
|
static void ssys_write(void *opaque, target_phys_addr_t offset, uint32_t value)
|
|
{
|
|
ssys_state *s = (ssys_state *)opaque;
|
|
|
|
switch (offset) {
|
|
case 0x030: /* PBORCTL */
|
|
s->pborctl = value & 0xffff;
|
|
break;
|
|
case 0x034: /* LDOPCTL */
|
|
s->ldopctl = value & 0x1f;
|
|
break;
|
|
case 0x040: /* SRCR0 */
|
|
case 0x044: /* SRCR1 */
|
|
case 0x048: /* SRCR2 */
|
|
fprintf(stderr, "Peripheral reset not implemented\n");
|
|
break;
|
|
case 0x054: /* IMC */
|
|
s->int_mask = value & 0x7f;
|
|
break;
|
|
case 0x058: /* MISC */
|
|
s->int_status &= ~value;
|
|
break;
|
|
case 0x05c: /* RESC */
|
|
s->resc = value & 0x3f;
|
|
break;
|
|
case 0x060: /* RCC */
|
|
if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
|
|
/* PLL enable. */
|
|
s->int_status |= (1 << 6);
|
|
}
|
|
s->rcc = value;
|
|
ssys_calculate_system_clock(s);
|
|
break;
|
|
case 0x100: /* RCGC0 */
|
|
s->rcgc[0] = value;
|
|
break;
|
|
case 0x104: /* RCGC1 */
|
|
s->rcgc[1] = value;
|
|
break;
|
|
case 0x108: /* RCGC2 */
|
|
s->rcgc[2] = value;
|
|
break;
|
|
case 0x110: /* SCGC0 */
|
|
s->scgc[0] = value;
|
|
break;
|
|
case 0x114: /* SCGC1 */
|
|
s->scgc[1] = value;
|
|
break;
|
|
case 0x118: /* SCGC2 */
|
|
s->scgc[2] = value;
|
|
break;
|
|
case 0x120: /* DCGC0 */
|
|
s->dcgc[0] = value;
|
|
break;
|
|
case 0x124: /* DCGC1 */
|
|
s->dcgc[1] = value;
|
|
break;
|
|
case 0x128: /* DCGC2 */
|
|
s->dcgc[2] = value;
|
|
break;
|
|
case 0x150: /* CLKVCLR */
|
|
s->clkvclr = value;
|
|
break;
|
|
case 0x160: /* LDOARST */
|
|
s->ldoarst = value;
|
|
break;
|
|
default:
|
|
cpu_abort(cpu_single_env, "ssys_write: Bad offset 0x%x\n", (int)offset);
|
|
}
|
|
ssys_update(s);
|
|
}
|
|
|
|
static CPUReadMemoryFunc *ssys_readfn[] = {
|
|
ssys_read,
|
|
ssys_read,
|
|
ssys_read
|
|
};
|
|
|
|
static CPUWriteMemoryFunc *ssys_writefn[] = {
|
|
ssys_write,
|
|
ssys_write,
|
|
ssys_write
|
|
};
|
|
|
|
static void ssys_reset(void *opaque)
|
|
{
|
|
ssys_state *s = (ssys_state *)opaque;
|
|
|
|
s->pborctl = 0x7ffd;
|
|
s->rcc = 0x078e3ac0;
|
|
s->rcgc[0] = 1;
|
|
s->scgc[0] = 1;
|
|
s->dcgc[0] = 1;
|
|
}
|
|
|
|
static void ssys_save(QEMUFile *f, void *opaque)
|
|
{
|
|
ssys_state *s = (ssys_state *)opaque;
|
|
|
|
qemu_put_be32(f, s->pborctl);
|
|
qemu_put_be32(f, s->ldopctl);
|
|
qemu_put_be32(f, s->int_mask);
|
|
qemu_put_be32(f, s->int_status);
|
|
qemu_put_be32(f, s->resc);
|
|
qemu_put_be32(f, s->rcc);
|
|
qemu_put_be32(f, s->rcgc[0]);
|
|
qemu_put_be32(f, s->rcgc[1]);
|
|
qemu_put_be32(f, s->rcgc[2]);
|
|
qemu_put_be32(f, s->scgc[0]);
|
|
qemu_put_be32(f, s->scgc[1]);
|
|
qemu_put_be32(f, s->scgc[2]);
|
|
qemu_put_be32(f, s->dcgc[0]);
|
|
qemu_put_be32(f, s->dcgc[1]);
|
|
qemu_put_be32(f, s->dcgc[2]);
|
|
qemu_put_be32(f, s->clkvclr);
|
|
qemu_put_be32(f, s->ldoarst);
|
|
}
|
|
|
|
static int ssys_load(QEMUFile *f, void *opaque, int version_id)
|
|
{
|
|
ssys_state *s = (ssys_state *)opaque;
|
|
|
|
if (version_id != 1)
|
|
return -EINVAL;
|
|
|
|
s->pborctl = qemu_get_be32(f);
|
|
s->ldopctl = qemu_get_be32(f);
|
|
s->int_mask = qemu_get_be32(f);
|
|
s->int_status = qemu_get_be32(f);
|
|
s->resc = qemu_get_be32(f);
|
|
s->rcc = qemu_get_be32(f);
|
|
s->rcgc[0] = qemu_get_be32(f);
|
|
s->rcgc[1] = qemu_get_be32(f);
|
|
s->rcgc[2] = qemu_get_be32(f);
|
|
s->scgc[0] = qemu_get_be32(f);
|
|
s->scgc[1] = qemu_get_be32(f);
|
|
s->scgc[2] = qemu_get_be32(f);
|
|
s->dcgc[0] = qemu_get_be32(f);
|
|
s->dcgc[1] = qemu_get_be32(f);
|
|
s->dcgc[2] = qemu_get_be32(f);
|
|
s->clkvclr = qemu_get_be32(f);
|
|
s->ldoarst = qemu_get_be32(f);
|
|
ssys_calculate_system_clock(s);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void stellaris_sys_init(uint32_t base, qemu_irq irq,
|
|
stellaris_board_info * board,
|
|
uint8_t *macaddr)
|
|
{
|
|
int iomemtype;
|
|
ssys_state *s;
|
|
|
|
s = (ssys_state *)qemu_mallocz(sizeof(ssys_state));
|
|
s->irq = irq;
|
|
s->board = board;
|
|
/* Most devices come preprogrammed with a MAC address in the user data. */
|
|
s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16);
|
|
s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16);
|
|
|
|
iomemtype = cpu_register_io_memory(0, ssys_readfn,
|
|
ssys_writefn, s);
|
|
cpu_register_physical_memory(base, 0x00001000, iomemtype);
|
|
ssys_reset(s);
|
|
register_savevm("stellaris_sys", -1, 1, ssys_save, ssys_load, s);
|
|
}
|
|
|
|
|
|
/* I2C controller. */
|
|
|
|
typedef struct {
|
|
i2c_bus *bus;
|
|
qemu_irq irq;
|
|
uint32_t msa;
|
|
uint32_t mcs;
|
|
uint32_t mdr;
|
|
uint32_t mtpr;
|
|
uint32_t mimr;
|
|
uint32_t mris;
|
|
uint32_t mcr;
|
|
} stellaris_i2c_state;
|
|
|
|
#define STELLARIS_I2C_MCS_BUSY 0x01
|
|
#define STELLARIS_I2C_MCS_ERROR 0x02
|
|
#define STELLARIS_I2C_MCS_ADRACK 0x04
|
|
#define STELLARIS_I2C_MCS_DATACK 0x08
|
|
#define STELLARIS_I2C_MCS_ARBLST 0x10
|
|
#define STELLARIS_I2C_MCS_IDLE 0x20
|
|
#define STELLARIS_I2C_MCS_BUSBSY 0x40
|
|
|
|
static uint32_t stellaris_i2c_read(void *opaque, target_phys_addr_t offset)
|
|
{
|
|
stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
|
|
|
|
switch (offset) {
|
|
case 0x00: /* MSA */
|
|
return s->msa;
|
|
case 0x04: /* MCS */
|
|
/* We don't emulate timing, so the controller is never busy. */
|
|
return s->mcs | STELLARIS_I2C_MCS_IDLE;
|
|
case 0x08: /* MDR */
|
|
return s->mdr;
|
|
case 0x0c: /* MTPR */
|
|
return s->mtpr;
|
|
case 0x10: /* MIMR */
|
|
return s->mimr;
|
|
case 0x14: /* MRIS */
|
|
return s->mris;
|
|
case 0x18: /* MMIS */
|
|
return s->mris & s->mimr;
|
|
case 0x20: /* MCR */
|
|
return s->mcr;
|
|
default:
|
|
cpu_abort(cpu_single_env, "strllaris_i2c_read: Bad offset 0x%x\n",
|
|
(int)offset);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void stellaris_i2c_update(stellaris_i2c_state *s)
|
|
{
|
|
int level;
|
|
|
|
level = (s->mris & s->mimr) != 0;
|
|
qemu_set_irq(s->irq, level);
|
|
}
|
|
|
|
static void stellaris_i2c_write(void *opaque, target_phys_addr_t offset,
|
|
uint32_t value)
|
|
{
|
|
stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
|
|
|
|
switch (offset) {
|
|
case 0x00: /* MSA */
|
|
s->msa = value & 0xff;
|
|
break;
|
|
case 0x04: /* MCS */
|
|
if ((s->mcr & 0x10) == 0) {
|
|
/* Disabled. Do nothing. */
|
|
break;
|
|
}
|
|
/* Grab the bus if this is starting a transfer. */
|
|
if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
|
|
if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
|
|
s->mcs |= STELLARIS_I2C_MCS_ARBLST;
|
|
} else {
|
|
s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
|
|
s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
|
|
}
|
|
}
|
|
/* If we don't have the bus then indicate an error. */
|
|
if (!i2c_bus_busy(s->bus)
|
|
|| (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
|
|
s->mcs |= STELLARIS_I2C_MCS_ERROR;
|
|
break;
|
|
}
|
|
s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
|
|
if (value & 1) {
|
|
/* Transfer a byte. */
|
|
/* TODO: Handle errors. */
|
|
if (s->msa & 1) {
|
|
/* Recv */
|
|
s->mdr = i2c_recv(s->bus) & 0xff;
|
|
} else {
|
|
/* Send */
|
|
i2c_send(s->bus, s->mdr);
|
|
}
|
|
/* Raise an interrupt. */
|
|
s->mris |= 1;
|
|
}
|
|
if (value & 4) {
|
|
/* Finish transfer. */
|
|
i2c_end_transfer(s->bus);
|
|
s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
|
|
}
|
|
break;
|
|
case 0x08: /* MDR */
|
|
s->mdr = value & 0xff;
|
|
break;
|
|
case 0x0c: /* MTPR */
|
|
s->mtpr = value & 0xff;
|
|
break;
|
|
case 0x10: /* MIMR */
|
|
s->mimr = 1;
|
|
break;
|
|
case 0x1c: /* MICR */
|
|
s->mris &= ~value;
|
|
break;
|
|
case 0x20: /* MCR */
|
|
if (value & 1)
|
|
cpu_abort(cpu_single_env,
|
|
"stellaris_i2c_write: Loopback not implemented\n");
|
|
if (value & 0x20)
|
|
cpu_abort(cpu_single_env,
|
|
"stellaris_i2c_write: Slave mode not implemented\n");
|
|
s->mcr = value & 0x31;
|
|
break;
|
|
default:
|
|
cpu_abort(cpu_single_env, "stellaris_i2c_write: Bad offset 0x%x\n",
|
|
(int)offset);
|
|
}
|
|
stellaris_i2c_update(s);
|
|
}
|
|
|
|
static void stellaris_i2c_reset(stellaris_i2c_state *s)
|
|
{
|
|
if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
|
|
i2c_end_transfer(s->bus);
|
|
|
|
s->msa = 0;
|
|
s->mcs = 0;
|
|
s->mdr = 0;
|
|
s->mtpr = 1;
|
|
s->mimr = 0;
|
|
s->mris = 0;
|
|
s->mcr = 0;
|
|
stellaris_i2c_update(s);
|
|
}
|
|
|
|
static CPUReadMemoryFunc *stellaris_i2c_readfn[] = {
|
|
stellaris_i2c_read,
|
|
stellaris_i2c_read,
|
|
stellaris_i2c_read
|
|
};
|
|
|
|
static CPUWriteMemoryFunc *stellaris_i2c_writefn[] = {
|
|
stellaris_i2c_write,
|
|
stellaris_i2c_write,
|
|
stellaris_i2c_write
|
|
};
|
|
|
|
static void stellaris_i2c_save(QEMUFile *f, void *opaque)
|
|
{
|
|
stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
|
|
|
|
qemu_put_be32(f, s->msa);
|
|
qemu_put_be32(f, s->mcs);
|
|
qemu_put_be32(f, s->mdr);
|
|
qemu_put_be32(f, s->mtpr);
|
|
qemu_put_be32(f, s->mimr);
|
|
qemu_put_be32(f, s->mris);
|
|
qemu_put_be32(f, s->mcr);
|
|
}
|
|
|
|
static int stellaris_i2c_load(QEMUFile *f, void *opaque, int version_id)
|
|
{
|
|
stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
|
|
|
|
if (version_id != 1)
|
|
return -EINVAL;
|
|
|
|
s->msa = qemu_get_be32(f);
|
|
s->mcs = qemu_get_be32(f);
|
|
s->mdr = qemu_get_be32(f);
|
|
s->mtpr = qemu_get_be32(f);
|
|
s->mimr = qemu_get_be32(f);
|
|
s->mris = qemu_get_be32(f);
|
|
s->mcr = qemu_get_be32(f);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void stellaris_i2c_init(uint32_t base, qemu_irq irq, i2c_bus *bus)
|
|
{
|
|
stellaris_i2c_state *s;
|
|
int iomemtype;
|
|
|
|
s = (stellaris_i2c_state *)qemu_mallocz(sizeof(stellaris_i2c_state));
|
|
s->irq = irq;
|
|
s->bus = bus;
|
|
|
|
iomemtype = cpu_register_io_memory(0, stellaris_i2c_readfn,
|
|
stellaris_i2c_writefn, s);
|
|
cpu_register_physical_memory(base, 0x00001000, iomemtype);
|
|
/* ??? For now we only implement the master interface. */
|
|
stellaris_i2c_reset(s);
|
|
register_savevm("stellaris_i2c", -1, 1,
|
|
stellaris_i2c_save, stellaris_i2c_load, s);
|
|
}
|
|
|
|
/* Analogue to Digital Converter. This is only partially implemented,
|
|
enough for applications that use a combined ADC and timer tick. */
|
|
|
|
#define STELLARIS_ADC_EM_CONTROLLER 0
|
|
#define STELLARIS_ADC_EM_COMP 1
|
|
#define STELLARIS_ADC_EM_EXTERNAL 4
|
|
#define STELLARIS_ADC_EM_TIMER 5
|
|
#define STELLARIS_ADC_EM_PWM0 6
|
|
#define STELLARIS_ADC_EM_PWM1 7
|
|
#define STELLARIS_ADC_EM_PWM2 8
|
|
|
|
#define STELLARIS_ADC_FIFO_EMPTY 0x0100
|
|
#define STELLARIS_ADC_FIFO_FULL 0x1000
|
|
|
|
typedef struct
|
|
{
|
|
uint32_t actss;
|
|
uint32_t ris;
|
|
uint32_t im;
|
|
uint32_t emux;
|
|
uint32_t ostat;
|
|
uint32_t ustat;
|
|
uint32_t sspri;
|
|
uint32_t sac;
|
|
struct {
|
|
uint32_t state;
|
|
uint32_t data[16];
|
|
} fifo[4];
|
|
uint32_t ssmux[4];
|
|
uint32_t ssctl[4];
|
|
uint32_t noise;
|
|
qemu_irq irq;
|
|
} stellaris_adc_state;
|
|
|
|
static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
|
|
{
|
|
int tail;
|
|
|
|
tail = s->fifo[n].state & 0xf;
|
|
if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
|
|
s->ustat |= 1 << n;
|
|
} else {
|
|
s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
|
|
s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
|
|
if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
|
|
s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
|
|
}
|
|
return s->fifo[n].data[tail];
|
|
}
|
|
|
|
static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
|
|
uint32_t value)
|
|
{
|
|
int head;
|
|
|
|
head = (s->fifo[n].state >> 4) & 0xf;
|
|
if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
|
|
s->ostat |= 1 << n;
|
|
return;
|
|
}
|
|
s->fifo[n].data[head] = value;
|
|
head = (head + 1) & 0xf;
|
|
s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
|
|
s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
|
|
if ((s->fifo[n].state & 0xf) == head)
|
|
s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
|
|
}
|
|
|
|
static void stellaris_adc_update(stellaris_adc_state *s)
|
|
{
|
|
int level;
|
|
|
|
level = (s->ris & s->im) != 0;
|
|
qemu_set_irq(s->irq, level);
|
|
}
|
|
|
|
static void stellaris_adc_trigger(void *opaque, int irq, int level)
|
|
{
|
|
stellaris_adc_state *s = (stellaris_adc_state *)opaque;
|
|
|
|
if ((s->actss & 1) == 0) {
|
|
return;
|
|
}
|
|
|
|
/* Some applications use the ADC as a random number source, so introduce
|
|
some variation into the signal. */
|
|
s->noise = s->noise * 314159 + 1;
|
|
/* ??? actual inputs not implemented. Return an arbitrary value. */
|
|
stellaris_adc_fifo_write(s, 0, 0x200 + ((s->noise >> 16) & 7));
|
|
s->ris |= 1;
|
|
stellaris_adc_update(s);
|
|
}
|
|
|
|
static void stellaris_adc_reset(stellaris_adc_state *s)
|
|
{
|
|
int n;
|
|
|
|
for (n = 0; n < 4; n++) {
|
|
s->ssmux[n] = 0;
|
|
s->ssctl[n] = 0;
|
|
s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
|
|
}
|
|
}
|
|
|
|
static uint32_t stellaris_adc_read(void *opaque, target_phys_addr_t offset)
|
|
{
|
|
stellaris_adc_state *s = (stellaris_adc_state *)opaque;
|
|
|
|
/* TODO: Implement this. */
|
|
if (offset >= 0x40 && offset < 0xc0) {
|
|
int n;
|
|
n = (offset - 0x40) >> 5;
|
|
switch (offset & 0x1f) {
|
|
case 0x00: /* SSMUX */
|
|
return s->ssmux[n];
|
|
case 0x04: /* SSCTL */
|
|
return s->ssctl[n];
|
|
case 0x08: /* SSFIFO */
|
|
return stellaris_adc_fifo_read(s, n);
|
|
case 0x0c: /* SSFSTAT */
|
|
return s->fifo[n].state;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
switch (offset) {
|
|
case 0x00: /* ACTSS */
|
|
return s->actss;
|
|
case 0x04: /* RIS */
|
|
return s->ris;
|
|
case 0x08: /* IM */
|
|
return s->im;
|
|
case 0x0c: /* ISC */
|
|
return s->ris & s->im;
|
|
case 0x10: /* OSTAT */
|
|
return s->ostat;
|
|
case 0x14: /* EMUX */
|
|
return s->emux;
|
|
case 0x18: /* USTAT */
|
|
return s->ustat;
|
|
case 0x20: /* SSPRI */
|
|
return s->sspri;
|
|
case 0x30: /* SAC */
|
|
return s->sac;
|
|
default:
|
|
cpu_abort(cpu_single_env, "strllaris_adc_read: Bad offset 0x%x\n",
|
|
(int)offset);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void stellaris_adc_write(void *opaque, target_phys_addr_t offset,
|
|
uint32_t value)
|
|
{
|
|
stellaris_adc_state *s = (stellaris_adc_state *)opaque;
|
|
|
|
/* TODO: Implement this. */
|
|
if (offset >= 0x40 && offset < 0xc0) {
|
|
int n;
|
|
n = (offset - 0x40) >> 5;
|
|
switch (offset & 0x1f) {
|
|
case 0x00: /* SSMUX */
|
|
s->ssmux[n] = value & 0x33333333;
|
|
return;
|
|
case 0x04: /* SSCTL */
|
|
if (value != 6) {
|
|
cpu_abort(cpu_single_env, "ADC: Unimplemented sequence %x\n",
|
|
value);
|
|
}
|
|
s->ssctl[n] = value;
|
|
return;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
switch (offset) {
|
|
case 0x00: /* ACTSS */
|
|
s->actss = value & 0xf;
|
|
if (value & 0xe) {
|
|
cpu_abort(cpu_single_env,
|
|
"Not implemented: ADC sequencers 1-3\n");
|
|
}
|
|
break;
|
|
case 0x08: /* IM */
|
|
s->im = value;
|
|
break;
|
|
case 0x0c: /* ISC */
|
|
s->ris &= ~value;
|
|
break;
|
|
case 0x10: /* OSTAT */
|
|
s->ostat &= ~value;
|
|
break;
|
|
case 0x14: /* EMUX */
|
|
s->emux = value;
|
|
break;
|
|
case 0x18: /* USTAT */
|
|
s->ustat &= ~value;
|
|
break;
|
|
case 0x20: /* SSPRI */
|
|
s->sspri = value;
|
|
break;
|
|
case 0x28: /* PSSI */
|
|
cpu_abort(cpu_single_env, "Not implemented: ADC sample initiate\n");
|
|
break;
|
|
case 0x30: /* SAC */
|
|
s->sac = value;
|
|
break;
|
|
default:
|
|
cpu_abort(cpu_single_env, "stellaris_adc_write: Bad offset 0x%x\n",
|
|
(int)offset);
|
|
}
|
|
stellaris_adc_update(s);
|
|
}
|
|
|
|
static CPUReadMemoryFunc *stellaris_adc_readfn[] = {
|
|
stellaris_adc_read,
|
|
stellaris_adc_read,
|
|
stellaris_adc_read
|
|
};
|
|
|
|
static CPUWriteMemoryFunc *stellaris_adc_writefn[] = {
|
|
stellaris_adc_write,
|
|
stellaris_adc_write,
|
|
stellaris_adc_write
|
|
};
|
|
|
|
static void stellaris_adc_save(QEMUFile *f, void *opaque)
|
|
{
|
|
stellaris_adc_state *s = (stellaris_adc_state *)opaque;
|
|
int i;
|
|
int j;
|
|
|
|
qemu_put_be32(f, s->actss);
|
|
qemu_put_be32(f, s->ris);
|
|
qemu_put_be32(f, s->im);
|
|
qemu_put_be32(f, s->emux);
|
|
qemu_put_be32(f, s->ostat);
|
|
qemu_put_be32(f, s->ustat);
|
|
qemu_put_be32(f, s->sspri);
|
|
qemu_put_be32(f, s->sac);
|
|
for (i = 0; i < 4; i++) {
|
|
qemu_put_be32(f, s->fifo[i].state);
|
|
for (j = 0; j < 16; j++) {
|
|
qemu_put_be32(f, s->fifo[i].data[j]);
|
|
}
|
|
qemu_put_be32(f, s->ssmux[i]);
|
|
qemu_put_be32(f, s->ssctl[i]);
|
|
}
|
|
qemu_put_be32(f, s->noise);
|
|
}
|
|
|
|
static int stellaris_adc_load(QEMUFile *f, void *opaque, int version_id)
|
|
{
|
|
stellaris_adc_state *s = (stellaris_adc_state *)opaque;
|
|
int i;
|
|
int j;
|
|
|
|
if (version_id != 1)
|
|
return -EINVAL;
|
|
|
|
s->actss = qemu_get_be32(f);
|
|
s->ris = qemu_get_be32(f);
|
|
s->im = qemu_get_be32(f);
|
|
s->emux = qemu_get_be32(f);
|
|
s->ostat = qemu_get_be32(f);
|
|
s->ustat = qemu_get_be32(f);
|
|
s->sspri = qemu_get_be32(f);
|
|
s->sac = qemu_get_be32(f);
|
|
for (i = 0; i < 4; i++) {
|
|
s->fifo[i].state = qemu_get_be32(f);
|
|
for (j = 0; j < 16; j++) {
|
|
s->fifo[i].data[j] = qemu_get_be32(f);
|
|
}
|
|
s->ssmux[i] = qemu_get_be32(f);
|
|
s->ssctl[i] = qemu_get_be32(f);
|
|
}
|
|
s->noise = qemu_get_be32(f);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static qemu_irq stellaris_adc_init(uint32_t base, qemu_irq irq)
|
|
{
|
|
stellaris_adc_state *s;
|
|
int iomemtype;
|
|
qemu_irq *qi;
|
|
|
|
s = (stellaris_adc_state *)qemu_mallocz(sizeof(stellaris_adc_state));
|
|
s->irq = irq;
|
|
|
|
iomemtype = cpu_register_io_memory(0, stellaris_adc_readfn,
|
|
stellaris_adc_writefn, s);
|
|
cpu_register_physical_memory(base, 0x00001000, iomemtype);
|
|
stellaris_adc_reset(s);
|
|
qi = qemu_allocate_irqs(stellaris_adc_trigger, s, 1);
|
|
register_savevm("stellaris_adc", -1, 1,
|
|
stellaris_adc_save, stellaris_adc_load, s);
|
|
return qi[0];
|
|
}
|
|
|
|
/* Some boards have both an OLED controller and SD card connected to
|
|
the same SSI port, with the SD card chip select connected to a
|
|
GPIO pin. Technically the OLED chip select is connected to the SSI
|
|
Fss pin. We do not bother emulating that as both devices should
|
|
never be selected simultaneously, and our OLED controller ignores stray
|
|
0xff commands that occur when deselecting the SD card. */
|
|
|
|
typedef struct {
|
|
ssi_xfer_cb xfer_cb[2];
|
|
void *opaque[2];
|
|
qemu_irq irq;
|
|
int current_dev;
|
|
} stellaris_ssi_bus_state;
|
|
|
|
static void stellaris_ssi_bus_select(void *opaque, int irq, int level)
|
|
{
|
|
stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque;
|
|
|
|
s->current_dev = level;
|
|
}
|
|
|
|
static int stellaris_ssi_bus_xfer(void *opaque, int val)
|
|
{
|
|
stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque;
|
|
|
|
return s->xfer_cb[s->current_dev](s->opaque[s->current_dev], val);
|
|
}
|
|
|
|
static void stellaris_ssi_bus_save(QEMUFile *f, void *opaque)
|
|
{
|
|
stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque;
|
|
|
|
qemu_put_be32(f, s->current_dev);
|
|
}
|
|
|
|
static int stellaris_ssi_bus_load(QEMUFile *f, void *opaque, int version_id)
|
|
{
|
|
stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque;
|
|
|
|
if (version_id != 1)
|
|
return -EINVAL;
|
|
|
|
s->current_dev = qemu_get_be32(f);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void *stellaris_ssi_bus_init(qemu_irq *irqp,
|
|
ssi_xfer_cb cb0, void *opaque0,
|
|
ssi_xfer_cb cb1, void *opaque1)
|
|
{
|
|
qemu_irq *qi;
|
|
stellaris_ssi_bus_state *s;
|
|
|
|
s = (stellaris_ssi_bus_state *)qemu_mallocz(sizeof(stellaris_ssi_bus_state));
|
|
s->xfer_cb[0] = cb0;
|
|
s->opaque[0] = opaque0;
|
|
s->xfer_cb[1] = cb1;
|
|
s->opaque[1] = opaque1;
|
|
qi = qemu_allocate_irqs(stellaris_ssi_bus_select, s, 1);
|
|
*irqp = *qi;
|
|
register_savevm("stellaris_ssi_bus", -1, 1,
|
|
stellaris_ssi_bus_save, stellaris_ssi_bus_load, s);
|
|
return s;
|
|
}
|
|
|
|
/* Board init. */
|
|
static stellaris_board_info stellaris_boards[] = {
|
|
{ "LM3S811EVB",
|
|
0,
|
|
0x0032000e,
|
|
0x001f001f, /* dc0 */
|
|
0x001132bf,
|
|
0x01071013,
|
|
0x3f0f01ff,
|
|
0x0000001f,
|
|
BP_OLED_I2C
|
|
},
|
|
{ "LM3S6965EVB",
|
|
0x10010002,
|
|
0x1073402e,
|
|
0x00ff007f, /* dc0 */
|
|
0x001133ff,
|
|
0x030f5317,
|
|
0x0f0f87ff,
|
|
0x5000007f,
|
|
BP_OLED_SSI | BP_GAMEPAD
|
|
}
|
|
};
|
|
|
|
static void stellaris_init(const char *kernel_filename, const char *cpu_model,
|
|
stellaris_board_info *board)
|
|
{
|
|
static const int uart_irq[] = {5, 6, 33, 34};
|
|
static const int timer_irq[] = {19, 21, 23, 35};
|
|
static const uint32_t gpio_addr[7] =
|
|
{ 0x40004000, 0x40005000, 0x40006000, 0x40007000,
|
|
0x40024000, 0x40025000, 0x40026000};
|
|
static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
|
|
|
|
qemu_irq *pic;
|
|
qemu_irq *gpio_in[7];
|
|
qemu_irq *gpio_out[7];
|
|
qemu_irq adc;
|
|
int sram_size;
|
|
int flash_size;
|
|
i2c_bus *i2c;
|
|
int i;
|
|
|
|
flash_size = ((board->dc0 & 0xffff) + 1) << 1;
|
|
sram_size = (board->dc0 >> 18) + 1;
|
|
pic = armv7m_init(flash_size, sram_size, kernel_filename, cpu_model);
|
|
|
|
if (board->dc1 & (1 << 16)) {
|
|
adc = stellaris_adc_init(0x40038000, pic[14]);
|
|
} else {
|
|
adc = NULL;
|
|
}
|
|
for (i = 0; i < 4; i++) {
|
|
if (board->dc2 & (0x10000 << i)) {
|
|
stellaris_gptm_init(0x40030000 + i * 0x1000,
|
|
pic[timer_irq[i]], adc);
|
|
}
|
|
}
|
|
|
|
stellaris_sys_init(0x400fe000, pic[28], board, nd_table[0].macaddr);
|
|
|
|
for (i = 0; i < 7; i++) {
|
|
if (board->dc4 & (1 << i)) {
|
|
gpio_in[i] = pl061_init(gpio_addr[i], pic[gpio_irq[i]],
|
|
&gpio_out[i]);
|
|
}
|
|
}
|
|
|
|
if (board->dc2 & (1 << 12)) {
|
|
i2c = i2c_init_bus();
|
|
stellaris_i2c_init(0x40020000, pic[8], i2c);
|
|
if (board->peripherals & BP_OLED_I2C) {
|
|
ssd0303_init(i2c, 0x3d);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
if (board->dc2 & (1 << i)) {
|
|
pl011_init(0x4000c000 + i * 0x1000, pic[uart_irq[i]],
|
|
serial_hds[i], PL011_LUMINARY);
|
|
}
|
|
}
|
|
if (board->dc2 & (1 << 4)) {
|
|
if (board->peripherals & BP_OLED_SSI) {
|
|
void * oled;
|
|
void * sd;
|
|
void *ssi_bus;
|
|
int index;
|
|
|
|
oled = ssd0323_init(&gpio_out[GPIO_C][7]);
|
|
index = drive_get_index(IF_SD, 0, 0);
|
|
sd = ssi_sd_init(drives_table[index].bdrv);
|
|
|
|
ssi_bus = stellaris_ssi_bus_init(&gpio_out[GPIO_D][0],
|
|
ssi_sd_xfer, sd,
|
|
ssd0323_xfer_ssi, oled);
|
|
|
|
pl022_init(0x40008000, pic[7], stellaris_ssi_bus_xfer, ssi_bus);
|
|
/* Make sure the select pin is high. */
|
|
qemu_irq_raise(gpio_out[GPIO_D][0]);
|
|
} else {
|
|
pl022_init(0x40008000, pic[7], NULL, NULL);
|
|
}
|
|
}
|
|
if (board->dc4 & (1 << 28))
|
|
stellaris_enet_init(&nd_table[0], 0x40048000, pic[42]);
|
|
if (board->peripherals & BP_GAMEPAD) {
|
|
qemu_irq gpad_irq[5];
|
|
static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
|
|
|
|
gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
|
|
gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
|
|
gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
|
|
gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
|
|
gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
|
|
|
|
stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
|
|
}
|
|
}
|
|
|
|
/* FIXME: Figure out how to generate these from stellaris_boards. */
|
|
static void lm3s811evb_init(ram_addr_t ram_size, int vga_ram_size,
|
|
const char *boot_device,
|
|
const char *kernel_filename, const char *kernel_cmdline,
|
|
const char *initrd_filename, const char *cpu_model)
|
|
{
|
|
stellaris_init(kernel_filename, cpu_model, &stellaris_boards[0]);
|
|
}
|
|
|
|
static void lm3s6965evb_init(ram_addr_t ram_size, int vga_ram_size,
|
|
const char *boot_device,
|
|
const char *kernel_filename, const char *kernel_cmdline,
|
|
const char *initrd_filename, const char *cpu_model)
|
|
{
|
|
stellaris_init(kernel_filename, cpu_model, &stellaris_boards[1]);
|
|
}
|
|
|
|
QEMUMachine lm3s811evb_machine = {
|
|
.name = "lm3s811evb",
|
|
.desc = "Stellaris LM3S811EVB",
|
|
.init = lm3s811evb_init,
|
|
};
|
|
|
|
QEMUMachine lm3s6965evb_machine = {
|
|
.name = "lm3s6965evb",
|
|
.desc = "Stellaris LM3S6965EVB",
|
|
.init = lm3s6965evb_init,
|
|
};
|