qemu-e2k/block/qcow2.c
Jean-Louis Dupond 42a2890a76 qcow2: add discard-no-unref option
When we for example have a sparse qcow2 image and discard: unmap is enabled,
there can be a lot of fragmentation in the image after some time. Especially on VM's
that do a lot of writes/deletes.
This causes the qcow2 image to grow even over 110% of its virtual size,
because the free gaps in the image get too small to allocate new
continuous clusters. So it allocates new space at the end of the image.

Disabling discard is not an option, as discard is needed to keep the
incremental backup size as low as possible. Without discard, the
incremental backups would become large, as qemu thinks it's just dirty
blocks but it doesn't know the blocks are unneeded.
So we need to avoid fragmentation but also 'empty' the unneeded blocks in
the image to have a small incremental backup.

In addition, we also want to send the discards further down the stack, so
the underlying blocks are still discarded.

Therefor we introduce a new qcow2 option "discard-no-unref".
When setting this option to true, discards will no longer have the qcow2
driver relinquish cluster allocations. Other than that, the request is
handled as normal: All clusters in range are marked as zero, and, if
pass-discard-request is true, it is passed further down the stack.
The only difference is that the now-zero clusters are preallocated
instead of being unallocated.
This will avoid fragmentation on the qcow2 image.

Fixes: https://gitlab.com/qemu-project/qemu/-/issues/1621
Signed-off-by: Jean-Louis Dupond <jean-louis@dupond.be>
Message-Id: <20230605084523.34134-2-jean-louis@dupond.be>
Reviewed-by: Hanna Czenczek <hreitz@redhat.com>
Signed-off-by: Hanna Czenczek <hreitz@redhat.com>
2023-06-05 13:15:42 +02:00

6168 lines
206 KiB
C

/*
* Block driver for the QCOW version 2 format
*
* Copyright (c) 2004-2006 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "block/qdict.h"
#include "sysemu/block-backend.h"
#include "qemu/main-loop.h"
#include "qemu/module.h"
#include "qcow2.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "qapi/qapi-events-block-core.h"
#include "qapi/qmp/qdict.h"
#include "qapi/qmp/qstring.h"
#include "trace.h"
#include "qemu/option_int.h"
#include "qemu/cutils.h"
#include "qemu/bswap.h"
#include "qemu/memalign.h"
#include "qapi/qobject-input-visitor.h"
#include "qapi/qapi-visit-block-core.h"
#include "crypto.h"
#include "block/aio_task.h"
#include "block/dirty-bitmap.h"
/*
Differences with QCOW:
- Support for multiple incremental snapshots.
- Memory management by reference counts.
- Clusters which have a reference count of one have the bit
QCOW_OFLAG_COPIED to optimize write performance.
- Size of compressed clusters is stored in sectors to reduce bit usage
in the cluster offsets.
- Support for storing additional data (such as the VM state) in the
snapshots.
- If a backing store is used, the cluster size is not constrained
(could be backported to QCOW).
- L2 tables have always a size of one cluster.
*/
typedef struct {
uint32_t magic;
uint32_t len;
} QEMU_PACKED QCowExtension;
#define QCOW2_EXT_MAGIC_END 0
#define QCOW2_EXT_MAGIC_BACKING_FORMAT 0xe2792aca
#define QCOW2_EXT_MAGIC_FEATURE_TABLE 0x6803f857
#define QCOW2_EXT_MAGIC_CRYPTO_HEADER 0x0537be77
#define QCOW2_EXT_MAGIC_BITMAPS 0x23852875
#define QCOW2_EXT_MAGIC_DATA_FILE 0x44415441
static int coroutine_fn
qcow2_co_preadv_compressed(BlockDriverState *bs,
uint64_t l2_entry,
uint64_t offset,
uint64_t bytes,
QEMUIOVector *qiov,
size_t qiov_offset);
static int qcow2_probe(const uint8_t *buf, int buf_size, const char *filename)
{
const QCowHeader *cow_header = (const void *)buf;
if (buf_size >= sizeof(QCowHeader) &&
be32_to_cpu(cow_header->magic) == QCOW_MAGIC &&
be32_to_cpu(cow_header->version) >= 2)
return 100;
else
return 0;
}
static int qcow2_crypto_hdr_read_func(QCryptoBlock *block, size_t offset,
uint8_t *buf, size_t buflen,
void *opaque, Error **errp)
{
BlockDriverState *bs = opaque;
BDRVQcow2State *s = bs->opaque;
ssize_t ret;
if ((offset + buflen) > s->crypto_header.length) {
error_setg(errp, "Request for data outside of extension header");
return -1;
}
ret = bdrv_pread(bs->file, s->crypto_header.offset + offset, buflen, buf,
0);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not read encryption header");
return -1;
}
return 0;
}
static int coroutine_fn GRAPH_RDLOCK
qcow2_crypto_hdr_init_func(QCryptoBlock *block, size_t headerlen, void *opaque,
Error **errp)
{
BlockDriverState *bs = opaque;
BDRVQcow2State *s = bs->opaque;
int64_t ret;
int64_t clusterlen;
ret = qcow2_alloc_clusters(bs, headerlen);
if (ret < 0) {
error_setg_errno(errp, -ret,
"Cannot allocate cluster for LUKS header size %zu",
headerlen);
return -1;
}
s->crypto_header.length = headerlen;
s->crypto_header.offset = ret;
/*
* Zero fill all space in cluster so it has predictable
* content, as we may not initialize some regions of the
* header (eg only 1 out of 8 key slots will be initialized)
*/
clusterlen = size_to_clusters(s, headerlen) * s->cluster_size;
assert(qcow2_pre_write_overlap_check(bs, 0, ret, clusterlen, false) == 0);
ret = bdrv_co_pwrite_zeroes(bs->file, ret, clusterlen, 0);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not zero fill encryption header");
return -1;
}
return 0;
}
/* The graph lock must be held when called in coroutine context */
static int coroutine_mixed_fn
qcow2_crypto_hdr_write_func(QCryptoBlock *block, size_t offset,
const uint8_t *buf, size_t buflen,
void *opaque, Error **errp)
{
BlockDriverState *bs = opaque;
BDRVQcow2State *s = bs->opaque;
ssize_t ret;
if ((offset + buflen) > s->crypto_header.length) {
error_setg(errp, "Request for data outside of extension header");
return -1;
}
ret = bdrv_pwrite(bs->file, s->crypto_header.offset + offset, buflen, buf,
0);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not read encryption header");
return -1;
}
return 0;
}
static QDict*
qcow2_extract_crypto_opts(QemuOpts *opts, const char *fmt, Error **errp)
{
QDict *cryptoopts_qdict;
QDict *opts_qdict;
/* Extract "encrypt." options into a qdict */
opts_qdict = qemu_opts_to_qdict(opts, NULL);
qdict_extract_subqdict(opts_qdict, &cryptoopts_qdict, "encrypt.");
qobject_unref(opts_qdict);
qdict_put_str(cryptoopts_qdict, "format", fmt);
return cryptoopts_qdict;
}
/*
* read qcow2 extension and fill bs
* start reading from start_offset
* finish reading upon magic of value 0 or when end_offset reached
* unknown magic is skipped (future extension this version knows nothing about)
* return 0 upon success, non-0 otherwise
*/
static int coroutine_fn GRAPH_RDLOCK
qcow2_read_extensions(BlockDriverState *bs, uint64_t start_offset,
uint64_t end_offset, void **p_feature_table,
int flags, bool *need_update_header, Error **errp)
{
BDRVQcow2State *s = bs->opaque;
QCowExtension ext;
uint64_t offset;
int ret;
Qcow2BitmapHeaderExt bitmaps_ext;
if (need_update_header != NULL) {
*need_update_header = false;
}
#ifdef DEBUG_EXT
printf("qcow2_read_extensions: start=%ld end=%ld\n", start_offset, end_offset);
#endif
offset = start_offset;
while (offset < end_offset) {
#ifdef DEBUG_EXT
/* Sanity check */
if (offset > s->cluster_size)
printf("qcow2_read_extension: suspicious offset %lu\n", offset);
printf("attempting to read extended header in offset %lu\n", offset);
#endif
ret = bdrv_co_pread(bs->file, offset, sizeof(ext), &ext, 0);
if (ret < 0) {
error_setg_errno(errp, -ret, "qcow2_read_extension: ERROR: "
"pread fail from offset %" PRIu64, offset);
return 1;
}
ext.magic = be32_to_cpu(ext.magic);
ext.len = be32_to_cpu(ext.len);
offset += sizeof(ext);
#ifdef DEBUG_EXT
printf("ext.magic = 0x%x\n", ext.magic);
#endif
if (offset > end_offset || ext.len > end_offset - offset) {
error_setg(errp, "Header extension too large");
return -EINVAL;
}
switch (ext.magic) {
case QCOW2_EXT_MAGIC_END:
return 0;
case QCOW2_EXT_MAGIC_BACKING_FORMAT:
if (ext.len >= sizeof(bs->backing_format)) {
error_setg(errp, "ERROR: ext_backing_format: len=%" PRIu32
" too large (>=%zu)", ext.len,
sizeof(bs->backing_format));
return 2;
}
ret = bdrv_co_pread(bs->file, offset, ext.len, bs->backing_format, 0);
if (ret < 0) {
error_setg_errno(errp, -ret, "ERROR: ext_backing_format: "
"Could not read format name");
return 3;
}
bs->backing_format[ext.len] = '\0';
s->image_backing_format = g_strdup(bs->backing_format);
#ifdef DEBUG_EXT
printf("Qcow2: Got format extension %s\n", bs->backing_format);
#endif
break;
case QCOW2_EXT_MAGIC_FEATURE_TABLE:
if (p_feature_table != NULL) {
void *feature_table = g_malloc0(ext.len + 2 * sizeof(Qcow2Feature));
ret = bdrv_co_pread(bs->file, offset, ext.len, feature_table, 0);
if (ret < 0) {
error_setg_errno(errp, -ret, "ERROR: ext_feature_table: "
"Could not read table");
g_free(feature_table);
return ret;
}
*p_feature_table = feature_table;
}
break;
case QCOW2_EXT_MAGIC_CRYPTO_HEADER: {
unsigned int cflags = 0;
if (s->crypt_method_header != QCOW_CRYPT_LUKS) {
error_setg(errp, "CRYPTO header extension only "
"expected with LUKS encryption method");
return -EINVAL;
}
if (ext.len != sizeof(Qcow2CryptoHeaderExtension)) {
error_setg(errp, "CRYPTO header extension size %u, "
"but expected size %zu", ext.len,
sizeof(Qcow2CryptoHeaderExtension));
return -EINVAL;
}
ret = bdrv_co_pread(bs->file, offset, ext.len, &s->crypto_header, 0);
if (ret < 0) {
error_setg_errno(errp, -ret,
"Unable to read CRYPTO header extension");
return ret;
}
s->crypto_header.offset = be64_to_cpu(s->crypto_header.offset);
s->crypto_header.length = be64_to_cpu(s->crypto_header.length);
if ((s->crypto_header.offset % s->cluster_size) != 0) {
error_setg(errp, "Encryption header offset '%" PRIu64 "' is "
"not a multiple of cluster size '%u'",
s->crypto_header.offset, s->cluster_size);
return -EINVAL;
}
if (flags & BDRV_O_NO_IO) {
cflags |= QCRYPTO_BLOCK_OPEN_NO_IO;
}
s->crypto = qcrypto_block_open(s->crypto_opts, "encrypt.",
qcow2_crypto_hdr_read_func,
bs, cflags, QCOW2_MAX_THREADS, errp);
if (!s->crypto) {
return -EINVAL;
}
} break;
case QCOW2_EXT_MAGIC_BITMAPS:
if (ext.len != sizeof(bitmaps_ext)) {
error_setg_errno(errp, -ret, "bitmaps_ext: "
"Invalid extension length");
return -EINVAL;
}
if (!(s->autoclear_features & QCOW2_AUTOCLEAR_BITMAPS)) {
if (s->qcow_version < 3) {
/* Let's be a bit more specific */
warn_report("This qcow2 v2 image contains bitmaps, but "
"they may have been modified by a program "
"without persistent bitmap support; so now "
"they must all be considered inconsistent");
} else {
warn_report("a program lacking bitmap support "
"modified this file, so all bitmaps are now "
"considered inconsistent");
}
error_printf("Some clusters may be leaked, "
"run 'qemu-img check -r' on the image "
"file to fix.");
if (need_update_header != NULL) {
/* Updating is needed to drop invalid bitmap extension. */
*need_update_header = true;
}
break;
}
ret = bdrv_co_pread(bs->file, offset, ext.len, &bitmaps_ext, 0);
if (ret < 0) {
error_setg_errno(errp, -ret, "bitmaps_ext: "
"Could not read ext header");
return ret;
}
if (bitmaps_ext.reserved32 != 0) {
error_setg_errno(errp, -ret, "bitmaps_ext: "
"Reserved field is not zero");
return -EINVAL;
}
bitmaps_ext.nb_bitmaps = be32_to_cpu(bitmaps_ext.nb_bitmaps);
bitmaps_ext.bitmap_directory_size =
be64_to_cpu(bitmaps_ext.bitmap_directory_size);
bitmaps_ext.bitmap_directory_offset =
be64_to_cpu(bitmaps_ext.bitmap_directory_offset);
if (bitmaps_ext.nb_bitmaps > QCOW2_MAX_BITMAPS) {
error_setg(errp,
"bitmaps_ext: Image has %" PRIu32 " bitmaps, "
"exceeding the QEMU supported maximum of %d",
bitmaps_ext.nb_bitmaps, QCOW2_MAX_BITMAPS);
return -EINVAL;
}
if (bitmaps_ext.nb_bitmaps == 0) {
error_setg(errp, "found bitmaps extension with zero bitmaps");
return -EINVAL;
}
if (offset_into_cluster(s, bitmaps_ext.bitmap_directory_offset)) {
error_setg(errp, "bitmaps_ext: "
"invalid bitmap directory offset");
return -EINVAL;
}
if (bitmaps_ext.bitmap_directory_size >
QCOW2_MAX_BITMAP_DIRECTORY_SIZE) {
error_setg(errp, "bitmaps_ext: "
"bitmap directory size (%" PRIu64 ") exceeds "
"the maximum supported size (%d)",
bitmaps_ext.bitmap_directory_size,
QCOW2_MAX_BITMAP_DIRECTORY_SIZE);
return -EINVAL;
}
s->nb_bitmaps = bitmaps_ext.nb_bitmaps;
s->bitmap_directory_offset =
bitmaps_ext.bitmap_directory_offset;
s->bitmap_directory_size =
bitmaps_ext.bitmap_directory_size;
#ifdef DEBUG_EXT
printf("Qcow2: Got bitmaps extension: "
"offset=%" PRIu64 " nb_bitmaps=%" PRIu32 "\n",
s->bitmap_directory_offset, s->nb_bitmaps);
#endif
break;
case QCOW2_EXT_MAGIC_DATA_FILE:
{
s->image_data_file = g_malloc0(ext.len + 1);
ret = bdrv_co_pread(bs->file, offset, ext.len, s->image_data_file, 0);
if (ret < 0) {
error_setg_errno(errp, -ret,
"ERROR: Could not read data file name");
return ret;
}
#ifdef DEBUG_EXT
printf("Qcow2: Got external data file %s\n", s->image_data_file);
#endif
break;
}
default:
/* unknown magic - save it in case we need to rewrite the header */
/* If you add a new feature, make sure to also update the fast
* path of qcow2_make_empty() to deal with it. */
{
Qcow2UnknownHeaderExtension *uext;
uext = g_malloc0(sizeof(*uext) + ext.len);
uext->magic = ext.magic;
uext->len = ext.len;
QLIST_INSERT_HEAD(&s->unknown_header_ext, uext, next);
ret = bdrv_co_pread(bs->file, offset, uext->len, uext->data, 0);
if (ret < 0) {
error_setg_errno(errp, -ret, "ERROR: unknown extension: "
"Could not read data");
return ret;
}
}
break;
}
offset += ((ext.len + 7) & ~7);
}
return 0;
}
static void cleanup_unknown_header_ext(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
Qcow2UnknownHeaderExtension *uext, *next;
QLIST_FOREACH_SAFE(uext, &s->unknown_header_ext, next, next) {
QLIST_REMOVE(uext, next);
g_free(uext);
}
}
static void report_unsupported_feature(Error **errp, Qcow2Feature *table,
uint64_t mask)
{
g_autoptr(GString) features = g_string_sized_new(60);
while (table && table->name[0] != '\0') {
if (table->type == QCOW2_FEAT_TYPE_INCOMPATIBLE) {
if (mask & (1ULL << table->bit)) {
if (features->len > 0) {
g_string_append(features, ", ");
}
g_string_append_printf(features, "%.46s", table->name);
mask &= ~(1ULL << table->bit);
}
}
table++;
}
if (mask) {
if (features->len > 0) {
g_string_append(features, ", ");
}
g_string_append_printf(features,
"Unknown incompatible feature: %" PRIx64, mask);
}
error_setg(errp, "Unsupported qcow2 feature(s): %s", features->str);
}
/*
* Sets the dirty bit and flushes afterwards if necessary.
*
* The incompatible_features bit is only set if the image file header was
* updated successfully. Therefore it is not required to check the return
* value of this function.
*/
int qcow2_mark_dirty(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
uint64_t val;
int ret;
assert(s->qcow_version >= 3);
if (s->incompatible_features & QCOW2_INCOMPAT_DIRTY) {
return 0; /* already dirty */
}
val = cpu_to_be64(s->incompatible_features | QCOW2_INCOMPAT_DIRTY);
ret = bdrv_pwrite_sync(bs->file,
offsetof(QCowHeader, incompatible_features),
sizeof(val), &val, 0);
if (ret < 0) {
return ret;
}
/* Only treat image as dirty if the header was updated successfully */
s->incompatible_features |= QCOW2_INCOMPAT_DIRTY;
return 0;
}
/*
* Clears the dirty bit and flushes before if necessary. Only call this
* function when there are no pending requests, it does not guard against
* concurrent requests dirtying the image.
*/
static int qcow2_mark_clean(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
if (s->incompatible_features & QCOW2_INCOMPAT_DIRTY) {
int ret;
s->incompatible_features &= ~QCOW2_INCOMPAT_DIRTY;
ret = qcow2_flush_caches(bs);
if (ret < 0) {
return ret;
}
return qcow2_update_header(bs);
}
return 0;
}
/*
* Marks the image as corrupt.
*/
int qcow2_mark_corrupt(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
s->incompatible_features |= QCOW2_INCOMPAT_CORRUPT;
return qcow2_update_header(bs);
}
/*
* Marks the image as consistent, i.e., unsets the corrupt bit, and flushes
* before if necessary.
*/
int qcow2_mark_consistent(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
if (s->incompatible_features & QCOW2_INCOMPAT_CORRUPT) {
int ret = qcow2_flush_caches(bs);
if (ret < 0) {
return ret;
}
s->incompatible_features &= ~QCOW2_INCOMPAT_CORRUPT;
return qcow2_update_header(bs);
}
return 0;
}
static void qcow2_add_check_result(BdrvCheckResult *out,
const BdrvCheckResult *src,
bool set_allocation_info)
{
out->corruptions += src->corruptions;
out->leaks += src->leaks;
out->check_errors += src->check_errors;
out->corruptions_fixed += src->corruptions_fixed;
out->leaks_fixed += src->leaks_fixed;
if (set_allocation_info) {
out->image_end_offset = src->image_end_offset;
out->bfi = src->bfi;
}
}
static int coroutine_fn GRAPH_RDLOCK
qcow2_co_check_locked(BlockDriverState *bs, BdrvCheckResult *result,
BdrvCheckMode fix)
{
BdrvCheckResult snapshot_res = {};
BdrvCheckResult refcount_res = {};
int ret;
memset(result, 0, sizeof(*result));
ret = qcow2_check_read_snapshot_table(bs, &snapshot_res, fix);
if (ret < 0) {
qcow2_add_check_result(result, &snapshot_res, false);
return ret;
}
ret = qcow2_check_refcounts(bs, &refcount_res, fix);
qcow2_add_check_result(result, &refcount_res, true);
if (ret < 0) {
qcow2_add_check_result(result, &snapshot_res, false);
return ret;
}
ret = qcow2_check_fix_snapshot_table(bs, &snapshot_res, fix);
qcow2_add_check_result(result, &snapshot_res, false);
if (ret < 0) {
return ret;
}
if (fix && result->check_errors == 0 && result->corruptions == 0) {
ret = qcow2_mark_clean(bs);
if (ret < 0) {
return ret;
}
return qcow2_mark_consistent(bs);
}
return ret;
}
static int coroutine_fn GRAPH_RDLOCK
qcow2_co_check(BlockDriverState *bs, BdrvCheckResult *result,
BdrvCheckMode fix)
{
BDRVQcow2State *s = bs->opaque;
int ret;
qemu_co_mutex_lock(&s->lock);
ret = qcow2_co_check_locked(bs, result, fix);
qemu_co_mutex_unlock(&s->lock);
return ret;
}
int qcow2_validate_table(BlockDriverState *bs, uint64_t offset,
uint64_t entries, size_t entry_len,
int64_t max_size_bytes, const char *table_name,
Error **errp)
{
BDRVQcow2State *s = bs->opaque;
if (entries > max_size_bytes / entry_len) {
error_setg(errp, "%s too large", table_name);
return -EFBIG;
}
/* Use signed INT64_MAX as the maximum even for uint64_t header fields,
* because values will be passed to qemu functions taking int64_t. */
if ((INT64_MAX - entries * entry_len < offset) ||
(offset_into_cluster(s, offset) != 0)) {
error_setg(errp, "%s offset invalid", table_name);
return -EINVAL;
}
return 0;
}
static const char *const mutable_opts[] = {
QCOW2_OPT_LAZY_REFCOUNTS,
QCOW2_OPT_DISCARD_REQUEST,
QCOW2_OPT_DISCARD_SNAPSHOT,
QCOW2_OPT_DISCARD_OTHER,
QCOW2_OPT_DISCARD_NO_UNREF,
QCOW2_OPT_OVERLAP,
QCOW2_OPT_OVERLAP_TEMPLATE,
QCOW2_OPT_OVERLAP_MAIN_HEADER,
QCOW2_OPT_OVERLAP_ACTIVE_L1,
QCOW2_OPT_OVERLAP_ACTIVE_L2,
QCOW2_OPT_OVERLAP_REFCOUNT_TABLE,
QCOW2_OPT_OVERLAP_REFCOUNT_BLOCK,
QCOW2_OPT_OVERLAP_SNAPSHOT_TABLE,
QCOW2_OPT_OVERLAP_INACTIVE_L1,
QCOW2_OPT_OVERLAP_INACTIVE_L2,
QCOW2_OPT_OVERLAP_BITMAP_DIRECTORY,
QCOW2_OPT_CACHE_SIZE,
QCOW2_OPT_L2_CACHE_SIZE,
QCOW2_OPT_L2_CACHE_ENTRY_SIZE,
QCOW2_OPT_REFCOUNT_CACHE_SIZE,
QCOW2_OPT_CACHE_CLEAN_INTERVAL,
NULL
};
static QemuOptsList qcow2_runtime_opts = {
.name = "qcow2",
.head = QTAILQ_HEAD_INITIALIZER(qcow2_runtime_opts.head),
.desc = {
{
.name = QCOW2_OPT_LAZY_REFCOUNTS,
.type = QEMU_OPT_BOOL,
.help = "Postpone refcount updates",
},
{
.name = QCOW2_OPT_DISCARD_REQUEST,
.type = QEMU_OPT_BOOL,
.help = "Pass guest discard requests to the layer below",
},
{
.name = QCOW2_OPT_DISCARD_SNAPSHOT,
.type = QEMU_OPT_BOOL,
.help = "Generate discard requests when snapshot related space "
"is freed",
},
{
.name = QCOW2_OPT_DISCARD_OTHER,
.type = QEMU_OPT_BOOL,
.help = "Generate discard requests when other clusters are freed",
},
{
.name = QCOW2_OPT_DISCARD_NO_UNREF,
.type = QEMU_OPT_BOOL,
.help = "Do not unreference discarded clusters",
},
{
.name = QCOW2_OPT_OVERLAP,
.type = QEMU_OPT_STRING,
.help = "Selects which overlap checks to perform from a range of "
"templates (none, constant, cached, all)",
},
{
.name = QCOW2_OPT_OVERLAP_TEMPLATE,
.type = QEMU_OPT_STRING,
.help = "Selects which overlap checks to perform from a range of "
"templates (none, constant, cached, all)",
},
{
.name = QCOW2_OPT_OVERLAP_MAIN_HEADER,
.type = QEMU_OPT_BOOL,
.help = "Check for unintended writes into the main qcow2 header",
},
{
.name = QCOW2_OPT_OVERLAP_ACTIVE_L1,
.type = QEMU_OPT_BOOL,
.help = "Check for unintended writes into the active L1 table",
},
{
.name = QCOW2_OPT_OVERLAP_ACTIVE_L2,
.type = QEMU_OPT_BOOL,
.help = "Check for unintended writes into an active L2 table",
},
{
.name = QCOW2_OPT_OVERLAP_REFCOUNT_TABLE,
.type = QEMU_OPT_BOOL,
.help = "Check for unintended writes into the refcount table",
},
{
.name = QCOW2_OPT_OVERLAP_REFCOUNT_BLOCK,
.type = QEMU_OPT_BOOL,
.help = "Check for unintended writes into a refcount block",
},
{
.name = QCOW2_OPT_OVERLAP_SNAPSHOT_TABLE,
.type = QEMU_OPT_BOOL,
.help = "Check for unintended writes into the snapshot table",
},
{
.name = QCOW2_OPT_OVERLAP_INACTIVE_L1,
.type = QEMU_OPT_BOOL,
.help = "Check for unintended writes into an inactive L1 table",
},
{
.name = QCOW2_OPT_OVERLAP_INACTIVE_L2,
.type = QEMU_OPT_BOOL,
.help = "Check for unintended writes into an inactive L2 table",
},
{
.name = QCOW2_OPT_OVERLAP_BITMAP_DIRECTORY,
.type = QEMU_OPT_BOOL,
.help = "Check for unintended writes into the bitmap directory",
},
{
.name = QCOW2_OPT_CACHE_SIZE,
.type = QEMU_OPT_SIZE,
.help = "Maximum combined metadata (L2 tables and refcount blocks) "
"cache size",
},
{
.name = QCOW2_OPT_L2_CACHE_SIZE,
.type = QEMU_OPT_SIZE,
.help = "Maximum L2 table cache size",
},
{
.name = QCOW2_OPT_L2_CACHE_ENTRY_SIZE,
.type = QEMU_OPT_SIZE,
.help = "Size of each entry in the L2 cache",
},
{
.name = QCOW2_OPT_REFCOUNT_CACHE_SIZE,
.type = QEMU_OPT_SIZE,
.help = "Maximum refcount block cache size",
},
{
.name = QCOW2_OPT_CACHE_CLEAN_INTERVAL,
.type = QEMU_OPT_NUMBER,
.help = "Clean unused cache entries after this time (in seconds)",
},
BLOCK_CRYPTO_OPT_DEF_KEY_SECRET("encrypt.",
"ID of secret providing qcow2 AES key or LUKS passphrase"),
{ /* end of list */ }
},
};
static const char *overlap_bool_option_names[QCOW2_OL_MAX_BITNR] = {
[QCOW2_OL_MAIN_HEADER_BITNR] = QCOW2_OPT_OVERLAP_MAIN_HEADER,
[QCOW2_OL_ACTIVE_L1_BITNR] = QCOW2_OPT_OVERLAP_ACTIVE_L1,
[QCOW2_OL_ACTIVE_L2_BITNR] = QCOW2_OPT_OVERLAP_ACTIVE_L2,
[QCOW2_OL_REFCOUNT_TABLE_BITNR] = QCOW2_OPT_OVERLAP_REFCOUNT_TABLE,
[QCOW2_OL_REFCOUNT_BLOCK_BITNR] = QCOW2_OPT_OVERLAP_REFCOUNT_BLOCK,
[QCOW2_OL_SNAPSHOT_TABLE_BITNR] = QCOW2_OPT_OVERLAP_SNAPSHOT_TABLE,
[QCOW2_OL_INACTIVE_L1_BITNR] = QCOW2_OPT_OVERLAP_INACTIVE_L1,
[QCOW2_OL_INACTIVE_L2_BITNR] = QCOW2_OPT_OVERLAP_INACTIVE_L2,
[QCOW2_OL_BITMAP_DIRECTORY_BITNR] = QCOW2_OPT_OVERLAP_BITMAP_DIRECTORY,
};
static void cache_clean_timer_cb(void *opaque)
{
BlockDriverState *bs = opaque;
BDRVQcow2State *s = bs->opaque;
qcow2_cache_clean_unused(s->l2_table_cache);
qcow2_cache_clean_unused(s->refcount_block_cache);
timer_mod(s->cache_clean_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) +
(int64_t) s->cache_clean_interval * 1000);
}
static void cache_clean_timer_init(BlockDriverState *bs, AioContext *context)
{
BDRVQcow2State *s = bs->opaque;
if (s->cache_clean_interval > 0) {
s->cache_clean_timer =
aio_timer_new_with_attrs(context, QEMU_CLOCK_VIRTUAL,
SCALE_MS, QEMU_TIMER_ATTR_EXTERNAL,
cache_clean_timer_cb, bs);
timer_mod(s->cache_clean_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) +
(int64_t) s->cache_clean_interval * 1000);
}
}
static void cache_clean_timer_del(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
if (s->cache_clean_timer) {
timer_free(s->cache_clean_timer);
s->cache_clean_timer = NULL;
}
}
static void qcow2_detach_aio_context(BlockDriverState *bs)
{
cache_clean_timer_del(bs);
}
static void qcow2_attach_aio_context(BlockDriverState *bs,
AioContext *new_context)
{
cache_clean_timer_init(bs, new_context);
}
static bool read_cache_sizes(BlockDriverState *bs, QemuOpts *opts,
uint64_t *l2_cache_size,
uint64_t *l2_cache_entry_size,
uint64_t *refcount_cache_size, Error **errp)
{
BDRVQcow2State *s = bs->opaque;
uint64_t combined_cache_size, l2_cache_max_setting;
bool l2_cache_size_set, refcount_cache_size_set, combined_cache_size_set;
bool l2_cache_entry_size_set;
int min_refcount_cache = MIN_REFCOUNT_CACHE_SIZE * s->cluster_size;
uint64_t virtual_disk_size = bs->total_sectors * BDRV_SECTOR_SIZE;
uint64_t max_l2_entries = DIV_ROUND_UP(virtual_disk_size, s->cluster_size);
/* An L2 table is always one cluster in size so the max cache size
* should be a multiple of the cluster size. */
uint64_t max_l2_cache = ROUND_UP(max_l2_entries * l2_entry_size(s),
s->cluster_size);
combined_cache_size_set = qemu_opt_get(opts, QCOW2_OPT_CACHE_SIZE);
l2_cache_size_set = qemu_opt_get(opts, QCOW2_OPT_L2_CACHE_SIZE);
refcount_cache_size_set = qemu_opt_get(opts, QCOW2_OPT_REFCOUNT_CACHE_SIZE);
l2_cache_entry_size_set = qemu_opt_get(opts, QCOW2_OPT_L2_CACHE_ENTRY_SIZE);
combined_cache_size = qemu_opt_get_size(opts, QCOW2_OPT_CACHE_SIZE, 0);
l2_cache_max_setting = qemu_opt_get_size(opts, QCOW2_OPT_L2_CACHE_SIZE,
DEFAULT_L2_CACHE_MAX_SIZE);
*refcount_cache_size = qemu_opt_get_size(opts,
QCOW2_OPT_REFCOUNT_CACHE_SIZE, 0);
*l2_cache_entry_size = qemu_opt_get_size(
opts, QCOW2_OPT_L2_CACHE_ENTRY_SIZE, s->cluster_size);
*l2_cache_size = MIN(max_l2_cache, l2_cache_max_setting);
if (combined_cache_size_set) {
if (l2_cache_size_set && refcount_cache_size_set) {
error_setg(errp, QCOW2_OPT_CACHE_SIZE ", " QCOW2_OPT_L2_CACHE_SIZE
" and " QCOW2_OPT_REFCOUNT_CACHE_SIZE " may not be set "
"at the same time");
return false;
} else if (l2_cache_size_set &&
(l2_cache_max_setting > combined_cache_size)) {
error_setg(errp, QCOW2_OPT_L2_CACHE_SIZE " may not exceed "
QCOW2_OPT_CACHE_SIZE);
return false;
} else if (*refcount_cache_size > combined_cache_size) {
error_setg(errp, QCOW2_OPT_REFCOUNT_CACHE_SIZE " may not exceed "
QCOW2_OPT_CACHE_SIZE);
return false;
}
if (l2_cache_size_set) {
*refcount_cache_size = combined_cache_size - *l2_cache_size;
} else if (refcount_cache_size_set) {
*l2_cache_size = combined_cache_size - *refcount_cache_size;
} else {
/* Assign as much memory as possible to the L2 cache, and
* use the remainder for the refcount cache */
if (combined_cache_size >= max_l2_cache + min_refcount_cache) {
*l2_cache_size = max_l2_cache;
*refcount_cache_size = combined_cache_size - *l2_cache_size;
} else {
*refcount_cache_size =
MIN(combined_cache_size, min_refcount_cache);
*l2_cache_size = combined_cache_size - *refcount_cache_size;
}
}
}
/*
* If the L2 cache is not enough to cover the whole disk then
* default to 4KB entries. Smaller entries reduce the cost of
* loads and evictions and increase I/O performance.
*/
if (*l2_cache_size < max_l2_cache && !l2_cache_entry_size_set) {
*l2_cache_entry_size = MIN(s->cluster_size, 4096);
}
/* l2_cache_size and refcount_cache_size are ensured to have at least
* their minimum values in qcow2_update_options_prepare() */
if (*l2_cache_entry_size < (1 << MIN_CLUSTER_BITS) ||
*l2_cache_entry_size > s->cluster_size ||
!is_power_of_2(*l2_cache_entry_size)) {
error_setg(errp, "L2 cache entry size must be a power of two "
"between %d and the cluster size (%d)",
1 << MIN_CLUSTER_BITS, s->cluster_size);
return false;
}
return true;
}
typedef struct Qcow2ReopenState {
Qcow2Cache *l2_table_cache;
Qcow2Cache *refcount_block_cache;
int l2_slice_size; /* Number of entries in a slice of the L2 table */
bool use_lazy_refcounts;
int overlap_check;
bool discard_passthrough[QCOW2_DISCARD_MAX];
bool discard_no_unref;
uint64_t cache_clean_interval;
QCryptoBlockOpenOptions *crypto_opts; /* Disk encryption runtime options */
} Qcow2ReopenState;
static int qcow2_update_options_prepare(BlockDriverState *bs,
Qcow2ReopenState *r,
QDict *options, int flags,
Error **errp)
{
BDRVQcow2State *s = bs->opaque;
QemuOpts *opts = NULL;
const char *opt_overlap_check, *opt_overlap_check_template;
int overlap_check_template = 0;
uint64_t l2_cache_size, l2_cache_entry_size, refcount_cache_size;
int i;
const char *encryptfmt;
QDict *encryptopts = NULL;
int ret;
qdict_extract_subqdict(options, &encryptopts, "encrypt.");
encryptfmt = qdict_get_try_str(encryptopts, "format");
opts = qemu_opts_create(&qcow2_runtime_opts, NULL, 0, &error_abort);
if (!qemu_opts_absorb_qdict(opts, options, errp)) {
ret = -EINVAL;
goto fail;
}
/* get L2 table/refcount block cache size from command line options */
if (!read_cache_sizes(bs, opts, &l2_cache_size, &l2_cache_entry_size,
&refcount_cache_size, errp)) {
ret = -EINVAL;
goto fail;
}
l2_cache_size /= l2_cache_entry_size;
if (l2_cache_size < MIN_L2_CACHE_SIZE) {
l2_cache_size = MIN_L2_CACHE_SIZE;
}
if (l2_cache_size > INT_MAX) {
error_setg(errp, "L2 cache size too big");
ret = -EINVAL;
goto fail;
}
refcount_cache_size /= s->cluster_size;
if (refcount_cache_size < MIN_REFCOUNT_CACHE_SIZE) {
refcount_cache_size = MIN_REFCOUNT_CACHE_SIZE;
}
if (refcount_cache_size > INT_MAX) {
error_setg(errp, "Refcount cache size too big");
ret = -EINVAL;
goto fail;
}
/* alloc new L2 table/refcount block cache, flush old one */
if (s->l2_table_cache) {
ret = qcow2_cache_flush(bs, s->l2_table_cache);
if (ret) {
error_setg_errno(errp, -ret, "Failed to flush the L2 table cache");
goto fail;
}
}
if (s->refcount_block_cache) {
ret = qcow2_cache_flush(bs, s->refcount_block_cache);
if (ret) {
error_setg_errno(errp, -ret,
"Failed to flush the refcount block cache");
goto fail;
}
}
r->l2_slice_size = l2_cache_entry_size / l2_entry_size(s);
r->l2_table_cache = qcow2_cache_create(bs, l2_cache_size,
l2_cache_entry_size);
r->refcount_block_cache = qcow2_cache_create(bs, refcount_cache_size,
s->cluster_size);
if (r->l2_table_cache == NULL || r->refcount_block_cache == NULL) {
error_setg(errp, "Could not allocate metadata caches");
ret = -ENOMEM;
goto fail;
}
/* New interval for cache cleanup timer */
r->cache_clean_interval =
qemu_opt_get_number(opts, QCOW2_OPT_CACHE_CLEAN_INTERVAL,
DEFAULT_CACHE_CLEAN_INTERVAL);
#ifndef CONFIG_LINUX
if (r->cache_clean_interval != 0) {
error_setg(errp, QCOW2_OPT_CACHE_CLEAN_INTERVAL
" not supported on this host");
ret = -EINVAL;
goto fail;
}
#endif
if (r->cache_clean_interval > UINT_MAX) {
error_setg(errp, "Cache clean interval too big");
ret = -EINVAL;
goto fail;
}
/* lazy-refcounts; flush if going from enabled to disabled */
r->use_lazy_refcounts = qemu_opt_get_bool(opts, QCOW2_OPT_LAZY_REFCOUNTS,
(s->compatible_features & QCOW2_COMPAT_LAZY_REFCOUNTS));
if (r->use_lazy_refcounts && s->qcow_version < 3) {
error_setg(errp, "Lazy refcounts require a qcow2 image with at least "
"qemu 1.1 compatibility level");
ret = -EINVAL;
goto fail;
}
if (s->use_lazy_refcounts && !r->use_lazy_refcounts) {
ret = qcow2_mark_clean(bs);
if (ret < 0) {
error_setg_errno(errp, -ret, "Failed to disable lazy refcounts");
goto fail;
}
}
/* Overlap check options */
opt_overlap_check = qemu_opt_get(opts, QCOW2_OPT_OVERLAP);
opt_overlap_check_template = qemu_opt_get(opts, QCOW2_OPT_OVERLAP_TEMPLATE);
if (opt_overlap_check_template && opt_overlap_check &&
strcmp(opt_overlap_check_template, opt_overlap_check))
{
error_setg(errp, "Conflicting values for qcow2 options '"
QCOW2_OPT_OVERLAP "' ('%s') and '" QCOW2_OPT_OVERLAP_TEMPLATE
"' ('%s')", opt_overlap_check, opt_overlap_check_template);
ret = -EINVAL;
goto fail;
}
if (!opt_overlap_check) {
opt_overlap_check = opt_overlap_check_template ?: "cached";
}
if (!strcmp(opt_overlap_check, "none")) {
overlap_check_template = 0;
} else if (!strcmp(opt_overlap_check, "constant")) {
overlap_check_template = QCOW2_OL_CONSTANT;
} else if (!strcmp(opt_overlap_check, "cached")) {
overlap_check_template = QCOW2_OL_CACHED;
} else if (!strcmp(opt_overlap_check, "all")) {
overlap_check_template = QCOW2_OL_ALL;
} else {
error_setg(errp, "Unsupported value '%s' for qcow2 option "
"'overlap-check'. Allowed are any of the following: "
"none, constant, cached, all", opt_overlap_check);
ret = -EINVAL;
goto fail;
}
r->overlap_check = 0;
for (i = 0; i < QCOW2_OL_MAX_BITNR; i++) {
/* overlap-check defines a template bitmask, but every flag may be
* overwritten through the associated boolean option */
r->overlap_check |=
qemu_opt_get_bool(opts, overlap_bool_option_names[i],
overlap_check_template & (1 << i)) << i;
}
r->discard_passthrough[QCOW2_DISCARD_NEVER] = false;
r->discard_passthrough[QCOW2_DISCARD_ALWAYS] = true;
r->discard_passthrough[QCOW2_DISCARD_REQUEST] =
qemu_opt_get_bool(opts, QCOW2_OPT_DISCARD_REQUEST,
flags & BDRV_O_UNMAP);
r->discard_passthrough[QCOW2_DISCARD_SNAPSHOT] =
qemu_opt_get_bool(opts, QCOW2_OPT_DISCARD_SNAPSHOT, true);
r->discard_passthrough[QCOW2_DISCARD_OTHER] =
qemu_opt_get_bool(opts, QCOW2_OPT_DISCARD_OTHER, false);
r->discard_no_unref = qemu_opt_get_bool(opts, QCOW2_OPT_DISCARD_NO_UNREF,
false);
if (r->discard_no_unref && s->qcow_version < 3) {
error_setg(errp,
"discard-no-unref is only supported since qcow2 version 3");
ret = -EINVAL;
goto fail;
}
switch (s->crypt_method_header) {
case QCOW_CRYPT_NONE:
if (encryptfmt) {
error_setg(errp, "No encryption in image header, but options "
"specified format '%s'", encryptfmt);
ret = -EINVAL;
goto fail;
}
break;
case QCOW_CRYPT_AES:
if (encryptfmt && !g_str_equal(encryptfmt, "aes")) {
error_setg(errp,
"Header reported 'aes' encryption format but "
"options specify '%s'", encryptfmt);
ret = -EINVAL;
goto fail;
}
qdict_put_str(encryptopts, "format", "qcow");
r->crypto_opts = block_crypto_open_opts_init(encryptopts, errp);
if (!r->crypto_opts) {
ret = -EINVAL;
goto fail;
}
break;
case QCOW_CRYPT_LUKS:
if (encryptfmt && !g_str_equal(encryptfmt, "luks")) {
error_setg(errp,
"Header reported 'luks' encryption format but "
"options specify '%s'", encryptfmt);
ret = -EINVAL;
goto fail;
}
qdict_put_str(encryptopts, "format", "luks");
r->crypto_opts = block_crypto_open_opts_init(encryptopts, errp);
if (!r->crypto_opts) {
ret = -EINVAL;
goto fail;
}
break;
default:
error_setg(errp, "Unsupported encryption method %d",
s->crypt_method_header);
ret = -EINVAL;
goto fail;
}
ret = 0;
fail:
qobject_unref(encryptopts);
qemu_opts_del(opts);
opts = NULL;
return ret;
}
static void qcow2_update_options_commit(BlockDriverState *bs,
Qcow2ReopenState *r)
{
BDRVQcow2State *s = bs->opaque;
int i;
if (s->l2_table_cache) {
qcow2_cache_destroy(s->l2_table_cache);
}
if (s->refcount_block_cache) {
qcow2_cache_destroy(s->refcount_block_cache);
}
s->l2_table_cache = r->l2_table_cache;
s->refcount_block_cache = r->refcount_block_cache;
s->l2_slice_size = r->l2_slice_size;
s->overlap_check = r->overlap_check;
s->use_lazy_refcounts = r->use_lazy_refcounts;
for (i = 0; i < QCOW2_DISCARD_MAX; i++) {
s->discard_passthrough[i] = r->discard_passthrough[i];
}
s->discard_no_unref = r->discard_no_unref;
if (s->cache_clean_interval != r->cache_clean_interval) {
cache_clean_timer_del(bs);
s->cache_clean_interval = r->cache_clean_interval;
cache_clean_timer_init(bs, bdrv_get_aio_context(bs));
}
qapi_free_QCryptoBlockOpenOptions(s->crypto_opts);
s->crypto_opts = r->crypto_opts;
}
static void qcow2_update_options_abort(BlockDriverState *bs,
Qcow2ReopenState *r)
{
if (r->l2_table_cache) {
qcow2_cache_destroy(r->l2_table_cache);
}
if (r->refcount_block_cache) {
qcow2_cache_destroy(r->refcount_block_cache);
}
qapi_free_QCryptoBlockOpenOptions(r->crypto_opts);
}
static int coroutine_fn
qcow2_update_options(BlockDriverState *bs, QDict *options, int flags,
Error **errp)
{
Qcow2ReopenState r = {};
int ret;
ret = qcow2_update_options_prepare(bs, &r, options, flags, errp);
if (ret >= 0) {
qcow2_update_options_commit(bs, &r);
} else {
qcow2_update_options_abort(bs, &r);
}
return ret;
}
static int validate_compression_type(BDRVQcow2State *s, Error **errp)
{
switch (s->compression_type) {
case QCOW2_COMPRESSION_TYPE_ZLIB:
#ifdef CONFIG_ZSTD
case QCOW2_COMPRESSION_TYPE_ZSTD:
#endif
break;
default:
error_setg(errp, "qcow2: unknown compression type: %u",
s->compression_type);
return -ENOTSUP;
}
/*
* if the compression type differs from QCOW2_COMPRESSION_TYPE_ZLIB
* the incompatible feature flag must be set
*/
if (s->compression_type == QCOW2_COMPRESSION_TYPE_ZLIB) {
if (s->incompatible_features & QCOW2_INCOMPAT_COMPRESSION) {
error_setg(errp, "qcow2: Compression type incompatible feature "
"bit must not be set");
return -EINVAL;
}
} else {
if (!(s->incompatible_features & QCOW2_INCOMPAT_COMPRESSION)) {
error_setg(errp, "qcow2: Compression type incompatible feature "
"bit must be set");
return -EINVAL;
}
}
return 0;
}
/* Called with s->lock held. */
static int coroutine_fn GRAPH_RDLOCK
qcow2_do_open(BlockDriverState *bs, QDict *options, int flags,
bool open_data_file, Error **errp)
{
ERRP_GUARD();
BDRVQcow2State *s = bs->opaque;
unsigned int len, i;
int ret = 0;
QCowHeader header;
uint64_t ext_end;
uint64_t l1_vm_state_index;
bool update_header = false;
ret = bdrv_co_pread(bs->file, 0, sizeof(header), &header, 0);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not read qcow2 header");
goto fail;
}
header.magic = be32_to_cpu(header.magic);
header.version = be32_to_cpu(header.version);
header.backing_file_offset = be64_to_cpu(header.backing_file_offset);
header.backing_file_size = be32_to_cpu(header.backing_file_size);
header.size = be64_to_cpu(header.size);
header.cluster_bits = be32_to_cpu(header.cluster_bits);
header.crypt_method = be32_to_cpu(header.crypt_method);
header.l1_table_offset = be64_to_cpu(header.l1_table_offset);
header.l1_size = be32_to_cpu(header.l1_size);
header.refcount_table_offset = be64_to_cpu(header.refcount_table_offset);
header.refcount_table_clusters =
be32_to_cpu(header.refcount_table_clusters);
header.snapshots_offset = be64_to_cpu(header.snapshots_offset);
header.nb_snapshots = be32_to_cpu(header.nb_snapshots);
if (header.magic != QCOW_MAGIC) {
error_setg(errp, "Image is not in qcow2 format");
ret = -EINVAL;
goto fail;
}
if (header.version < 2 || header.version > 3) {
error_setg(errp, "Unsupported qcow2 version %" PRIu32, header.version);
ret = -ENOTSUP;
goto fail;
}
s->qcow_version = header.version;
/* Initialise cluster size */
if (header.cluster_bits < MIN_CLUSTER_BITS ||
header.cluster_bits > MAX_CLUSTER_BITS) {
error_setg(errp, "Unsupported cluster size: 2^%" PRIu32,
header.cluster_bits);
ret = -EINVAL;
goto fail;
}
s->cluster_bits = header.cluster_bits;
s->cluster_size = 1 << s->cluster_bits;
/* Initialise version 3 header fields */
if (header.version == 2) {
header.incompatible_features = 0;
header.compatible_features = 0;
header.autoclear_features = 0;
header.refcount_order = 4;
header.header_length = 72;
} else {
header.incompatible_features =
be64_to_cpu(header.incompatible_features);
header.compatible_features = be64_to_cpu(header.compatible_features);
header.autoclear_features = be64_to_cpu(header.autoclear_features);
header.refcount_order = be32_to_cpu(header.refcount_order);
header.header_length = be32_to_cpu(header.header_length);
if (header.header_length < 104) {
error_setg(errp, "qcow2 header too short");
ret = -EINVAL;
goto fail;
}
}
if (header.header_length > s->cluster_size) {
error_setg(errp, "qcow2 header exceeds cluster size");
ret = -EINVAL;
goto fail;
}
if (header.header_length > sizeof(header)) {
s->unknown_header_fields_size = header.header_length - sizeof(header);
s->unknown_header_fields = g_malloc(s->unknown_header_fields_size);
ret = bdrv_co_pread(bs->file, sizeof(header),
s->unknown_header_fields_size,
s->unknown_header_fields, 0);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not read unknown qcow2 header "
"fields");
goto fail;
}
}
if (header.backing_file_offset > s->cluster_size) {
error_setg(errp, "Invalid backing file offset");
ret = -EINVAL;
goto fail;
}
if (header.backing_file_offset) {
ext_end = header.backing_file_offset;
} else {
ext_end = 1 << header.cluster_bits;
}
/* Handle feature bits */
s->incompatible_features = header.incompatible_features;
s->compatible_features = header.compatible_features;
s->autoclear_features = header.autoclear_features;
/*
* Handle compression type
* Older qcow2 images don't contain the compression type header.
* Distinguish them by the header length and use
* the only valid (default) compression type in that case
*/
if (header.header_length > offsetof(QCowHeader, compression_type)) {
s->compression_type = header.compression_type;
} else {
s->compression_type = QCOW2_COMPRESSION_TYPE_ZLIB;
}
ret = validate_compression_type(s, errp);
if (ret) {
goto fail;
}
if (s->incompatible_features & ~QCOW2_INCOMPAT_MASK) {
void *feature_table = NULL;
qcow2_read_extensions(bs, header.header_length, ext_end,
&feature_table, flags, NULL, NULL);
report_unsupported_feature(errp, feature_table,
s->incompatible_features &
~QCOW2_INCOMPAT_MASK);
ret = -ENOTSUP;
g_free(feature_table);
goto fail;
}
if (s->incompatible_features & QCOW2_INCOMPAT_CORRUPT) {
/* Corrupt images may not be written to unless they are being repaired
*/
if ((flags & BDRV_O_RDWR) && !(flags & BDRV_O_CHECK)) {
error_setg(errp, "qcow2: Image is corrupt; cannot be opened "
"read/write");
ret = -EACCES;
goto fail;
}
}
s->subclusters_per_cluster =
has_subclusters(s) ? QCOW_EXTL2_SUBCLUSTERS_PER_CLUSTER : 1;
s->subcluster_size = s->cluster_size / s->subclusters_per_cluster;
s->subcluster_bits = ctz32(s->subcluster_size);
if (s->subcluster_size < (1 << MIN_CLUSTER_BITS)) {
error_setg(errp, "Unsupported subcluster size: %d", s->subcluster_size);
ret = -EINVAL;
goto fail;
}
/* Check support for various header values */
if (header.refcount_order > 6) {
error_setg(errp, "Reference count entry width too large; may not "
"exceed 64 bits");
ret = -EINVAL;
goto fail;
}
s->refcount_order = header.refcount_order;
s->refcount_bits = 1 << s->refcount_order;
s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
s->refcount_max += s->refcount_max - 1;
s->crypt_method_header = header.crypt_method;
if (s->crypt_method_header) {
if (bdrv_uses_whitelist() &&
s->crypt_method_header == QCOW_CRYPT_AES) {
error_setg(errp,
"Use of AES-CBC encrypted qcow2 images is no longer "
"supported in system emulators");
error_append_hint(errp,
"You can use 'qemu-img convert' to convert your "
"image to an alternative supported format, such "
"as unencrypted qcow2, or raw with the LUKS "
"format instead.\n");
ret = -ENOSYS;
goto fail;
}
if (s->crypt_method_header == QCOW_CRYPT_AES) {
s->crypt_physical_offset = false;
} else {
/* Assuming LUKS and any future crypt methods we
* add will all use physical offsets, due to the
* fact that the alternative is insecure... */
s->crypt_physical_offset = true;
}
bs->encrypted = true;
}
s->l2_bits = s->cluster_bits - ctz32(l2_entry_size(s));
s->l2_size = 1 << s->l2_bits;
/* 2^(s->refcount_order - 3) is the refcount width in bytes */
s->refcount_block_bits = s->cluster_bits - (s->refcount_order - 3);
s->refcount_block_size = 1 << s->refcount_block_bits;
bs->total_sectors = header.size / BDRV_SECTOR_SIZE;
s->csize_shift = (62 - (s->cluster_bits - 8));
s->csize_mask = (1 << (s->cluster_bits - 8)) - 1;
s->cluster_offset_mask = (1LL << s->csize_shift) - 1;
s->refcount_table_offset = header.refcount_table_offset;
s->refcount_table_size =
header.refcount_table_clusters << (s->cluster_bits - 3);
if (header.refcount_table_clusters == 0 && !(flags & BDRV_O_CHECK)) {
error_setg(errp, "Image does not contain a reference count table");
ret = -EINVAL;
goto fail;
}
ret = qcow2_validate_table(bs, s->refcount_table_offset,
header.refcount_table_clusters,
s->cluster_size, QCOW_MAX_REFTABLE_SIZE,
"Reference count table", errp);
if (ret < 0) {
goto fail;
}
if (!(flags & BDRV_O_CHECK)) {
/*
* The total size in bytes of the snapshot table is checked in
* qcow2_read_snapshots() because the size of each snapshot is
* variable and we don't know it yet.
* Here we only check the offset and number of snapshots.
*/
ret = qcow2_validate_table(bs, header.snapshots_offset,
header.nb_snapshots,
sizeof(QCowSnapshotHeader),
sizeof(QCowSnapshotHeader) *
QCOW_MAX_SNAPSHOTS,
"Snapshot table", errp);
if (ret < 0) {
goto fail;
}
}
/* read the level 1 table */
ret = qcow2_validate_table(bs, header.l1_table_offset,
header.l1_size, L1E_SIZE,
QCOW_MAX_L1_SIZE, "Active L1 table", errp);
if (ret < 0) {
goto fail;
}
s->l1_size = header.l1_size;
s->l1_table_offset = header.l1_table_offset;
l1_vm_state_index = size_to_l1(s, header.size);
if (l1_vm_state_index > INT_MAX) {
error_setg(errp, "Image is too big");
ret = -EFBIG;
goto fail;
}
s->l1_vm_state_index = l1_vm_state_index;
/* the L1 table must contain at least enough entries to put
header.size bytes */
if (s->l1_size < s->l1_vm_state_index) {
error_setg(errp, "L1 table is too small");
ret = -EINVAL;
goto fail;
}
if (s->l1_size > 0) {
s->l1_table = qemu_try_blockalign(bs->file->bs, s->l1_size * L1E_SIZE);
if (s->l1_table == NULL) {
error_setg(errp, "Could not allocate L1 table");
ret = -ENOMEM;
goto fail;
}
ret = bdrv_co_pread(bs->file, s->l1_table_offset, s->l1_size * L1E_SIZE,
s->l1_table, 0);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not read L1 table");
goto fail;
}
for(i = 0;i < s->l1_size; i++) {
s->l1_table[i] = be64_to_cpu(s->l1_table[i]);
}
}
/* Parse driver-specific options */
ret = qcow2_update_options(bs, options, flags, errp);
if (ret < 0) {
goto fail;
}
s->flags = flags;
ret = qcow2_refcount_init(bs);
if (ret != 0) {
error_setg_errno(errp, -ret, "Could not initialize refcount handling");
goto fail;
}
QLIST_INIT(&s->cluster_allocs);
QTAILQ_INIT(&s->discards);
/* read qcow2 extensions */
if (qcow2_read_extensions(bs, header.header_length, ext_end, NULL,
flags, &update_header, errp)) {
ret = -EINVAL;
goto fail;
}
if (open_data_file) {
/* Open external data file */
bdrv_graph_co_rdunlock();
s->data_file = bdrv_co_open_child(NULL, options, "data-file", bs,
&child_of_bds, BDRV_CHILD_DATA,
true, errp);
bdrv_graph_co_rdlock();
if (*errp) {
ret = -EINVAL;
goto fail;
}
if (s->incompatible_features & QCOW2_INCOMPAT_DATA_FILE) {
if (!s->data_file && s->image_data_file) {
bdrv_graph_co_rdunlock();
s->data_file = bdrv_co_open_child(s->image_data_file, options,
"data-file", bs,
&child_of_bds,
BDRV_CHILD_DATA, false, errp);
bdrv_graph_co_rdlock();
if (!s->data_file) {
ret = -EINVAL;
goto fail;
}
}
if (!s->data_file) {
error_setg(errp, "'data-file' is required for this image");
ret = -EINVAL;
goto fail;
}
/* No data here */
bs->file->role &= ~BDRV_CHILD_DATA;
/* Must succeed because we have given up permissions if anything */
bdrv_child_refresh_perms(bs, bs->file, &error_abort);
} else {
if (s->data_file) {
error_setg(errp, "'data-file' can only be set for images with "
"an external data file");
ret = -EINVAL;
goto fail;
}
s->data_file = bs->file;
if (data_file_is_raw(bs)) {
error_setg(errp, "data-file-raw requires a data file");
ret = -EINVAL;
goto fail;
}
}
}
/* qcow2_read_extension may have set up the crypto context
* if the crypt method needs a header region, some methods
* don't need header extensions, so must check here
*/
if (s->crypt_method_header && !s->crypto) {
if (s->crypt_method_header == QCOW_CRYPT_AES) {
unsigned int cflags = 0;
if (flags & BDRV_O_NO_IO) {
cflags |= QCRYPTO_BLOCK_OPEN_NO_IO;
}
s->crypto = qcrypto_block_open(s->crypto_opts, "encrypt.",
NULL, NULL, cflags,
QCOW2_MAX_THREADS, errp);
if (!s->crypto) {
ret = -EINVAL;
goto fail;
}
} else if (!(flags & BDRV_O_NO_IO)) {
error_setg(errp, "Missing CRYPTO header for crypt method %d",
s->crypt_method_header);
ret = -EINVAL;
goto fail;
}
}
/* read the backing file name */
if (header.backing_file_offset != 0) {
len = header.backing_file_size;
if (len > MIN(1023, s->cluster_size - header.backing_file_offset) ||
len >= sizeof(bs->backing_file)) {
error_setg(errp, "Backing file name too long");
ret = -EINVAL;
goto fail;
}
s->image_backing_file = g_malloc(len + 1);
ret = bdrv_co_pread(bs->file, header.backing_file_offset, len,
s->image_backing_file, 0);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not read backing file name");
goto fail;
}
s->image_backing_file[len] = '\0';
/*
* Update only when something has changed. This function is called by
* qcow2_co_invalidate_cache(), and we do not want to reset
* auto_backing_file unless necessary.
*/
if (!g_str_equal(s->image_backing_file, bs->backing_file)) {
pstrcpy(bs->backing_file, sizeof(bs->backing_file),
s->image_backing_file);
pstrcpy(bs->auto_backing_file, sizeof(bs->auto_backing_file),
s->image_backing_file);
}
}
/*
* Internal snapshots; skip reading them in check mode, because
* we do not need them then, and we do not want to abort because
* of a broken table.
*/
if (!(flags & BDRV_O_CHECK)) {
s->snapshots_offset = header.snapshots_offset;
s->nb_snapshots = header.nb_snapshots;
ret = qcow2_read_snapshots(bs, errp);
if (ret < 0) {
goto fail;
}
}
/* Clear unknown autoclear feature bits */
update_header |= s->autoclear_features & ~QCOW2_AUTOCLEAR_MASK;
update_header = update_header && bdrv_is_writable(bs);
if (update_header) {
s->autoclear_features &= QCOW2_AUTOCLEAR_MASK;
}
/* == Handle persistent dirty bitmaps ==
*
* We want load dirty bitmaps in three cases:
*
* 1. Normal open of the disk in active mode, not related to invalidation
* after migration.
*
* 2. Invalidation of the target vm after pre-copy phase of migration, if
* bitmaps are _not_ migrating through migration channel, i.e.
* 'dirty-bitmaps' capability is disabled.
*
* 3. Invalidation of source vm after failed or canceled migration.
* This is a very interesting case. There are two possible types of
* bitmaps:
*
* A. Stored on inactivation and removed. They should be loaded from the
* image.
*
* B. Not stored: not-persistent bitmaps and bitmaps, migrated through
* the migration channel (with dirty-bitmaps capability).
*
* On the other hand, there are two possible sub-cases:
*
* 3.1 disk was changed by somebody else while were inactive. In this
* case all in-RAM dirty bitmaps (both persistent and not) are
* definitely invalid. And we don't have any method to determine
* this.
*
* Simple and safe thing is to just drop all the bitmaps of type B on
* inactivation. But in this case we lose bitmaps in valid 4.2 case.
*
* On the other hand, resuming source vm, if disk was already changed
* is a bad thing anyway: not only bitmaps, the whole vm state is
* out of sync with disk.
*
* This means, that user or management tool, who for some reason
* decided to resume source vm, after disk was already changed by
* target vm, should at least drop all dirty bitmaps by hand.
*
* So, we can ignore this case for now, but TODO: "generation"
* extension for qcow2, to determine, that image was changed after
* last inactivation. And if it is changed, we will drop (or at least
* mark as 'invalid' all the bitmaps of type B, both persistent
* and not).
*
* 3.2 disk was _not_ changed while were inactive. Bitmaps may be saved
* to disk ('dirty-bitmaps' capability disabled), or not saved
* ('dirty-bitmaps' capability enabled), but we don't need to care
* of: let's load bitmaps as always: stored bitmaps will be loaded,
* and not stored has flag IN_USE=1 in the image and will be skipped
* on loading.
*
* One remaining possible case when we don't want load bitmaps:
*
* 4. Open disk in inactive mode in target vm (bitmaps are migrating or
* will be loaded on invalidation, no needs try loading them before)
*/
if (!(bdrv_get_flags(bs) & BDRV_O_INACTIVE)) {
/* It's case 1, 2 or 3.2. Or 3.1 which is BUG in management layer. */
bool header_updated;
if (!qcow2_load_dirty_bitmaps(bs, &header_updated, errp)) {
ret = -EINVAL;
goto fail;
}
update_header = update_header && !header_updated;
}
if (update_header) {
ret = qcow2_update_header(bs);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not update qcow2 header");
goto fail;
}
}
bs->supported_zero_flags = header.version >= 3 ?
BDRV_REQ_MAY_UNMAP | BDRV_REQ_NO_FALLBACK : 0;
bs->supported_truncate_flags = BDRV_REQ_ZERO_WRITE;
/* Repair image if dirty */
if (!(flags & BDRV_O_CHECK) && bdrv_is_writable(bs) &&
(s->incompatible_features & QCOW2_INCOMPAT_DIRTY)) {
BdrvCheckResult result = {0};
ret = qcow2_co_check_locked(bs, &result,
BDRV_FIX_ERRORS | BDRV_FIX_LEAKS);
if (ret < 0 || result.check_errors) {
if (ret >= 0) {
ret = -EIO;
}
error_setg_errno(errp, -ret, "Could not repair dirty image");
goto fail;
}
}
#ifdef DEBUG_ALLOC
{
BdrvCheckResult result = {0};
qcow2_check_refcounts(bs, &result, 0);
}
#endif
qemu_co_queue_init(&s->thread_task_queue);
return ret;
fail:
g_free(s->image_data_file);
if (open_data_file && has_data_file(bs)) {
bdrv_graph_co_rdunlock();
bdrv_unref_child(bs, s->data_file);
bdrv_graph_co_rdlock();
s->data_file = NULL;
}
g_free(s->unknown_header_fields);
cleanup_unknown_header_ext(bs);
qcow2_free_snapshots(bs);
qcow2_refcount_close(bs);
qemu_vfree(s->l1_table);
/* else pre-write overlap checks in cache_destroy may crash */
s->l1_table = NULL;
cache_clean_timer_del(bs);
if (s->l2_table_cache) {
qcow2_cache_destroy(s->l2_table_cache);
}
if (s->refcount_block_cache) {
qcow2_cache_destroy(s->refcount_block_cache);
}
qcrypto_block_free(s->crypto);
qapi_free_QCryptoBlockOpenOptions(s->crypto_opts);
return ret;
}
typedef struct QCow2OpenCo {
BlockDriverState *bs;
QDict *options;
int flags;
Error **errp;
int ret;
} QCow2OpenCo;
static void coroutine_fn qcow2_open_entry(void *opaque)
{
QCow2OpenCo *qoc = opaque;
BDRVQcow2State *s = qoc->bs->opaque;
GRAPH_RDLOCK_GUARD();
qemu_co_mutex_lock(&s->lock);
qoc->ret = qcow2_do_open(qoc->bs, qoc->options, qoc->flags, true,
qoc->errp);
qemu_co_mutex_unlock(&s->lock);
aio_wait_kick();
}
static int qcow2_open(BlockDriverState *bs, QDict *options, int flags,
Error **errp)
{
BDRVQcow2State *s = bs->opaque;
QCow2OpenCo qoc = {
.bs = bs,
.options = options,
.flags = flags,
.errp = errp,
.ret = -EINPROGRESS
};
int ret;
ret = bdrv_open_file_child(NULL, options, "file", bs, errp);
if (ret < 0) {
return ret;
}
/* Initialise locks */
qemu_co_mutex_init(&s->lock);
assert(!qemu_in_coroutine());
assert(qemu_get_current_aio_context() == qemu_get_aio_context());
aio_co_enter(bdrv_get_aio_context(bs),
qemu_coroutine_create(qcow2_open_entry, &qoc));
AIO_WAIT_WHILE_UNLOCKED(NULL, qoc.ret == -EINPROGRESS);
return qoc.ret;
}
static void qcow2_refresh_limits(BlockDriverState *bs, Error **errp)
{
BDRVQcow2State *s = bs->opaque;
if (bs->encrypted) {
/* Encryption works on a sector granularity */
bs->bl.request_alignment = qcrypto_block_get_sector_size(s->crypto);
}
bs->bl.pwrite_zeroes_alignment = s->subcluster_size;
bs->bl.pdiscard_alignment = s->cluster_size;
}
static int qcow2_reopen_prepare(BDRVReopenState *state,
BlockReopenQueue *queue, Error **errp)
{
BDRVQcow2State *s = state->bs->opaque;
Qcow2ReopenState *r;
int ret;
r = g_new0(Qcow2ReopenState, 1);
state->opaque = r;
ret = qcow2_update_options_prepare(state->bs, r, state->options,
state->flags, errp);
if (ret < 0) {
goto fail;
}
/* We need to write out any unwritten data if we reopen read-only. */
if ((state->flags & BDRV_O_RDWR) == 0) {
ret = qcow2_reopen_bitmaps_ro(state->bs, errp);
if (ret < 0) {
goto fail;
}
ret = bdrv_flush(state->bs);
if (ret < 0) {
goto fail;
}
ret = qcow2_mark_clean(state->bs);
if (ret < 0) {
goto fail;
}
}
/*
* Without an external data file, s->data_file points to the same BdrvChild
* as bs->file. It needs to be resynced after reopen because bs->file may
* be changed. We can't use it in the meantime.
*/
if (!has_data_file(state->bs)) {
assert(s->data_file == state->bs->file);
s->data_file = NULL;
}
return 0;
fail:
qcow2_update_options_abort(state->bs, r);
g_free(r);
return ret;
}
static void qcow2_reopen_commit(BDRVReopenState *state)
{
BDRVQcow2State *s = state->bs->opaque;
qcow2_update_options_commit(state->bs, state->opaque);
if (!s->data_file) {
/*
* If we don't have an external data file, s->data_file was cleared by
* qcow2_reopen_prepare() and needs to be updated.
*/
s->data_file = state->bs->file;
}
g_free(state->opaque);
}
static void qcow2_reopen_commit_post(BDRVReopenState *state)
{
if (state->flags & BDRV_O_RDWR) {
Error *local_err = NULL;
if (qcow2_reopen_bitmaps_rw(state->bs, &local_err) < 0) {
/*
* This is not fatal, bitmaps just left read-only, so all following
* writes will fail. User can remove read-only bitmaps to unblock
* writes or retry reopen.
*/
error_reportf_err(local_err,
"%s: Failed to make dirty bitmaps writable: ",
bdrv_get_node_name(state->bs));
}
}
}
static void qcow2_reopen_abort(BDRVReopenState *state)
{
BDRVQcow2State *s = state->bs->opaque;
if (!s->data_file) {
/*
* If we don't have an external data file, s->data_file was cleared by
* qcow2_reopen_prepare() and needs to be restored.
*/
s->data_file = state->bs->file;
}
qcow2_update_options_abort(state->bs, state->opaque);
g_free(state->opaque);
}
static void qcow2_join_options(QDict *options, QDict *old_options)
{
bool has_new_overlap_template =
qdict_haskey(options, QCOW2_OPT_OVERLAP) ||
qdict_haskey(options, QCOW2_OPT_OVERLAP_TEMPLATE);
bool has_new_total_cache_size =
qdict_haskey(options, QCOW2_OPT_CACHE_SIZE);
bool has_all_cache_options;
/* New overlap template overrides all old overlap options */
if (has_new_overlap_template) {
qdict_del(old_options, QCOW2_OPT_OVERLAP);
qdict_del(old_options, QCOW2_OPT_OVERLAP_TEMPLATE);
qdict_del(old_options, QCOW2_OPT_OVERLAP_MAIN_HEADER);
qdict_del(old_options, QCOW2_OPT_OVERLAP_ACTIVE_L1);
qdict_del(old_options, QCOW2_OPT_OVERLAP_ACTIVE_L2);
qdict_del(old_options, QCOW2_OPT_OVERLAP_REFCOUNT_TABLE);
qdict_del(old_options, QCOW2_OPT_OVERLAP_REFCOUNT_BLOCK);
qdict_del(old_options, QCOW2_OPT_OVERLAP_SNAPSHOT_TABLE);
qdict_del(old_options, QCOW2_OPT_OVERLAP_INACTIVE_L1);
qdict_del(old_options, QCOW2_OPT_OVERLAP_INACTIVE_L2);
}
/* New total cache size overrides all old options */
if (qdict_haskey(options, QCOW2_OPT_CACHE_SIZE)) {
qdict_del(old_options, QCOW2_OPT_L2_CACHE_SIZE);
qdict_del(old_options, QCOW2_OPT_REFCOUNT_CACHE_SIZE);
}
qdict_join(options, old_options, false);
/*
* If after merging all cache size options are set, an old total size is
* overwritten. Do keep all options, however, if all three are new. The
* resulting error message is what we want to happen.
*/
has_all_cache_options =
qdict_haskey(options, QCOW2_OPT_CACHE_SIZE) ||
qdict_haskey(options, QCOW2_OPT_L2_CACHE_SIZE) ||
qdict_haskey(options, QCOW2_OPT_REFCOUNT_CACHE_SIZE);
if (has_all_cache_options && !has_new_total_cache_size) {
qdict_del(options, QCOW2_OPT_CACHE_SIZE);
}
}
static int coroutine_fn GRAPH_RDLOCK
qcow2_co_block_status(BlockDriverState *bs, bool want_zero, int64_t offset,
int64_t count, int64_t *pnum, int64_t *map,
BlockDriverState **file)
{
BDRVQcow2State *s = bs->opaque;
uint64_t host_offset;
unsigned int bytes;
QCow2SubclusterType type;
int ret, status = 0;
qemu_co_mutex_lock(&s->lock);
if (!s->metadata_preallocation_checked) {
ret = qcow2_detect_metadata_preallocation(bs);
s->metadata_preallocation = (ret == 1);
s->metadata_preallocation_checked = true;
}
bytes = MIN(INT_MAX, count);
ret = qcow2_get_host_offset(bs, offset, &bytes, &host_offset, &type);
qemu_co_mutex_unlock(&s->lock);
if (ret < 0) {
return ret;
}
*pnum = bytes;
if ((type == QCOW2_SUBCLUSTER_NORMAL ||
type == QCOW2_SUBCLUSTER_ZERO_ALLOC ||
type == QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC) && !s->crypto) {
*map = host_offset;
*file = s->data_file->bs;
status |= BDRV_BLOCK_OFFSET_VALID;
}
if (type == QCOW2_SUBCLUSTER_ZERO_PLAIN ||
type == QCOW2_SUBCLUSTER_ZERO_ALLOC) {
status |= BDRV_BLOCK_ZERO;
} else if (type != QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN &&
type != QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC) {
status |= BDRV_BLOCK_DATA;
}
if (s->metadata_preallocation && (status & BDRV_BLOCK_DATA) &&
(status & BDRV_BLOCK_OFFSET_VALID))
{
status |= BDRV_BLOCK_RECURSE;
}
return status;
}
static int coroutine_fn GRAPH_RDLOCK
qcow2_handle_l2meta(BlockDriverState *bs, QCowL2Meta **pl2meta, bool link_l2)
{
int ret = 0;
QCowL2Meta *l2meta = *pl2meta;
while (l2meta != NULL) {
QCowL2Meta *next;
if (link_l2) {
ret = qcow2_alloc_cluster_link_l2(bs, l2meta);
if (ret) {
goto out;
}
} else {
qcow2_alloc_cluster_abort(bs, l2meta);
}
/* Take the request off the list of running requests */
QLIST_REMOVE(l2meta, next_in_flight);
qemu_co_queue_restart_all(&l2meta->dependent_requests);
next = l2meta->next;
g_free(l2meta);
l2meta = next;
}
out:
*pl2meta = l2meta;
return ret;
}
static int coroutine_fn GRAPH_RDLOCK
qcow2_co_preadv_encrypted(BlockDriverState *bs,
uint64_t host_offset,
uint64_t offset,
uint64_t bytes,
QEMUIOVector *qiov,
uint64_t qiov_offset)
{
int ret;
BDRVQcow2State *s = bs->opaque;
uint8_t *buf;
assert(bs->encrypted && s->crypto);
assert(bytes <= QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size);
/*
* For encrypted images, read everything into a temporary
* contiguous buffer on which the AES functions can work.
* Also, decryption in a separate buffer is better as it
* prevents the guest from learning information about the
* encrypted nature of the virtual disk.
*/
buf = qemu_try_blockalign(s->data_file->bs, bytes);
if (buf == NULL) {
return -ENOMEM;
}
BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
ret = bdrv_co_pread(s->data_file, host_offset, bytes, buf, 0);
if (ret < 0) {
goto fail;
}
if (qcow2_co_decrypt(bs, host_offset, offset, buf, bytes) < 0)
{
ret = -EIO;
goto fail;
}
qemu_iovec_from_buf(qiov, qiov_offset, buf, bytes);
fail:
qemu_vfree(buf);
return ret;
}
typedef struct Qcow2AioTask {
AioTask task;
BlockDriverState *bs;
QCow2SubclusterType subcluster_type; /* only for read */
uint64_t host_offset; /* or l2_entry for compressed read */
uint64_t offset;
uint64_t bytes;
QEMUIOVector *qiov;
uint64_t qiov_offset;
QCowL2Meta *l2meta; /* only for write */
} Qcow2AioTask;
static coroutine_fn int qcow2_co_preadv_task_entry(AioTask *task);
static coroutine_fn int qcow2_add_task(BlockDriverState *bs,
AioTaskPool *pool,
AioTaskFunc func,
QCow2SubclusterType subcluster_type,
uint64_t host_offset,
uint64_t offset,
uint64_t bytes,
QEMUIOVector *qiov,
size_t qiov_offset,
QCowL2Meta *l2meta)
{
Qcow2AioTask local_task;
Qcow2AioTask *task = pool ? g_new(Qcow2AioTask, 1) : &local_task;
*task = (Qcow2AioTask) {
.task.func = func,
.bs = bs,
.subcluster_type = subcluster_type,
.qiov = qiov,
.host_offset = host_offset,
.offset = offset,
.bytes = bytes,
.qiov_offset = qiov_offset,
.l2meta = l2meta,
};
trace_qcow2_add_task(qemu_coroutine_self(), bs, pool,
func == qcow2_co_preadv_task_entry ? "read" : "write",
subcluster_type, host_offset, offset, bytes,
qiov, qiov_offset);
if (!pool) {
return func(&task->task);
}
aio_task_pool_start_task(pool, &task->task);
return 0;
}
static int coroutine_fn GRAPH_RDLOCK
qcow2_co_preadv_task(BlockDriverState *bs, QCow2SubclusterType subc_type,
uint64_t host_offset, uint64_t offset, uint64_t bytes,
QEMUIOVector *qiov, size_t qiov_offset)
{
BDRVQcow2State *s = bs->opaque;
switch (subc_type) {
case QCOW2_SUBCLUSTER_ZERO_PLAIN:
case QCOW2_SUBCLUSTER_ZERO_ALLOC:
/* Both zero types are handled in qcow2_co_preadv_part */
g_assert_not_reached();
case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
assert(bs->backing); /* otherwise handled in qcow2_co_preadv_part */
BLKDBG_EVENT(bs->file, BLKDBG_READ_BACKING_AIO);
return bdrv_co_preadv_part(bs->backing, offset, bytes,
qiov, qiov_offset, 0);
case QCOW2_SUBCLUSTER_COMPRESSED:
return qcow2_co_preadv_compressed(bs, host_offset,
offset, bytes, qiov, qiov_offset);
case QCOW2_SUBCLUSTER_NORMAL:
if (bs->encrypted) {
return qcow2_co_preadv_encrypted(bs, host_offset,
offset, bytes, qiov, qiov_offset);
}
BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
return bdrv_co_preadv_part(s->data_file, host_offset,
bytes, qiov, qiov_offset, 0);
default:
g_assert_not_reached();
}
g_assert_not_reached();
}
/*
* This function can count as GRAPH_RDLOCK because qcow2_co_preadv_part() holds
* the graph lock and keeps it until this coroutine has terminated.
*/
static int coroutine_fn GRAPH_RDLOCK qcow2_co_preadv_task_entry(AioTask *task)
{
Qcow2AioTask *t = container_of(task, Qcow2AioTask, task);
assert(!t->l2meta);
return qcow2_co_preadv_task(t->bs, t->subcluster_type,
t->host_offset, t->offset, t->bytes,
t->qiov, t->qiov_offset);
}
static int coroutine_fn GRAPH_RDLOCK
qcow2_co_preadv_part(BlockDriverState *bs, int64_t offset, int64_t bytes,
QEMUIOVector *qiov, size_t qiov_offset,
BdrvRequestFlags flags)
{
BDRVQcow2State *s = bs->opaque;
int ret = 0;
unsigned int cur_bytes; /* number of bytes in current iteration */
uint64_t host_offset = 0;
QCow2SubclusterType type;
AioTaskPool *aio = NULL;
while (bytes != 0 && aio_task_pool_status(aio) == 0) {
/* prepare next request */
cur_bytes = MIN(bytes, INT_MAX);
if (s->crypto) {
cur_bytes = MIN(cur_bytes,
QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size);
}
qemu_co_mutex_lock(&s->lock);
ret = qcow2_get_host_offset(bs, offset, &cur_bytes,
&host_offset, &type);
qemu_co_mutex_unlock(&s->lock);
if (ret < 0) {
goto out;
}
if (type == QCOW2_SUBCLUSTER_ZERO_PLAIN ||
type == QCOW2_SUBCLUSTER_ZERO_ALLOC ||
(type == QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN && !bs->backing) ||
(type == QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC && !bs->backing))
{
qemu_iovec_memset(qiov, qiov_offset, 0, cur_bytes);
} else {
if (!aio && cur_bytes != bytes) {
aio = aio_task_pool_new(QCOW2_MAX_WORKERS);
}
ret = qcow2_add_task(bs, aio, qcow2_co_preadv_task_entry, type,
host_offset, offset, cur_bytes,
qiov, qiov_offset, NULL);
if (ret < 0) {
goto out;
}
}
bytes -= cur_bytes;
offset += cur_bytes;
qiov_offset += cur_bytes;
}
out:
if (aio) {
aio_task_pool_wait_all(aio);
if (ret == 0) {
ret = aio_task_pool_status(aio);
}
g_free(aio);
}
return ret;
}
/* Check if it's possible to merge a write request with the writing of
* the data from the COW regions */
static bool merge_cow(uint64_t offset, unsigned bytes,
QEMUIOVector *qiov, size_t qiov_offset,
QCowL2Meta *l2meta)
{
QCowL2Meta *m;
for (m = l2meta; m != NULL; m = m->next) {
/* If both COW regions are empty then there's nothing to merge */
if (m->cow_start.nb_bytes == 0 && m->cow_end.nb_bytes == 0) {
continue;
}
/* If COW regions are handled already, skip this too */
if (m->skip_cow) {
continue;
}
/*
* The write request should start immediately after the first
* COW region. This does not always happen because the area
* touched by the request can be larger than the one defined
* by @m (a single request can span an area consisting of a
* mix of previously unallocated and allocated clusters, that
* is why @l2meta is a list).
*/
if (l2meta_cow_start(m) + m->cow_start.nb_bytes != offset) {
/* In this case the request starts before this region */
assert(offset < l2meta_cow_start(m));
assert(m->cow_start.nb_bytes == 0);
continue;
}
/* The write request should end immediately before the second
* COW region (see above for why it does not always happen) */
if (m->offset + m->cow_end.offset != offset + bytes) {
assert(offset + bytes > m->offset + m->cow_end.offset);
assert(m->cow_end.nb_bytes == 0);
continue;
}
/* Make sure that adding both COW regions to the QEMUIOVector
* does not exceed IOV_MAX */
if (qemu_iovec_subvec_niov(qiov, qiov_offset, bytes) > IOV_MAX - 2) {
continue;
}
m->data_qiov = qiov;
m->data_qiov_offset = qiov_offset;
return true;
}
return false;
}
/*
* Return 1 if the COW regions read as zeroes, 0 if not, < 0 on error.
* Note that returning 0 does not guarantee non-zero data.
*/
static int coroutine_fn GRAPH_RDLOCK
is_zero_cow(BlockDriverState *bs, QCowL2Meta *m)
{
/*
* This check is designed for optimization shortcut so it must be
* efficient.
* Instead of is_zero(), use bdrv_co_is_zero_fast() as it is
* faster (but not as accurate and can result in false negatives).
*/
int ret = bdrv_co_is_zero_fast(bs, m->offset + m->cow_start.offset,
m->cow_start.nb_bytes);
if (ret <= 0) {
return ret;
}
return bdrv_co_is_zero_fast(bs, m->offset + m->cow_end.offset,
m->cow_end.nb_bytes);
}
static int coroutine_fn GRAPH_RDLOCK
handle_alloc_space(BlockDriverState *bs, QCowL2Meta *l2meta)
{
BDRVQcow2State *s = bs->opaque;
QCowL2Meta *m;
if (!(s->data_file->bs->supported_zero_flags & BDRV_REQ_NO_FALLBACK)) {
return 0;
}
if (bs->encrypted) {
return 0;
}
for (m = l2meta; m != NULL; m = m->next) {
int ret;
uint64_t start_offset = m->alloc_offset + m->cow_start.offset;
unsigned nb_bytes = m->cow_end.offset + m->cow_end.nb_bytes -
m->cow_start.offset;
if (!m->cow_start.nb_bytes && !m->cow_end.nb_bytes) {
continue;
}
ret = is_zero_cow(bs, m);
if (ret < 0) {
return ret;
} else if (ret == 0) {
continue;
}
/*
* instead of writing zero COW buffers,
* efficiently zero out the whole clusters
*/
ret = qcow2_pre_write_overlap_check(bs, 0, start_offset, nb_bytes,
true);
if (ret < 0) {
return ret;
}
BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_SPACE);
ret = bdrv_co_pwrite_zeroes(s->data_file, start_offset, nb_bytes,
BDRV_REQ_NO_FALLBACK);
if (ret < 0) {
if (ret != -ENOTSUP && ret != -EAGAIN) {
return ret;
}
continue;
}
trace_qcow2_skip_cow(qemu_coroutine_self(), m->offset, m->nb_clusters);
m->skip_cow = true;
}
return 0;
}
/*
* qcow2_co_pwritev_task
* Called with s->lock unlocked
* l2meta - if not NULL, qcow2_co_pwritev_task() will consume it. Caller must
* not use it somehow after qcow2_co_pwritev_task() call
*/
static coroutine_fn GRAPH_RDLOCK
int qcow2_co_pwritev_task(BlockDriverState *bs, uint64_t host_offset,
uint64_t offset, uint64_t bytes, QEMUIOVector *qiov,
uint64_t qiov_offset, QCowL2Meta *l2meta)
{
int ret;
BDRVQcow2State *s = bs->opaque;
void *crypt_buf = NULL;
QEMUIOVector encrypted_qiov;
if (bs->encrypted) {
assert(s->crypto);
assert(bytes <= QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size);
crypt_buf = qemu_try_blockalign(bs->file->bs, bytes);
if (crypt_buf == NULL) {
ret = -ENOMEM;
goto out_unlocked;
}
qemu_iovec_to_buf(qiov, qiov_offset, crypt_buf, bytes);
if (qcow2_co_encrypt(bs, host_offset, offset, crypt_buf, bytes) < 0) {
ret = -EIO;
goto out_unlocked;
}
qemu_iovec_init_buf(&encrypted_qiov, crypt_buf, bytes);
qiov = &encrypted_qiov;
qiov_offset = 0;
}
/* Try to efficiently initialize the physical space with zeroes */
ret = handle_alloc_space(bs, l2meta);
if (ret < 0) {
goto out_unlocked;
}
/*
* If we need to do COW, check if it's possible to merge the
* writing of the guest data together with that of the COW regions.
* If it's not possible (or not necessary) then write the
* guest data now.
*/
if (!merge_cow(offset, bytes, qiov, qiov_offset, l2meta)) {
BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
trace_qcow2_writev_data(qemu_coroutine_self(), host_offset);
ret = bdrv_co_pwritev_part(s->data_file, host_offset,
bytes, qiov, qiov_offset, 0);
if (ret < 0) {
goto out_unlocked;
}
}
qemu_co_mutex_lock(&s->lock);
ret = qcow2_handle_l2meta(bs, &l2meta, true);
goto out_locked;
out_unlocked:
qemu_co_mutex_lock(&s->lock);
out_locked:
qcow2_handle_l2meta(bs, &l2meta, false);
qemu_co_mutex_unlock(&s->lock);
qemu_vfree(crypt_buf);
return ret;
}
/*
* This function can count as GRAPH_RDLOCK because qcow2_co_pwritev_part() holds
* the graph lock and keeps it until this coroutine has terminated.
*/
static coroutine_fn GRAPH_RDLOCK int qcow2_co_pwritev_task_entry(AioTask *task)
{
Qcow2AioTask *t = container_of(task, Qcow2AioTask, task);
assert(!t->subcluster_type);
return qcow2_co_pwritev_task(t->bs, t->host_offset,
t->offset, t->bytes, t->qiov, t->qiov_offset,
t->l2meta);
}
static int coroutine_fn GRAPH_RDLOCK
qcow2_co_pwritev_part(BlockDriverState *bs, int64_t offset, int64_t bytes,
QEMUIOVector *qiov, size_t qiov_offset,
BdrvRequestFlags flags)
{
BDRVQcow2State *s = bs->opaque;
int offset_in_cluster;
int ret;
unsigned int cur_bytes; /* number of sectors in current iteration */
uint64_t host_offset;
QCowL2Meta *l2meta = NULL;
AioTaskPool *aio = NULL;
trace_qcow2_writev_start_req(qemu_coroutine_self(), offset, bytes);
while (bytes != 0 && aio_task_pool_status(aio) == 0) {
l2meta = NULL;
trace_qcow2_writev_start_part(qemu_coroutine_self());
offset_in_cluster = offset_into_cluster(s, offset);
cur_bytes = MIN(bytes, INT_MAX);
if (bs->encrypted) {
cur_bytes = MIN(cur_bytes,
QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size
- offset_in_cluster);
}
qemu_co_mutex_lock(&s->lock);
ret = qcow2_alloc_host_offset(bs, offset, &cur_bytes,
&host_offset, &l2meta);
if (ret < 0) {
goto out_locked;
}
ret = qcow2_pre_write_overlap_check(bs, 0, host_offset,
cur_bytes, true);
if (ret < 0) {
goto out_locked;
}
qemu_co_mutex_unlock(&s->lock);
if (!aio && cur_bytes != bytes) {
aio = aio_task_pool_new(QCOW2_MAX_WORKERS);
}
ret = qcow2_add_task(bs, aio, qcow2_co_pwritev_task_entry, 0,
host_offset, offset,
cur_bytes, qiov, qiov_offset, l2meta);
l2meta = NULL; /* l2meta is consumed by qcow2_co_pwritev_task() */
if (ret < 0) {
goto fail_nometa;
}
bytes -= cur_bytes;
offset += cur_bytes;
qiov_offset += cur_bytes;
trace_qcow2_writev_done_part(qemu_coroutine_self(), cur_bytes);
}
ret = 0;
qemu_co_mutex_lock(&s->lock);
out_locked:
qcow2_handle_l2meta(bs, &l2meta, false);
qemu_co_mutex_unlock(&s->lock);
fail_nometa:
if (aio) {
aio_task_pool_wait_all(aio);
if (ret == 0) {
ret = aio_task_pool_status(aio);
}
g_free(aio);
}
trace_qcow2_writev_done_req(qemu_coroutine_self(), ret);
return ret;
}
static int qcow2_inactivate(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
int ret, result = 0;
Error *local_err = NULL;
qcow2_store_persistent_dirty_bitmaps(bs, true, &local_err);
if (local_err != NULL) {
result = -EINVAL;
error_reportf_err(local_err, "Lost persistent bitmaps during "
"inactivation of node '%s': ",
bdrv_get_device_or_node_name(bs));
}
ret = qcow2_cache_flush(bs, s->l2_table_cache);
if (ret) {
result = ret;
error_report("Failed to flush the L2 table cache: %s",
strerror(-ret));
}
ret = qcow2_cache_flush(bs, s->refcount_block_cache);
if (ret) {
result = ret;
error_report("Failed to flush the refcount block cache: %s",
strerror(-ret));
}
if (result == 0) {
qcow2_mark_clean(bs);
}
return result;
}
static void qcow2_do_close(BlockDriverState *bs, bool close_data_file)
{
BDRVQcow2State *s = bs->opaque;
qemu_vfree(s->l1_table);
/* else pre-write overlap checks in cache_destroy may crash */
s->l1_table = NULL;
if (!(s->flags & BDRV_O_INACTIVE)) {
qcow2_inactivate(bs);
}
cache_clean_timer_del(bs);
qcow2_cache_destroy(s->l2_table_cache);
qcow2_cache_destroy(s->refcount_block_cache);
qcrypto_block_free(s->crypto);
s->crypto = NULL;
qapi_free_QCryptoBlockOpenOptions(s->crypto_opts);
g_free(s->unknown_header_fields);
cleanup_unknown_header_ext(bs);
g_free(s->image_data_file);
g_free(s->image_backing_file);
g_free(s->image_backing_format);
if (close_data_file && has_data_file(bs)) {
bdrv_unref_child(bs, s->data_file);
s->data_file = NULL;
}
qcow2_refcount_close(bs);
qcow2_free_snapshots(bs);
}
static void qcow2_close(BlockDriverState *bs)
{
qcow2_do_close(bs, true);
}
static void coroutine_fn GRAPH_RDLOCK
qcow2_co_invalidate_cache(BlockDriverState *bs, Error **errp)
{
ERRP_GUARD();
BDRVQcow2State *s = bs->opaque;
BdrvChild *data_file;
int flags = s->flags;
QCryptoBlock *crypto = NULL;
QDict *options;
int ret;
/*
* Backing files are read-only which makes all of their metadata immutable,
* that means we don't have to worry about reopening them here.
*/
crypto = s->crypto;
s->crypto = NULL;
/*
* Do not reopen s->data_file (i.e., have qcow2_do_close() not close it,
* and then prevent qcow2_do_open() from opening it), because this function
* runs in the I/O path and as such we must not invoke global-state
* functions like bdrv_unref_child() and bdrv_open_child().
*/
qcow2_do_close(bs, false);
data_file = s->data_file;
memset(s, 0, sizeof(BDRVQcow2State));
s->data_file = data_file;
options = qdict_clone_shallow(bs->options);
flags &= ~BDRV_O_INACTIVE;
qemu_co_mutex_lock(&s->lock);
ret = qcow2_do_open(bs, options, flags, false, errp);
qemu_co_mutex_unlock(&s->lock);
qobject_unref(options);
if (ret < 0) {
error_prepend(errp, "Could not reopen qcow2 layer: ");
bs->drv = NULL;
return;
}
s->crypto = crypto;
}
static size_t header_ext_add(char *buf, uint32_t magic, const void *s,
size_t len, size_t buflen)
{
QCowExtension *ext_backing_fmt = (QCowExtension*) buf;
size_t ext_len = sizeof(QCowExtension) + ((len + 7) & ~7);
if (buflen < ext_len) {
return -ENOSPC;
}
*ext_backing_fmt = (QCowExtension) {
.magic = cpu_to_be32(magic),
.len = cpu_to_be32(len),
};
if (len) {
memcpy(buf + sizeof(QCowExtension), s, len);
}
return ext_len;
}
/*
* Updates the qcow2 header, including the variable length parts of it, i.e.
* the backing file name and all extensions. qcow2 was not designed to allow
* such changes, so if we run out of space (we can only use the first cluster)
* this function may fail.
*
* Returns 0 on success, -errno in error cases.
*/
int qcow2_update_header(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
QCowHeader *header;
char *buf;
size_t buflen = s->cluster_size;
int ret;
uint64_t total_size;
uint32_t refcount_table_clusters;
size_t header_length;
Qcow2UnknownHeaderExtension *uext;
buf = qemu_blockalign(bs, buflen);
/* Header structure */
header = (QCowHeader*) buf;
if (buflen < sizeof(*header)) {
ret = -ENOSPC;
goto fail;
}
header_length = sizeof(*header) + s->unknown_header_fields_size;
total_size = bs->total_sectors * BDRV_SECTOR_SIZE;
refcount_table_clusters = s->refcount_table_size >> (s->cluster_bits - 3);
ret = validate_compression_type(s, NULL);
if (ret) {
goto fail;
}
*header = (QCowHeader) {
/* Version 2 fields */
.magic = cpu_to_be32(QCOW_MAGIC),
.version = cpu_to_be32(s->qcow_version),
.backing_file_offset = 0,
.backing_file_size = 0,
.cluster_bits = cpu_to_be32(s->cluster_bits),
.size = cpu_to_be64(total_size),
.crypt_method = cpu_to_be32(s->crypt_method_header),
.l1_size = cpu_to_be32(s->l1_size),
.l1_table_offset = cpu_to_be64(s->l1_table_offset),
.refcount_table_offset = cpu_to_be64(s->refcount_table_offset),
.refcount_table_clusters = cpu_to_be32(refcount_table_clusters),
.nb_snapshots = cpu_to_be32(s->nb_snapshots),
.snapshots_offset = cpu_to_be64(s->snapshots_offset),
/* Version 3 fields */
.incompatible_features = cpu_to_be64(s->incompatible_features),
.compatible_features = cpu_to_be64(s->compatible_features),
.autoclear_features = cpu_to_be64(s->autoclear_features),
.refcount_order = cpu_to_be32(s->refcount_order),
.header_length = cpu_to_be32(header_length),
.compression_type = s->compression_type,
};
/* For older versions, write a shorter header */
switch (s->qcow_version) {
case 2:
ret = offsetof(QCowHeader, incompatible_features);
break;
case 3:
ret = sizeof(*header);
break;
default:
ret = -EINVAL;
goto fail;
}
buf += ret;
buflen -= ret;
memset(buf, 0, buflen);
/* Preserve any unknown field in the header */
if (s->unknown_header_fields_size) {
if (buflen < s->unknown_header_fields_size) {
ret = -ENOSPC;
goto fail;
}
memcpy(buf, s->unknown_header_fields, s->unknown_header_fields_size);
buf += s->unknown_header_fields_size;
buflen -= s->unknown_header_fields_size;
}
/* Backing file format header extension */
if (s->image_backing_format) {
ret = header_ext_add(buf, QCOW2_EXT_MAGIC_BACKING_FORMAT,
s->image_backing_format,
strlen(s->image_backing_format),
buflen);
if (ret < 0) {
goto fail;
}
buf += ret;
buflen -= ret;
}
/* External data file header extension */
if (has_data_file(bs) && s->image_data_file) {
ret = header_ext_add(buf, QCOW2_EXT_MAGIC_DATA_FILE,
s->image_data_file, strlen(s->image_data_file),
buflen);
if (ret < 0) {
goto fail;
}
buf += ret;
buflen -= ret;
}
/* Full disk encryption header pointer extension */
if (s->crypto_header.offset != 0) {
s->crypto_header.offset = cpu_to_be64(s->crypto_header.offset);
s->crypto_header.length = cpu_to_be64(s->crypto_header.length);
ret = header_ext_add(buf, QCOW2_EXT_MAGIC_CRYPTO_HEADER,
&s->crypto_header, sizeof(s->crypto_header),
buflen);
s->crypto_header.offset = be64_to_cpu(s->crypto_header.offset);
s->crypto_header.length = be64_to_cpu(s->crypto_header.length);
if (ret < 0) {
goto fail;
}
buf += ret;
buflen -= ret;
}
/*
* Feature table. A mere 8 feature names occupies 392 bytes, and
* when coupled with the v3 minimum header of 104 bytes plus the
* 8-byte end-of-extension marker, that would leave only 8 bytes
* for a backing file name in an image with 512-byte clusters.
* Thus, we choose to omit this header for cluster sizes 4k and
* smaller.
*/
if (s->qcow_version >= 3 && s->cluster_size > 4096) {
static const Qcow2Feature features[] = {
{
.type = QCOW2_FEAT_TYPE_INCOMPATIBLE,
.bit = QCOW2_INCOMPAT_DIRTY_BITNR,
.name = "dirty bit",
},
{
.type = QCOW2_FEAT_TYPE_INCOMPATIBLE,
.bit = QCOW2_INCOMPAT_CORRUPT_BITNR,
.name = "corrupt bit",
},
{
.type = QCOW2_FEAT_TYPE_INCOMPATIBLE,
.bit = QCOW2_INCOMPAT_DATA_FILE_BITNR,
.name = "external data file",
},
{
.type = QCOW2_FEAT_TYPE_INCOMPATIBLE,
.bit = QCOW2_INCOMPAT_COMPRESSION_BITNR,
.name = "compression type",
},
{
.type = QCOW2_FEAT_TYPE_INCOMPATIBLE,
.bit = QCOW2_INCOMPAT_EXTL2_BITNR,
.name = "extended L2 entries",
},
{
.type = QCOW2_FEAT_TYPE_COMPATIBLE,
.bit = QCOW2_COMPAT_LAZY_REFCOUNTS_BITNR,
.name = "lazy refcounts",
},
{
.type = QCOW2_FEAT_TYPE_AUTOCLEAR,
.bit = QCOW2_AUTOCLEAR_BITMAPS_BITNR,
.name = "bitmaps",
},
{
.type = QCOW2_FEAT_TYPE_AUTOCLEAR,
.bit = QCOW2_AUTOCLEAR_DATA_FILE_RAW_BITNR,
.name = "raw external data",
},
};
ret = header_ext_add(buf, QCOW2_EXT_MAGIC_FEATURE_TABLE,
features, sizeof(features), buflen);
if (ret < 0) {
goto fail;
}
buf += ret;
buflen -= ret;
}
/* Bitmap extension */
if (s->nb_bitmaps > 0) {
Qcow2BitmapHeaderExt bitmaps_header = {
.nb_bitmaps = cpu_to_be32(s->nb_bitmaps),
.bitmap_directory_size =
cpu_to_be64(s->bitmap_directory_size),
.bitmap_directory_offset =
cpu_to_be64(s->bitmap_directory_offset)
};
ret = header_ext_add(buf, QCOW2_EXT_MAGIC_BITMAPS,
&bitmaps_header, sizeof(bitmaps_header),
buflen);
if (ret < 0) {
goto fail;
}
buf += ret;
buflen -= ret;
}
/* Keep unknown header extensions */
QLIST_FOREACH(uext, &s->unknown_header_ext, next) {
ret = header_ext_add(buf, uext->magic, uext->data, uext->len, buflen);
if (ret < 0) {
goto fail;
}
buf += ret;
buflen -= ret;
}
/* End of header extensions */
ret = header_ext_add(buf, QCOW2_EXT_MAGIC_END, NULL, 0, buflen);
if (ret < 0) {
goto fail;
}
buf += ret;
buflen -= ret;
/* Backing file name */
if (s->image_backing_file) {
size_t backing_file_len = strlen(s->image_backing_file);
if (buflen < backing_file_len) {
ret = -ENOSPC;
goto fail;
}
/* Using strncpy is ok here, since buf is not NUL-terminated. */
strncpy(buf, s->image_backing_file, buflen);
header->backing_file_offset = cpu_to_be64(buf - ((char*) header));
header->backing_file_size = cpu_to_be32(backing_file_len);
}
/* Write the new header */
ret = bdrv_pwrite(bs->file, 0, s->cluster_size, header, 0);
if (ret < 0) {
goto fail;
}
ret = 0;
fail:
qemu_vfree(header);
return ret;
}
static int qcow2_change_backing_file(BlockDriverState *bs,
const char *backing_file, const char *backing_fmt)
{
BDRVQcow2State *s = bs->opaque;
/* Adding a backing file means that the external data file alone won't be
* enough to make sense of the content */
if (backing_file && data_file_is_raw(bs)) {
return -EINVAL;
}
if (backing_file && strlen(backing_file) > 1023) {
return -EINVAL;
}
pstrcpy(bs->auto_backing_file, sizeof(bs->auto_backing_file),
backing_file ?: "");
pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
g_free(s->image_backing_file);
g_free(s->image_backing_format);
s->image_backing_file = backing_file ? g_strdup(bs->backing_file) : NULL;
s->image_backing_format = backing_fmt ? g_strdup(bs->backing_format) : NULL;
return qcow2_update_header(bs);
}
static int coroutine_fn GRAPH_RDLOCK
qcow2_set_up_encryption(BlockDriverState *bs,
QCryptoBlockCreateOptions *cryptoopts,
Error **errp)
{
BDRVQcow2State *s = bs->opaque;
QCryptoBlock *crypto = NULL;
int fmt, ret;
switch (cryptoopts->format) {
case Q_CRYPTO_BLOCK_FORMAT_LUKS:
fmt = QCOW_CRYPT_LUKS;
break;
case Q_CRYPTO_BLOCK_FORMAT_QCOW:
fmt = QCOW_CRYPT_AES;
break;
default:
error_setg(errp, "Crypto format not supported in qcow2");
return -EINVAL;
}
s->crypt_method_header = fmt;
crypto = qcrypto_block_create(cryptoopts, "encrypt.",
qcow2_crypto_hdr_init_func,
qcow2_crypto_hdr_write_func,
bs, errp);
if (!crypto) {
return -EINVAL;
}
ret = qcow2_update_header(bs);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not write encryption header");
goto out;
}
ret = 0;
out:
qcrypto_block_free(crypto);
return ret;
}
/**
* Preallocates metadata structures for data clusters between @offset (in the
* guest disk) and @new_length (which is thus generally the new guest disk
* size).
*
* Returns: 0 on success, -errno on failure.
*/
static int coroutine_fn GRAPH_RDLOCK
preallocate_co(BlockDriverState *bs, uint64_t offset, uint64_t new_length,
PreallocMode mode, Error **errp)
{
BDRVQcow2State *s = bs->opaque;
uint64_t bytes;
uint64_t host_offset = 0;
int64_t file_length;
unsigned int cur_bytes;
int ret;
QCowL2Meta *meta = NULL, *m;
assert(offset <= new_length);
bytes = new_length - offset;
while (bytes) {
cur_bytes = MIN(bytes, QEMU_ALIGN_DOWN(INT_MAX, s->cluster_size));
ret = qcow2_alloc_host_offset(bs, offset, &cur_bytes,
&host_offset, &meta);
if (ret < 0) {
error_setg_errno(errp, -ret, "Allocating clusters failed");
goto out;
}
for (m = meta; m != NULL; m = m->next) {
m->prealloc = true;
}
ret = qcow2_handle_l2meta(bs, &meta, true);
if (ret < 0) {
error_setg_errno(errp, -ret, "Mapping clusters failed");
goto out;
}
/* TODO Preallocate data if requested */
bytes -= cur_bytes;
offset += cur_bytes;
}
/*
* It is expected that the image file is large enough to actually contain
* all of the allocated clusters (otherwise we get failing reads after
* EOF). Extend the image to the last allocated sector.
*/
file_length = bdrv_co_getlength(s->data_file->bs);
if (file_length < 0) {
error_setg_errno(errp, -file_length, "Could not get file size");
ret = file_length;
goto out;
}
if (host_offset + cur_bytes > file_length) {
if (mode == PREALLOC_MODE_METADATA) {
mode = PREALLOC_MODE_OFF;
}
ret = bdrv_co_truncate(s->data_file, host_offset + cur_bytes, false,
mode, 0, errp);
if (ret < 0) {
goto out;
}
}
ret = 0;
out:
qcow2_handle_l2meta(bs, &meta, false);
return ret;
}
/* qcow2_refcount_metadata_size:
* @clusters: number of clusters to refcount (including data and L1/L2 tables)
* @cluster_size: size of a cluster, in bytes
* @refcount_order: refcount bits power-of-2 exponent
* @generous_increase: allow for the refcount table to be 1.5x as large as it
* needs to be
*
* Returns: Number of bytes required for refcount blocks and table metadata.
*/
int64_t qcow2_refcount_metadata_size(int64_t clusters, size_t cluster_size,
int refcount_order, bool generous_increase,
uint64_t *refblock_count)
{
/*
* Every host cluster is reference-counted, including metadata (even
* refcount metadata is recursively included).
*
* An accurate formula for the size of refcount metadata size is difficult
* to derive. An easier method of calculation is finding the fixed point
* where no further refcount blocks or table clusters are required to
* reference count every cluster.
*/
int64_t blocks_per_table_cluster = cluster_size / REFTABLE_ENTRY_SIZE;
int64_t refcounts_per_block = cluster_size * 8 / (1 << refcount_order);
int64_t table = 0; /* number of refcount table clusters */
int64_t blocks = 0; /* number of refcount block clusters */
int64_t last;
int64_t n = 0;
do {
last = n;
blocks = DIV_ROUND_UP(clusters + table + blocks, refcounts_per_block);
table = DIV_ROUND_UP(blocks, blocks_per_table_cluster);
n = clusters + blocks + table;
if (n == last && generous_increase) {
clusters += DIV_ROUND_UP(table, 2);
n = 0; /* force another loop */
generous_increase = false;
}
} while (n != last);
if (refblock_count) {
*refblock_count = blocks;
}
return (blocks + table) * cluster_size;
}
/**
* qcow2_calc_prealloc_size:
* @total_size: virtual disk size in bytes
* @cluster_size: cluster size in bytes
* @refcount_order: refcount bits power-of-2 exponent
* @extended_l2: true if the image has extended L2 entries
*
* Returns: Total number of bytes required for the fully allocated image
* (including metadata).
*/
static int64_t qcow2_calc_prealloc_size(int64_t total_size,
size_t cluster_size,
int refcount_order,
bool extended_l2)
{
int64_t meta_size = 0;
uint64_t nl1e, nl2e;
int64_t aligned_total_size = ROUND_UP(total_size, cluster_size);
size_t l2e_size = extended_l2 ? L2E_SIZE_EXTENDED : L2E_SIZE_NORMAL;
/* header: 1 cluster */
meta_size += cluster_size;
/* total size of L2 tables */
nl2e = aligned_total_size / cluster_size;
nl2e = ROUND_UP(nl2e, cluster_size / l2e_size);
meta_size += nl2e * l2e_size;
/* total size of L1 tables */
nl1e = nl2e * l2e_size / cluster_size;
nl1e = ROUND_UP(nl1e, cluster_size / L1E_SIZE);
meta_size += nl1e * L1E_SIZE;
/* total size of refcount table and blocks */
meta_size += qcow2_refcount_metadata_size(
(meta_size + aligned_total_size) / cluster_size,
cluster_size, refcount_order, false, NULL);
return meta_size + aligned_total_size;
}
static bool validate_cluster_size(size_t cluster_size, bool extended_l2,
Error **errp)
{
int cluster_bits = ctz32(cluster_size);
if (cluster_bits < MIN_CLUSTER_BITS || cluster_bits > MAX_CLUSTER_BITS ||
(1 << cluster_bits) != cluster_size)
{
error_setg(errp, "Cluster size must be a power of two between %d and "
"%dk", 1 << MIN_CLUSTER_BITS, 1 << (MAX_CLUSTER_BITS - 10));
return false;
}
if (extended_l2) {
unsigned min_cluster_size =
(1 << MIN_CLUSTER_BITS) * QCOW_EXTL2_SUBCLUSTERS_PER_CLUSTER;
if (cluster_size < min_cluster_size) {
error_setg(errp, "Extended L2 entries are only supported with "
"cluster sizes of at least %u bytes", min_cluster_size);
return false;
}
}
return true;
}
static size_t qcow2_opt_get_cluster_size_del(QemuOpts *opts, bool extended_l2,
Error **errp)
{
size_t cluster_size;
cluster_size = qemu_opt_get_size_del(opts, BLOCK_OPT_CLUSTER_SIZE,
DEFAULT_CLUSTER_SIZE);
if (!validate_cluster_size(cluster_size, extended_l2, errp)) {
return 0;
}
return cluster_size;
}
static int qcow2_opt_get_version_del(QemuOpts *opts, Error **errp)
{
char *buf;
int ret;
buf = qemu_opt_get_del(opts, BLOCK_OPT_COMPAT_LEVEL);
if (!buf) {
ret = 3; /* default */
} else if (!strcmp(buf, "0.10")) {
ret = 2;
} else if (!strcmp(buf, "1.1")) {
ret = 3;
} else {
error_setg(errp, "Invalid compatibility level: '%s'", buf);
ret = -EINVAL;
}
g_free(buf);
return ret;
}
static uint64_t qcow2_opt_get_refcount_bits_del(QemuOpts *opts, int version,
Error **errp)
{
uint64_t refcount_bits;
refcount_bits = qemu_opt_get_number_del(opts, BLOCK_OPT_REFCOUNT_BITS, 16);
if (refcount_bits > 64 || !is_power_of_2(refcount_bits)) {
error_setg(errp, "Refcount width must be a power of two and may not "
"exceed 64 bits");
return 0;
}
if (version < 3 && refcount_bits != 16) {
error_setg(errp, "Different refcount widths than 16 bits require "
"compatibility level 1.1 or above (use compat=1.1 or "
"greater)");
return 0;
}
return refcount_bits;
}
static int coroutine_fn GRAPH_UNLOCKED
qcow2_co_create(BlockdevCreateOptions *create_options, Error **errp)
{
BlockdevCreateOptionsQcow2 *qcow2_opts;
QDict *options;
/*
* Open the image file and write a minimal qcow2 header.
*
* We keep things simple and start with a zero-sized image. We also
* do without refcount blocks or a L1 table for now. We'll fix the
* inconsistency later.
*
* We do need a refcount table because growing the refcount table means
* allocating two new refcount blocks - the second of which would be at
* 2 GB for 64k clusters, and we don't want to have a 2 GB initial file
* size for any qcow2 image.
*/
BlockBackend *blk = NULL;
BlockDriverState *bs = NULL;
BlockDriverState *data_bs = NULL;
QCowHeader *header;
size_t cluster_size;
int version;
int refcount_order;
uint64_t *refcount_table;
int ret;
uint8_t compression_type = QCOW2_COMPRESSION_TYPE_ZLIB;
assert(create_options->driver == BLOCKDEV_DRIVER_QCOW2);
qcow2_opts = &create_options->u.qcow2;
bs = bdrv_co_open_blockdev_ref(qcow2_opts->file, errp);
if (bs == NULL) {
return -EIO;
}
/* Validate options and set default values */
if (!QEMU_IS_ALIGNED(qcow2_opts->size, BDRV_SECTOR_SIZE)) {
error_setg(errp, "Image size must be a multiple of %u bytes",
(unsigned) BDRV_SECTOR_SIZE);
ret = -EINVAL;
goto out;
}
if (qcow2_opts->has_version) {
switch (qcow2_opts->version) {
case BLOCKDEV_QCOW2_VERSION_V2:
version = 2;
break;
case BLOCKDEV_QCOW2_VERSION_V3:
version = 3;
break;
default:
g_assert_not_reached();
}
} else {
version = 3;
}
if (qcow2_opts->has_cluster_size) {
cluster_size = qcow2_opts->cluster_size;
} else {
cluster_size = DEFAULT_CLUSTER_SIZE;
}
if (!qcow2_opts->has_extended_l2) {
qcow2_opts->extended_l2 = false;
}
if (qcow2_opts->extended_l2) {
if (version < 3) {
error_setg(errp, "Extended L2 entries are only supported with "
"compatibility level 1.1 and above (use version=v3 or "
"greater)");
ret = -EINVAL;
goto out;
}
}
if (!validate_cluster_size(cluster_size, qcow2_opts->extended_l2, errp)) {
ret = -EINVAL;
goto out;
}
if (!qcow2_opts->has_preallocation) {
qcow2_opts->preallocation = PREALLOC_MODE_OFF;
}
if (qcow2_opts->backing_file &&
qcow2_opts->preallocation != PREALLOC_MODE_OFF &&
!qcow2_opts->extended_l2)
{
error_setg(errp, "Backing file and preallocation can only be used at "
"the same time if extended_l2 is on");
ret = -EINVAL;
goto out;
}
if (qcow2_opts->has_backing_fmt && !qcow2_opts->backing_file) {
error_setg(errp, "Backing format cannot be used without backing file");
ret = -EINVAL;
goto out;
}
if (!qcow2_opts->has_lazy_refcounts) {
qcow2_opts->lazy_refcounts = false;
}
if (version < 3 && qcow2_opts->lazy_refcounts) {
error_setg(errp, "Lazy refcounts only supported with compatibility "
"level 1.1 and above (use version=v3 or greater)");
ret = -EINVAL;
goto out;
}
if (!qcow2_opts->has_refcount_bits) {
qcow2_opts->refcount_bits = 16;
}
if (qcow2_opts->refcount_bits > 64 ||
!is_power_of_2(qcow2_opts->refcount_bits))
{
error_setg(errp, "Refcount width must be a power of two and may not "
"exceed 64 bits");
ret = -EINVAL;
goto out;
}
if (version < 3 && qcow2_opts->refcount_bits != 16) {
error_setg(errp, "Different refcount widths than 16 bits require "
"compatibility level 1.1 or above (use version=v3 or "
"greater)");
ret = -EINVAL;
goto out;
}
refcount_order = ctz32(qcow2_opts->refcount_bits);
if (qcow2_opts->data_file_raw && !qcow2_opts->data_file) {
error_setg(errp, "data-file-raw requires data-file");
ret = -EINVAL;
goto out;
}
if (qcow2_opts->data_file_raw && qcow2_opts->backing_file) {
error_setg(errp, "Backing file and data-file-raw cannot be used at "
"the same time");
ret = -EINVAL;
goto out;
}
if (qcow2_opts->data_file_raw &&
qcow2_opts->preallocation == PREALLOC_MODE_OFF)
{
/*
* data-file-raw means that "the external data file can be
* read as a consistent standalone raw image without looking
* at the qcow2 metadata." It does not say that the metadata
* must be ignored, though (and the qcow2 driver in fact does
* not ignore it), so the L1/L2 tables must be present and
* give a 1:1 mapping, so you get the same result regardless
* of whether you look at the metadata or whether you ignore
* it.
*/
qcow2_opts->preallocation = PREALLOC_MODE_METADATA;
/*
* Cannot use preallocation with backing files, but giving a
* backing file when specifying data_file_raw is an error
* anyway.
*/
assert(!qcow2_opts->backing_file);
}
if (qcow2_opts->data_file) {
if (version < 3) {
error_setg(errp, "External data files are only supported with "
"compatibility level 1.1 and above (use version=v3 or "
"greater)");
ret = -EINVAL;
goto out;
}
data_bs = bdrv_co_open_blockdev_ref(qcow2_opts->data_file, errp);
if (data_bs == NULL) {
ret = -EIO;
goto out;
}
}
if (qcow2_opts->has_compression_type &&
qcow2_opts->compression_type != QCOW2_COMPRESSION_TYPE_ZLIB) {
ret = -EINVAL;
if (version < 3) {
error_setg(errp, "Non-zlib compression type is only supported with "
"compatibility level 1.1 and above (use version=v3 or "
"greater)");
goto out;
}
switch (qcow2_opts->compression_type) {
#ifdef CONFIG_ZSTD
case QCOW2_COMPRESSION_TYPE_ZSTD:
break;
#endif
default:
error_setg(errp, "Unknown compression type");
goto out;
}
compression_type = qcow2_opts->compression_type;
}
/* Create BlockBackend to write to the image */
blk = blk_co_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL,
errp);
if (!blk) {
ret = -EPERM;
goto out;
}
blk_set_allow_write_beyond_eof(blk, true);
/* Write the header */
QEMU_BUILD_BUG_ON((1 << MIN_CLUSTER_BITS) < sizeof(*header));
header = g_malloc0(cluster_size);
*header = (QCowHeader) {
.magic = cpu_to_be32(QCOW_MAGIC),
.version = cpu_to_be32(version),
.cluster_bits = cpu_to_be32(ctz32(cluster_size)),
.size = cpu_to_be64(0),
.l1_table_offset = cpu_to_be64(0),
.l1_size = cpu_to_be32(0),
.refcount_table_offset = cpu_to_be64(cluster_size),
.refcount_table_clusters = cpu_to_be32(1),
.refcount_order = cpu_to_be32(refcount_order),
/* don't deal with endianness since compression_type is 1 byte long */
.compression_type = compression_type,
.header_length = cpu_to_be32(sizeof(*header)),
};
/* We'll update this to correct value later */
header->crypt_method = cpu_to_be32(QCOW_CRYPT_NONE);
if (qcow2_opts->lazy_refcounts) {
header->compatible_features |=
cpu_to_be64(QCOW2_COMPAT_LAZY_REFCOUNTS);
}
if (data_bs) {
header->incompatible_features |=
cpu_to_be64(QCOW2_INCOMPAT_DATA_FILE);
}
if (qcow2_opts->data_file_raw) {
header->autoclear_features |=
cpu_to_be64(QCOW2_AUTOCLEAR_DATA_FILE_RAW);
}
if (compression_type != QCOW2_COMPRESSION_TYPE_ZLIB) {
header->incompatible_features |=
cpu_to_be64(QCOW2_INCOMPAT_COMPRESSION);
}
if (qcow2_opts->extended_l2) {
header->incompatible_features |=
cpu_to_be64(QCOW2_INCOMPAT_EXTL2);
}
ret = blk_co_pwrite(blk, 0, cluster_size, header, 0);
g_free(header);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not write qcow2 header");
goto out;
}
/* Write a refcount table with one refcount block */
refcount_table = g_malloc0(2 * cluster_size);
refcount_table[0] = cpu_to_be64(2 * cluster_size);
ret = blk_co_pwrite(blk, cluster_size, 2 * cluster_size, refcount_table, 0);
g_free(refcount_table);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not write refcount table");
goto out;
}
blk_co_unref(blk);
blk = NULL;
/*
* And now open the image and make it consistent first (i.e. increase the
* refcount of the cluster that is occupied by the header and the refcount
* table)
*/
options = qdict_new();
qdict_put_str(options, "driver", "qcow2");
qdict_put_str(options, "file", bs->node_name);
if (data_bs) {
qdict_put_str(options, "data-file", data_bs->node_name);
}
blk = blk_co_new_open(NULL, NULL, options,
BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_NO_FLUSH,
errp);
if (blk == NULL) {
ret = -EIO;
goto out;
}
bdrv_graph_co_rdlock();
ret = qcow2_alloc_clusters(blk_bs(blk), 3 * cluster_size);
if (ret < 0) {
bdrv_graph_co_rdunlock();
error_setg_errno(errp, -ret, "Could not allocate clusters for qcow2 "
"header and refcount table");
goto out;
} else if (ret != 0) {
error_report("Huh, first cluster in empty image is already in use?");
abort();
}
/* Set the external data file if necessary */
if (data_bs) {
BDRVQcow2State *s = blk_bs(blk)->opaque;
s->image_data_file = g_strdup(data_bs->filename);
}
/* Create a full header (including things like feature table) */
ret = qcow2_update_header(blk_bs(blk));
bdrv_graph_co_rdunlock();
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not update qcow2 header");
goto out;
}
/* Okay, now that we have a valid image, let's give it the right size */
ret = blk_co_truncate(blk, qcow2_opts->size, false,
qcow2_opts->preallocation, 0, errp);
if (ret < 0) {
error_prepend(errp, "Could not resize image: ");
goto out;
}
/* Want a backing file? There you go. */
if (qcow2_opts->backing_file) {
const char *backing_format = NULL;
if (qcow2_opts->has_backing_fmt) {
backing_format = BlockdevDriver_str(qcow2_opts->backing_fmt);
}
ret = bdrv_change_backing_file(blk_bs(blk), qcow2_opts->backing_file,
backing_format, false);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not assign backing file '%s' "
"with format '%s'", qcow2_opts->backing_file,
backing_format);
goto out;
}
}
/* Want encryption? There you go. */
if (qcow2_opts->encrypt) {
bdrv_graph_co_rdlock();
ret = qcow2_set_up_encryption(blk_bs(blk), qcow2_opts->encrypt, errp);
bdrv_graph_co_rdunlock();
if (ret < 0) {
goto out;
}
}
blk_co_unref(blk);
blk = NULL;
/* Reopen the image without BDRV_O_NO_FLUSH to flush it before returning.
* Using BDRV_O_NO_IO, since encryption is now setup we don't want to
* have to setup decryption context. We're not doing any I/O on the top
* level BlockDriverState, only lower layers, where BDRV_O_NO_IO does
* not have effect.
*/
options = qdict_new();
qdict_put_str(options, "driver", "qcow2");
qdict_put_str(options, "file", bs->node_name);
if (data_bs) {
qdict_put_str(options, "data-file", data_bs->node_name);
}
blk = blk_co_new_open(NULL, NULL, options,
BDRV_O_RDWR | BDRV_O_NO_BACKING | BDRV_O_NO_IO,
errp);
if (blk == NULL) {
ret = -EIO;
goto out;
}
ret = 0;
out:
blk_co_unref(blk);
bdrv_co_unref(bs);
bdrv_co_unref(data_bs);
return ret;
}
static int coroutine_fn GRAPH_UNLOCKED
qcow2_co_create_opts(BlockDriver *drv, const char *filename, QemuOpts *opts,
Error **errp)
{
BlockdevCreateOptions *create_options = NULL;
QDict *qdict;
Visitor *v;
BlockDriverState *bs = NULL;
BlockDriverState *data_bs = NULL;
const char *val;
int ret;
/* Only the keyval visitor supports the dotted syntax needed for
* encryption, so go through a QDict before getting a QAPI type. Ignore
* options meant for the protocol layer so that the visitor doesn't
* complain. */
qdict = qemu_opts_to_qdict_filtered(opts, NULL, bdrv_qcow2.create_opts,
true);
/* Handle encryption options */
val = qdict_get_try_str(qdict, BLOCK_OPT_ENCRYPT);
if (val && !strcmp(val, "on")) {
qdict_put_str(qdict, BLOCK_OPT_ENCRYPT, "qcow");
} else if (val && !strcmp(val, "off")) {
qdict_del(qdict, BLOCK_OPT_ENCRYPT);
}
val = qdict_get_try_str(qdict, BLOCK_OPT_ENCRYPT_FORMAT);
if (val && !strcmp(val, "aes")) {
qdict_put_str(qdict, BLOCK_OPT_ENCRYPT_FORMAT, "qcow");
}
/* Convert compat=0.10/1.1 into compat=v2/v3, to be renamed into
* version=v2/v3 below. */
val = qdict_get_try_str(qdict, BLOCK_OPT_COMPAT_LEVEL);
if (val && !strcmp(val, "0.10")) {
qdict_put_str(qdict, BLOCK_OPT_COMPAT_LEVEL, "v2");
} else if (val && !strcmp(val, "1.1")) {
qdict_put_str(qdict, BLOCK_OPT_COMPAT_LEVEL, "v3");
}
/* Change legacy command line options into QMP ones */
static const QDictRenames opt_renames[] = {
{ BLOCK_OPT_BACKING_FILE, "backing-file" },
{ BLOCK_OPT_BACKING_FMT, "backing-fmt" },
{ BLOCK_OPT_CLUSTER_SIZE, "cluster-size" },
{ BLOCK_OPT_LAZY_REFCOUNTS, "lazy-refcounts" },
{ BLOCK_OPT_EXTL2, "extended-l2" },
{ BLOCK_OPT_REFCOUNT_BITS, "refcount-bits" },
{ BLOCK_OPT_ENCRYPT, BLOCK_OPT_ENCRYPT_FORMAT },
{ BLOCK_OPT_COMPAT_LEVEL, "version" },
{ BLOCK_OPT_DATA_FILE_RAW, "data-file-raw" },
{ BLOCK_OPT_COMPRESSION_TYPE, "compression-type" },
{ NULL, NULL },
};
if (!qdict_rename_keys(qdict, opt_renames, errp)) {
ret = -EINVAL;
goto finish;
}
/* Create and open the file (protocol layer) */
ret = bdrv_co_create_file(filename, opts, errp);
if (ret < 0) {
goto finish;
}
bs = bdrv_co_open(filename, NULL, NULL,
BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
if (bs == NULL) {
ret = -EIO;
goto finish;
}
/* Create and open an external data file (protocol layer) */
val = qdict_get_try_str(qdict, BLOCK_OPT_DATA_FILE);
if (val) {
ret = bdrv_co_create_file(val, opts, errp);
if (ret < 0) {
goto finish;
}
data_bs = bdrv_co_open(val, NULL, NULL,
BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL,
errp);
if (data_bs == NULL) {
ret = -EIO;
goto finish;
}
qdict_del(qdict, BLOCK_OPT_DATA_FILE);
qdict_put_str(qdict, "data-file", data_bs->node_name);
}
/* Set 'driver' and 'node' options */
qdict_put_str(qdict, "driver", "qcow2");
qdict_put_str(qdict, "file", bs->node_name);
/* Now get the QAPI type BlockdevCreateOptions */
v = qobject_input_visitor_new_flat_confused(qdict, errp);
if (!v) {
ret = -EINVAL;
goto finish;
}
visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp);
visit_free(v);
if (!create_options) {
ret = -EINVAL;
goto finish;
}
/* Silently round up size */
create_options->u.qcow2.size = ROUND_UP(create_options->u.qcow2.size,
BDRV_SECTOR_SIZE);
/* Create the qcow2 image (format layer) */
ret = qcow2_co_create(create_options, errp);
finish:
if (ret < 0) {
bdrv_graph_co_rdlock();
bdrv_co_delete_file_noerr(bs);
bdrv_co_delete_file_noerr(data_bs);
bdrv_graph_co_rdunlock();
} else {
ret = 0;
}
qobject_unref(qdict);
bdrv_co_unref(bs);
bdrv_co_unref(data_bs);
qapi_free_BlockdevCreateOptions(create_options);
return ret;
}
static bool is_zero(BlockDriverState *bs, int64_t offset, int64_t bytes)
{
int64_t nr;
int res;
/* Clamp to image length, before checking status of underlying sectors */
if (offset + bytes > bs->total_sectors * BDRV_SECTOR_SIZE) {
bytes = bs->total_sectors * BDRV_SECTOR_SIZE - offset;
}
if (!bytes) {
return true;
}
/*
* bdrv_block_status_above doesn't merge different types of zeros, for
* example, zeros which come from the region which is unallocated in
* the whole backing chain, and zeros which come because of a short
* backing file. So, we need a loop.
*/
do {
res = bdrv_block_status_above(bs, NULL, offset, bytes, &nr, NULL, NULL);
offset += nr;
bytes -= nr;
} while (res >= 0 && (res & BDRV_BLOCK_ZERO) && nr && bytes);
return res >= 0 && (res & BDRV_BLOCK_ZERO) && bytes == 0;
}
static int coroutine_fn GRAPH_RDLOCK
qcow2_co_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
BdrvRequestFlags flags)
{
int ret;
BDRVQcow2State *s = bs->opaque;
uint32_t head = offset_into_subcluster(s, offset);
uint32_t tail = ROUND_UP(offset + bytes, s->subcluster_size) -
(offset + bytes);
trace_qcow2_pwrite_zeroes_start_req(qemu_coroutine_self(), offset, bytes);
if (offset + bytes == bs->total_sectors * BDRV_SECTOR_SIZE) {
tail = 0;
}
if (head || tail) {
uint64_t off;
unsigned int nr;
QCow2SubclusterType type;
assert(head + bytes + tail <= s->subcluster_size);
/* check whether remainder of cluster already reads as zero */
if (!(is_zero(bs, offset - head, head) &&
is_zero(bs, offset + bytes, tail))) {
return -ENOTSUP;
}
qemu_co_mutex_lock(&s->lock);
/* We can have new write after previous check */
offset -= head;
bytes = s->subcluster_size;
nr = s->subcluster_size;
ret = qcow2_get_host_offset(bs, offset, &nr, &off, &type);
if (ret < 0 ||
(type != QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN &&
type != QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC &&
type != QCOW2_SUBCLUSTER_ZERO_PLAIN &&
type != QCOW2_SUBCLUSTER_ZERO_ALLOC)) {
qemu_co_mutex_unlock(&s->lock);
return ret < 0 ? ret : -ENOTSUP;
}
} else {
qemu_co_mutex_lock(&s->lock);
}
trace_qcow2_pwrite_zeroes(qemu_coroutine_self(), offset, bytes);
/* Whatever is left can use real zero subclusters */
ret = qcow2_subcluster_zeroize(bs, offset, bytes, flags);
qemu_co_mutex_unlock(&s->lock);
return ret;
}
static coroutine_fn int qcow2_co_pdiscard(BlockDriverState *bs,
int64_t offset, int64_t bytes)
{
int ret;
BDRVQcow2State *s = bs->opaque;
/* If the image does not support QCOW_OFLAG_ZERO then discarding
* clusters could expose stale data from the backing file. */
if (s->qcow_version < 3 && bs->backing) {
return -ENOTSUP;
}
if (!QEMU_IS_ALIGNED(offset | bytes, s->cluster_size)) {
assert(bytes < s->cluster_size);
/* Ignore partial clusters, except for the special case of the
* complete partial cluster at the end of an unaligned file */
if (!QEMU_IS_ALIGNED(offset, s->cluster_size) ||
offset + bytes != bs->total_sectors * BDRV_SECTOR_SIZE) {
return -ENOTSUP;
}
}
qemu_co_mutex_lock(&s->lock);
ret = qcow2_cluster_discard(bs, offset, bytes, QCOW2_DISCARD_REQUEST,
false);
qemu_co_mutex_unlock(&s->lock);
return ret;
}
static int coroutine_fn GRAPH_RDLOCK
qcow2_co_copy_range_from(BlockDriverState *bs,
BdrvChild *src, int64_t src_offset,
BdrvChild *dst, int64_t dst_offset,
int64_t bytes, BdrvRequestFlags read_flags,
BdrvRequestFlags write_flags)
{
BDRVQcow2State *s = bs->opaque;
int ret;
unsigned int cur_bytes; /* number of bytes in current iteration */
BdrvChild *child = NULL;
BdrvRequestFlags cur_write_flags;
assert(!bs->encrypted);
qemu_co_mutex_lock(&s->lock);
while (bytes != 0) {
uint64_t copy_offset = 0;
QCow2SubclusterType type;
/* prepare next request */
cur_bytes = MIN(bytes, INT_MAX);
cur_write_flags = write_flags;
ret = qcow2_get_host_offset(bs, src_offset, &cur_bytes,
&copy_offset, &type);
if (ret < 0) {
goto out;
}
switch (type) {
case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
if (bs->backing && bs->backing->bs) {
int64_t backing_length = bdrv_co_getlength(bs->backing->bs);
if (src_offset >= backing_length) {
cur_write_flags |= BDRV_REQ_ZERO_WRITE;
} else {
child = bs->backing;
cur_bytes = MIN(cur_bytes, backing_length - src_offset);
copy_offset = src_offset;
}
} else {
cur_write_flags |= BDRV_REQ_ZERO_WRITE;
}
break;
case QCOW2_SUBCLUSTER_ZERO_PLAIN:
case QCOW2_SUBCLUSTER_ZERO_ALLOC:
cur_write_flags |= BDRV_REQ_ZERO_WRITE;
break;
case QCOW2_SUBCLUSTER_COMPRESSED:
ret = -ENOTSUP;
goto out;
case QCOW2_SUBCLUSTER_NORMAL:
child = s->data_file;
break;
default:
abort();
}
qemu_co_mutex_unlock(&s->lock);
ret = bdrv_co_copy_range_from(child,
copy_offset,
dst, dst_offset,
cur_bytes, read_flags, cur_write_flags);
qemu_co_mutex_lock(&s->lock);
if (ret < 0) {
goto out;
}
bytes -= cur_bytes;
src_offset += cur_bytes;
dst_offset += cur_bytes;
}
ret = 0;
out:
qemu_co_mutex_unlock(&s->lock);
return ret;
}
static int coroutine_fn GRAPH_RDLOCK
qcow2_co_copy_range_to(BlockDriverState *bs,
BdrvChild *src, int64_t src_offset,
BdrvChild *dst, int64_t dst_offset,
int64_t bytes, BdrvRequestFlags read_flags,
BdrvRequestFlags write_flags)
{
BDRVQcow2State *s = bs->opaque;
int ret;
unsigned int cur_bytes; /* number of sectors in current iteration */
uint64_t host_offset;
QCowL2Meta *l2meta = NULL;
assert(!bs->encrypted);
qemu_co_mutex_lock(&s->lock);
while (bytes != 0) {
l2meta = NULL;
cur_bytes = MIN(bytes, INT_MAX);
/* TODO:
* If src->bs == dst->bs, we could simply copy by incrementing
* the refcnt, without copying user data.
* Or if src->bs == dst->bs->backing->bs, we could copy by discarding. */
ret = qcow2_alloc_host_offset(bs, dst_offset, &cur_bytes,
&host_offset, &l2meta);
if (ret < 0) {
goto fail;
}
ret = qcow2_pre_write_overlap_check(bs, 0, host_offset, cur_bytes,
true);
if (ret < 0) {
goto fail;
}
qemu_co_mutex_unlock(&s->lock);
ret = bdrv_co_copy_range_to(src, src_offset, s->data_file, host_offset,
cur_bytes, read_flags, write_flags);
qemu_co_mutex_lock(&s->lock);
if (ret < 0) {
goto fail;
}
ret = qcow2_handle_l2meta(bs, &l2meta, true);
if (ret) {
goto fail;
}
bytes -= cur_bytes;
src_offset += cur_bytes;
dst_offset += cur_bytes;
}
ret = 0;
fail:
qcow2_handle_l2meta(bs, &l2meta, false);
qemu_co_mutex_unlock(&s->lock);
trace_qcow2_writev_done_req(qemu_coroutine_self(), ret);
return ret;
}
static int coroutine_fn GRAPH_RDLOCK
qcow2_co_truncate(BlockDriverState *bs, int64_t offset, bool exact,
PreallocMode prealloc, BdrvRequestFlags flags, Error **errp)
{
BDRVQcow2State *s = bs->opaque;
uint64_t old_length;
int64_t new_l1_size;
int ret;
QDict *options;
if (prealloc != PREALLOC_MODE_OFF && prealloc != PREALLOC_MODE_METADATA &&
prealloc != PREALLOC_MODE_FALLOC && prealloc != PREALLOC_MODE_FULL)
{
error_setg(errp, "Unsupported preallocation mode '%s'",
PreallocMode_str(prealloc));
return -ENOTSUP;
}
if (!QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)) {
error_setg(errp, "The new size must be a multiple of %u",
(unsigned) BDRV_SECTOR_SIZE);
return -EINVAL;
}
qemu_co_mutex_lock(&s->lock);
/*
* Even though we store snapshot size for all images, it was not
* required until v3, so it is not safe to proceed for v2.
*/
if (s->nb_snapshots && s->qcow_version < 3) {
error_setg(errp, "Can't resize a v2 image which has snapshots");
ret = -ENOTSUP;
goto fail;
}
/* See qcow2-bitmap.c for which bitmap scenarios prevent a resize. */
if (qcow2_truncate_bitmaps_check(bs, errp)) {
ret = -ENOTSUP;
goto fail;
}
old_length = bs->total_sectors * BDRV_SECTOR_SIZE;
new_l1_size = size_to_l1(s, offset);
if (offset < old_length) {
int64_t last_cluster, old_file_size;
if (prealloc != PREALLOC_MODE_OFF) {
error_setg(errp,
"Preallocation can't be used for shrinking an image");
ret = -EINVAL;
goto fail;
}
ret = qcow2_cluster_discard(bs, ROUND_UP(offset, s->cluster_size),
old_length - ROUND_UP(offset,
s->cluster_size),
QCOW2_DISCARD_ALWAYS, true);
if (ret < 0) {
error_setg_errno(errp, -ret, "Failed to discard cropped clusters");
goto fail;
}
ret = qcow2_shrink_l1_table(bs, new_l1_size);
if (ret < 0) {
error_setg_errno(errp, -ret,
"Failed to reduce the number of L2 tables");
goto fail;
}
ret = qcow2_shrink_reftable(bs);
if (ret < 0) {
error_setg_errno(errp, -ret,
"Failed to discard unused refblocks");
goto fail;
}
old_file_size = bdrv_co_getlength(bs->file->bs);
if (old_file_size < 0) {
error_setg_errno(errp, -old_file_size,
"Failed to inquire current file length");
ret = old_file_size;
goto fail;
}
last_cluster = qcow2_get_last_cluster(bs, old_file_size);
if (last_cluster < 0) {
error_setg_errno(errp, -last_cluster,
"Failed to find the last cluster");
ret = last_cluster;
goto fail;
}
if ((last_cluster + 1) * s->cluster_size < old_file_size) {
Error *local_err = NULL;
/*
* Do not pass @exact here: It will not help the user if
* we get an error here just because they wanted to shrink
* their qcow2 image (on a block device) with qemu-img.
* (And on the qcow2 layer, the @exact requirement is
* always fulfilled, so there is no need to pass it on.)
*/
bdrv_co_truncate(bs->file, (last_cluster + 1) * s->cluster_size,
false, PREALLOC_MODE_OFF, 0, &local_err);
if (local_err) {
warn_reportf_err(local_err,
"Failed to truncate the tail of the image: ");
}
}
} else {
ret = qcow2_grow_l1_table(bs, new_l1_size, true);
if (ret < 0) {
error_setg_errno(errp, -ret, "Failed to grow the L1 table");
goto fail;
}
if (data_file_is_raw(bs) && prealloc == PREALLOC_MODE_OFF) {
/*
* When creating a qcow2 image with data-file-raw, we enforce
* at least prealloc=metadata, so that the L1/L2 tables are
* fully allocated and reading from the data file will return
* the same data as reading from the qcow2 image. When the
* image is grown, we must consequently preallocate the
* metadata structures to cover the added area.
*/
prealloc = PREALLOC_MODE_METADATA;
}
}
switch (prealloc) {
case PREALLOC_MODE_OFF:
if (has_data_file(bs)) {
/*
* If the caller wants an exact resize, the external data
* file should be resized to the exact target size, too,
* so we pass @exact here.
*/
ret = bdrv_co_truncate(s->data_file, offset, exact, prealloc, 0,
errp);
if (ret < 0) {
goto fail;
}
}
break;
case PREALLOC_MODE_METADATA:
ret = preallocate_co(bs, old_length, offset, prealloc, errp);
if (ret < 0) {
goto fail;
}
break;
case PREALLOC_MODE_FALLOC:
case PREALLOC_MODE_FULL:
{
int64_t allocation_start, host_offset, guest_offset;
int64_t clusters_allocated;
int64_t old_file_size, last_cluster, new_file_size;
uint64_t nb_new_data_clusters, nb_new_l2_tables;
bool subclusters_need_allocation = false;
/* With a data file, preallocation means just allocating the metadata
* and forwarding the truncate request to the data file */
if (has_data_file(bs)) {
ret = preallocate_co(bs, old_length, offset, prealloc, errp);
if (ret < 0) {
goto fail;
}
break;
}
old_file_size = bdrv_co_getlength(bs->file->bs);
if (old_file_size < 0) {
error_setg_errno(errp, -old_file_size,
"Failed to inquire current file length");
ret = old_file_size;
goto fail;
}
last_cluster = qcow2_get_last_cluster(bs, old_file_size);
if (last_cluster >= 0) {
old_file_size = (last_cluster + 1) * s->cluster_size;
} else {
old_file_size = ROUND_UP(old_file_size, s->cluster_size);
}
nb_new_data_clusters = (ROUND_UP(offset, s->cluster_size) -
start_of_cluster(s, old_length)) >> s->cluster_bits;
/* This is an overestimation; we will not actually allocate space for
* these in the file but just make sure the new refcount structures are
* able to cover them so we will not have to allocate new refblocks
* while entering the data blocks in the potentially new L2 tables.
* (We do not actually care where the L2 tables are placed. Maybe they
* are already allocated or they can be placed somewhere before
* @old_file_size. It does not matter because they will be fully
* allocated automatically, so they do not need to be covered by the
* preallocation. All that matters is that we will not have to allocate
* new refcount structures for them.) */
nb_new_l2_tables = DIV_ROUND_UP(nb_new_data_clusters,
s->cluster_size / l2_entry_size(s));
/* The cluster range may not be aligned to L2 boundaries, so add one L2
* table for a potential head/tail */
nb_new_l2_tables++;
allocation_start = qcow2_refcount_area(bs, old_file_size,
nb_new_data_clusters +
nb_new_l2_tables,
true, 0, 0);
if (allocation_start < 0) {
error_setg_errno(errp, -allocation_start,
"Failed to resize refcount structures");
ret = allocation_start;
goto fail;
}
clusters_allocated = qcow2_alloc_clusters_at(bs, allocation_start,
nb_new_data_clusters);
if (clusters_allocated < 0) {
error_setg_errno(errp, -clusters_allocated,
"Failed to allocate data clusters");
ret = clusters_allocated;
goto fail;
}
assert(clusters_allocated == nb_new_data_clusters);
/* Allocate the data area */
new_file_size = allocation_start +
nb_new_data_clusters * s->cluster_size;
/*
* Image file grows, so @exact does not matter.
*
* If we need to zero out the new area, try first whether the protocol
* driver can already take care of this.
*/
if (flags & BDRV_REQ_ZERO_WRITE) {
ret = bdrv_co_truncate(bs->file, new_file_size, false, prealloc,
BDRV_REQ_ZERO_WRITE, NULL);
if (ret >= 0) {
flags &= ~BDRV_REQ_ZERO_WRITE;
/* Ensure that we read zeroes and not backing file data */
subclusters_need_allocation = true;
}
} else {
ret = -1;
}
if (ret < 0) {
ret = bdrv_co_truncate(bs->file, new_file_size, false, prealloc, 0,
errp);
}
if (ret < 0) {
error_prepend(errp, "Failed to resize underlying file: ");
qcow2_free_clusters(bs, allocation_start,
nb_new_data_clusters * s->cluster_size,
QCOW2_DISCARD_OTHER);
goto fail;
}
/* Create the necessary L2 entries */
host_offset = allocation_start;
guest_offset = old_length;
while (nb_new_data_clusters) {
int64_t nb_clusters = MIN(
nb_new_data_clusters,
s->l2_slice_size - offset_to_l2_slice_index(s, guest_offset));
unsigned cow_start_length = offset_into_cluster(s, guest_offset);
QCowL2Meta allocation;
guest_offset = start_of_cluster(s, guest_offset);
allocation = (QCowL2Meta) {
.offset = guest_offset,
.alloc_offset = host_offset,
.nb_clusters = nb_clusters,
.cow_start = {
.offset = 0,
.nb_bytes = cow_start_length,
},
.cow_end = {
.offset = nb_clusters << s->cluster_bits,
.nb_bytes = 0,
},
.prealloc = !subclusters_need_allocation,
};
qemu_co_queue_init(&allocation.dependent_requests);
ret = qcow2_alloc_cluster_link_l2(bs, &allocation);
if (ret < 0) {
error_setg_errno(errp, -ret, "Failed to update L2 tables");
qcow2_free_clusters(bs, host_offset,
nb_new_data_clusters * s->cluster_size,
QCOW2_DISCARD_OTHER);
goto fail;
}
guest_offset += nb_clusters * s->cluster_size;
host_offset += nb_clusters * s->cluster_size;
nb_new_data_clusters -= nb_clusters;
}
break;
}
default:
g_assert_not_reached();
}
if ((flags & BDRV_REQ_ZERO_WRITE) && offset > old_length) {
uint64_t zero_start = QEMU_ALIGN_UP(old_length, s->subcluster_size);
/*
* Use zero clusters as much as we can. qcow2_subcluster_zeroize()
* requires a subcluster-aligned start. The end may be unaligned if
* it is at the end of the image (which it is here).
*/
if (offset > zero_start) {
ret = qcow2_subcluster_zeroize(bs, zero_start, offset - zero_start,
0);
if (ret < 0) {
error_setg_errno(errp, -ret, "Failed to zero out new clusters");
goto fail;
}
}
/* Write explicit zeros for the unaligned head */
if (zero_start > old_length) {
uint64_t len = MIN(zero_start, offset) - old_length;
uint8_t *buf = qemu_blockalign0(bs, len);
QEMUIOVector qiov;
qemu_iovec_init_buf(&qiov, buf, len);
qemu_co_mutex_unlock(&s->lock);
ret = qcow2_co_pwritev_part(bs, old_length, len, &qiov, 0, 0);
qemu_co_mutex_lock(&s->lock);
qemu_vfree(buf);
if (ret < 0) {
error_setg_errno(errp, -ret, "Failed to zero out the new area");
goto fail;
}
}
}
if (prealloc != PREALLOC_MODE_OFF) {
/* Flush metadata before actually changing the image size */
ret = qcow2_write_caches(bs);
if (ret < 0) {
error_setg_errno(errp, -ret,
"Failed to flush the preallocated area to disk");
goto fail;
}
}
bs->total_sectors = offset / BDRV_SECTOR_SIZE;
/* write updated header.size */
offset = cpu_to_be64(offset);
ret = bdrv_co_pwrite_sync(bs->file, offsetof(QCowHeader, size),
sizeof(offset), &offset, 0);
if (ret < 0) {
error_setg_errno(errp, -ret, "Failed to update the image size");
goto fail;
}
s->l1_vm_state_index = new_l1_size;
/* Update cache sizes */
options = qdict_clone_shallow(bs->options);
ret = qcow2_update_options(bs, options, s->flags, errp);
qobject_unref(options);
if (ret < 0) {
goto fail;
}
ret = 0;
fail:
qemu_co_mutex_unlock(&s->lock);
return ret;
}
static int coroutine_fn GRAPH_RDLOCK
qcow2_co_pwritev_compressed_task(BlockDriverState *bs,
uint64_t offset, uint64_t bytes,
QEMUIOVector *qiov, size_t qiov_offset)
{
BDRVQcow2State *s = bs->opaque;
int ret;
ssize_t out_len;
uint8_t *buf, *out_buf;
uint64_t cluster_offset;
assert(bytes == s->cluster_size || (bytes < s->cluster_size &&
(offset + bytes == bs->total_sectors << BDRV_SECTOR_BITS)));
buf = qemu_blockalign(bs, s->cluster_size);
if (bytes < s->cluster_size) {
/* Zero-pad last write if image size is not cluster aligned */
memset(buf + bytes, 0, s->cluster_size - bytes);
}
qemu_iovec_to_buf(qiov, qiov_offset, buf, bytes);
out_buf = g_malloc(s->cluster_size);
out_len = qcow2_co_compress(bs, out_buf, s->cluster_size - 1,
buf, s->cluster_size);
if (out_len == -ENOMEM) {
/* could not compress: write normal cluster */
ret = qcow2_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 0);
if (ret < 0) {
goto fail;
}
goto success;
} else if (out_len < 0) {
ret = -EINVAL;
goto fail;
}
qemu_co_mutex_lock(&s->lock);
ret = qcow2_alloc_compressed_cluster_offset(bs, offset, out_len,
&cluster_offset);
if (ret < 0) {
qemu_co_mutex_unlock(&s->lock);
goto fail;
}
ret = qcow2_pre_write_overlap_check(bs, 0, cluster_offset, out_len, true);
qemu_co_mutex_unlock(&s->lock);
if (ret < 0) {
goto fail;
}
BLKDBG_EVENT(s->data_file, BLKDBG_WRITE_COMPRESSED);
ret = bdrv_co_pwrite(s->data_file, cluster_offset, out_len, out_buf, 0);
if (ret < 0) {
goto fail;
}
success:
ret = 0;
fail:
qemu_vfree(buf);
g_free(out_buf);
return ret;
}
/*
* This function can count as GRAPH_RDLOCK because
* qcow2_co_pwritev_compressed_part() holds the graph lock and keeps it until
* this coroutine has terminated.
*/
static int coroutine_fn GRAPH_RDLOCK
qcow2_co_pwritev_compressed_task_entry(AioTask *task)
{
Qcow2AioTask *t = container_of(task, Qcow2AioTask, task);
assert(!t->subcluster_type && !t->l2meta);
return qcow2_co_pwritev_compressed_task(t->bs, t->offset, t->bytes, t->qiov,
t->qiov_offset);
}
/*
* XXX: put compressed sectors first, then all the cluster aligned
* tables to avoid losing bytes in alignment
*/
static int coroutine_fn GRAPH_RDLOCK
qcow2_co_pwritev_compressed_part(BlockDriverState *bs,
int64_t offset, int64_t bytes,
QEMUIOVector *qiov, size_t qiov_offset)
{
BDRVQcow2State *s = bs->opaque;
AioTaskPool *aio = NULL;
int ret = 0;
if (has_data_file(bs)) {
return -ENOTSUP;
}
if (bytes == 0) {
/*
* align end of file to a sector boundary to ease reading with
* sector based I/Os
*/
int64_t len = bdrv_co_getlength(bs->file->bs);
if (len < 0) {
return len;
}
return bdrv_co_truncate(bs->file, len, false, PREALLOC_MODE_OFF, 0,
NULL);
}
if (offset_into_cluster(s, offset)) {
return -EINVAL;
}
if (offset_into_cluster(s, bytes) &&
(offset + bytes) != (bs->total_sectors << BDRV_SECTOR_BITS)) {
return -EINVAL;
}
while (bytes && aio_task_pool_status(aio) == 0) {
uint64_t chunk_size = MIN(bytes, s->cluster_size);
if (!aio && chunk_size != bytes) {
aio = aio_task_pool_new(QCOW2_MAX_WORKERS);
}
ret = qcow2_add_task(bs, aio, qcow2_co_pwritev_compressed_task_entry,
0, 0, offset, chunk_size, qiov, qiov_offset, NULL);
if (ret < 0) {
break;
}
qiov_offset += chunk_size;
offset += chunk_size;
bytes -= chunk_size;
}
if (aio) {
aio_task_pool_wait_all(aio);
if (ret == 0) {
ret = aio_task_pool_status(aio);
}
g_free(aio);
}
return ret;
}
static int coroutine_fn GRAPH_RDLOCK
qcow2_co_preadv_compressed(BlockDriverState *bs,
uint64_t l2_entry,
uint64_t offset,
uint64_t bytes,
QEMUIOVector *qiov,
size_t qiov_offset)
{
BDRVQcow2State *s = bs->opaque;
int ret = 0, csize;
uint64_t coffset;
uint8_t *buf, *out_buf;
int offset_in_cluster = offset_into_cluster(s, offset);
qcow2_parse_compressed_l2_entry(bs, l2_entry, &coffset, &csize);
buf = g_try_malloc(csize);
if (!buf) {
return -ENOMEM;
}
out_buf = qemu_blockalign(bs, s->cluster_size);
BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
ret = bdrv_co_pread(bs->file, coffset, csize, buf, 0);
if (ret < 0) {
goto fail;
}
if (qcow2_co_decompress(bs, out_buf, s->cluster_size, buf, csize) < 0) {
ret = -EIO;
goto fail;
}
qemu_iovec_from_buf(qiov, qiov_offset, out_buf + offset_in_cluster, bytes);
fail:
qemu_vfree(out_buf);
g_free(buf);
return ret;
}
static int make_completely_empty(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
Error *local_err = NULL;
int ret, l1_clusters;
int64_t offset;
uint64_t *new_reftable = NULL;
uint64_t rt_entry, l1_size2;
struct {
uint64_t l1_offset;
uint64_t reftable_offset;
uint32_t reftable_clusters;
} QEMU_PACKED l1_ofs_rt_ofs_cls;
ret = qcow2_cache_empty(bs, s->l2_table_cache);
if (ret < 0) {
goto fail;
}
ret = qcow2_cache_empty(bs, s->refcount_block_cache);
if (ret < 0) {
goto fail;
}
/* Refcounts will be broken utterly */
ret = qcow2_mark_dirty(bs);
if (ret < 0) {
goto fail;
}
BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
l1_clusters = DIV_ROUND_UP(s->l1_size, s->cluster_size / L1E_SIZE);
l1_size2 = (uint64_t)s->l1_size * L1E_SIZE;
/* After this call, neither the in-memory nor the on-disk refcount
* information accurately describe the actual references */
ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset,
l1_clusters * s->cluster_size, 0);
if (ret < 0) {
goto fail_broken_refcounts;
}
memset(s->l1_table, 0, l1_size2);
BLKDBG_EVENT(bs->file, BLKDBG_EMPTY_IMAGE_PREPARE);
/* Overwrite enough clusters at the beginning of the sectors to place
* the refcount table, a refcount block and the L1 table in; this may
* overwrite parts of the existing refcount and L1 table, which is not
* an issue because the dirty flag is set, complete data loss is in fact
* desired and partial data loss is consequently fine as well */
ret = bdrv_pwrite_zeroes(bs->file, s->cluster_size,
(2 + l1_clusters) * s->cluster_size, 0);
/* This call (even if it failed overall) may have overwritten on-disk
* refcount structures; in that case, the in-memory refcount information
* will probably differ from the on-disk information which makes the BDS
* unusable */
if (ret < 0) {
goto fail_broken_refcounts;
}
BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_UPDATE);
/* "Create" an empty reftable (one cluster) directly after the image
* header and an empty L1 table three clusters after the image header;
* the cluster between those two will be used as the first refblock */
l1_ofs_rt_ofs_cls.l1_offset = cpu_to_be64(3 * s->cluster_size);
l1_ofs_rt_ofs_cls.reftable_offset = cpu_to_be64(s->cluster_size);
l1_ofs_rt_ofs_cls.reftable_clusters = cpu_to_be32(1);
ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_table_offset),
sizeof(l1_ofs_rt_ofs_cls), &l1_ofs_rt_ofs_cls, 0);
if (ret < 0) {
goto fail_broken_refcounts;
}
s->l1_table_offset = 3 * s->cluster_size;
new_reftable = g_try_new0(uint64_t, s->cluster_size / REFTABLE_ENTRY_SIZE);
if (!new_reftable) {
ret = -ENOMEM;
goto fail_broken_refcounts;
}
s->refcount_table_offset = s->cluster_size;
s->refcount_table_size = s->cluster_size / REFTABLE_ENTRY_SIZE;
s->max_refcount_table_index = 0;
g_free(s->refcount_table);
s->refcount_table = new_reftable;
new_reftable = NULL;
/* Now the in-memory refcount information again corresponds to the on-disk
* information (reftable is empty and no refblocks (the refblock cache is
* empty)); however, this means some clusters (e.g. the image header) are
* referenced, but not refcounted, but the normal qcow2 code assumes that
* the in-memory information is always correct */
BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
/* Enter the first refblock into the reftable */
rt_entry = cpu_to_be64(2 * s->cluster_size);
ret = bdrv_pwrite_sync(bs->file, s->cluster_size, sizeof(rt_entry),
&rt_entry, 0);
if (ret < 0) {
goto fail_broken_refcounts;
}
s->refcount_table[0] = 2 * s->cluster_size;
s->free_cluster_index = 0;
assert(3 + l1_clusters <= s->refcount_block_size);
offset = qcow2_alloc_clusters(bs, 3 * s->cluster_size + l1_size2);
if (offset < 0) {
ret = offset;
goto fail_broken_refcounts;
} else if (offset > 0) {
error_report("First cluster in emptied image is in use");
abort();
}
/* Now finally the in-memory information corresponds to the on-disk
* structures and is correct */
ret = qcow2_mark_clean(bs);
if (ret < 0) {
goto fail;
}
ret = bdrv_truncate(bs->file, (3 + l1_clusters) * s->cluster_size, false,
PREALLOC_MODE_OFF, 0, &local_err);
if (ret < 0) {
error_report_err(local_err);
goto fail;
}
return 0;
fail_broken_refcounts:
/* The BDS is unusable at this point. If we wanted to make it usable, we
* would have to call qcow2_refcount_close(), qcow2_refcount_init(),
* qcow2_check_refcounts(), qcow2_refcount_close() and qcow2_refcount_init()
* again. However, because the functions which could have caused this error
* path to be taken are used by those functions as well, it's very likely
* that that sequence will fail as well. Therefore, just eject the BDS. */
bs->drv = NULL;
fail:
g_free(new_reftable);
return ret;
}
static int qcow2_make_empty(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
uint64_t offset, end_offset;
int step = QEMU_ALIGN_DOWN(INT_MAX, s->cluster_size);
int l1_clusters, ret = 0;
l1_clusters = DIV_ROUND_UP(s->l1_size, s->cluster_size / L1E_SIZE);
if (s->qcow_version >= 3 && !s->snapshots && !s->nb_bitmaps &&
3 + l1_clusters <= s->refcount_block_size &&
s->crypt_method_header != QCOW_CRYPT_LUKS &&
!has_data_file(bs)) {
/* The following function only works for qcow2 v3 images (it
* requires the dirty flag) and only as long as there are no
* features that reserve extra clusters (such as snapshots,
* LUKS header, or persistent bitmaps), because it completely
* empties the image. Furthermore, the L1 table and three
* additional clusters (image header, refcount table, one
* refcount block) have to fit inside one refcount block. It
* only resets the image file, i.e. does not work with an
* external data file. */
return make_completely_empty(bs);
}
/* This fallback code simply discards every active cluster; this is slow,
* but works in all cases */
end_offset = bs->total_sectors * BDRV_SECTOR_SIZE;
for (offset = 0; offset < end_offset; offset += step) {
/* As this function is generally used after committing an external
* snapshot, QCOW2_DISCARD_SNAPSHOT seems appropriate. Also, the
* default action for this kind of discard is to pass the discard,
* which will ideally result in an actually smaller image file, as
* is probably desired. */
ret = qcow2_cluster_discard(bs, offset, MIN(step, end_offset - offset),
QCOW2_DISCARD_SNAPSHOT, true);
if (ret < 0) {
break;
}
}
return ret;
}
static coroutine_fn int qcow2_co_flush_to_os(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
int ret;
qemu_co_mutex_lock(&s->lock);
ret = qcow2_write_caches(bs);
qemu_co_mutex_unlock(&s->lock);
return ret;
}
static BlockMeasureInfo *qcow2_measure(QemuOpts *opts, BlockDriverState *in_bs,
Error **errp)
{
Error *local_err = NULL;
BlockMeasureInfo *info;
uint64_t required = 0; /* bytes that contribute to required size */
uint64_t virtual_size; /* disk size as seen by guest */
uint64_t refcount_bits;
uint64_t l2_tables;
uint64_t luks_payload_size = 0;
size_t cluster_size;
int version;
char *optstr;
PreallocMode prealloc;
bool has_backing_file;
bool has_luks;
bool extended_l2;
size_t l2e_size;
/* Parse image creation options */
extended_l2 = qemu_opt_get_bool_del(opts, BLOCK_OPT_EXTL2, false);
cluster_size = qcow2_opt_get_cluster_size_del(opts, extended_l2,
&local_err);
if (local_err) {
goto err;
}
version = qcow2_opt_get_version_del(opts, &local_err);
if (local_err) {
goto err;
}
refcount_bits = qcow2_opt_get_refcount_bits_del(opts, version, &local_err);
if (local_err) {
goto err;
}
optstr = qemu_opt_get_del(opts, BLOCK_OPT_PREALLOC);
prealloc = qapi_enum_parse(&PreallocMode_lookup, optstr,
PREALLOC_MODE_OFF, &local_err);
g_free(optstr);
if (local_err) {
goto err;
}
optstr = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE);
has_backing_file = !!optstr;
g_free(optstr);
optstr = qemu_opt_get_del(opts, BLOCK_OPT_ENCRYPT_FORMAT);
has_luks = optstr && strcmp(optstr, "luks") == 0;
g_free(optstr);
if (has_luks) {
g_autoptr(QCryptoBlockCreateOptions) create_opts = NULL;
QDict *cryptoopts = qcow2_extract_crypto_opts(opts, "luks", errp);
size_t headerlen;
create_opts = block_crypto_create_opts_init(cryptoopts, errp);
qobject_unref(cryptoopts);
if (!create_opts) {
goto err;
}
if (!qcrypto_block_calculate_payload_offset(create_opts,
"encrypt.",
&headerlen,
&local_err)) {
goto err;
}
luks_payload_size = ROUND_UP(headerlen, cluster_size);
}
virtual_size = qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0);
virtual_size = ROUND_UP(virtual_size, cluster_size);
/* Check that virtual disk size is valid */
l2e_size = extended_l2 ? L2E_SIZE_EXTENDED : L2E_SIZE_NORMAL;
l2_tables = DIV_ROUND_UP(virtual_size / cluster_size,
cluster_size / l2e_size);
if (l2_tables * L1E_SIZE > QCOW_MAX_L1_SIZE) {
error_setg(&local_err, "The image size is too large "
"(try using a larger cluster size)");
goto err;
}
/* Account for input image */
if (in_bs) {
int64_t ssize = bdrv_getlength(in_bs);
if (ssize < 0) {
error_setg_errno(&local_err, -ssize,
"Unable to get image virtual_size");
goto err;
}
virtual_size = ROUND_UP(ssize, cluster_size);
if (has_backing_file) {
/* We don't how much of the backing chain is shared by the input
* image and the new image file. In the worst case the new image's
* backing file has nothing in common with the input image. Be
* conservative and assume all clusters need to be written.
*/
required = virtual_size;
} else {
int64_t offset;
int64_t pnum = 0;
for (offset = 0; offset < ssize; offset += pnum) {
int ret;
ret = bdrv_block_status_above(in_bs, NULL, offset,
ssize - offset, &pnum, NULL,
NULL);
if (ret < 0) {
error_setg_errno(&local_err, -ret,
"Unable to get block status");
goto err;
}
if (ret & BDRV_BLOCK_ZERO) {
/* Skip zero regions (safe with no backing file) */
} else if ((ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED)) ==
(BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED)) {
/* Extend pnum to end of cluster for next iteration */
pnum = ROUND_UP(offset + pnum, cluster_size) - offset;
/* Count clusters we've seen */
required += offset % cluster_size + pnum;
}
}
}
}
/* Take into account preallocation. Nothing special is needed for
* PREALLOC_MODE_METADATA since metadata is always counted.
*/
if (prealloc == PREALLOC_MODE_FULL || prealloc == PREALLOC_MODE_FALLOC) {
required = virtual_size;
}
info = g_new0(BlockMeasureInfo, 1);
info->fully_allocated = luks_payload_size +
qcow2_calc_prealloc_size(virtual_size, cluster_size,
ctz32(refcount_bits), extended_l2);
/*
* Remove data clusters that are not required. This overestimates the
* required size because metadata needed for the fully allocated file is
* still counted. Show bitmaps only if both source and destination
* would support them.
*/
info->required = info->fully_allocated - virtual_size + required;
info->has_bitmaps = version >= 3 && in_bs &&
bdrv_supports_persistent_dirty_bitmap(in_bs);
if (info->has_bitmaps) {
info->bitmaps = qcow2_get_persistent_dirty_bitmap_size(in_bs,
cluster_size);
}
return info;
err:
error_propagate(errp, local_err);
return NULL;
}
static int coroutine_fn
qcow2_co_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
{
BDRVQcow2State *s = bs->opaque;
bdi->cluster_size = s->cluster_size;
bdi->vm_state_offset = qcow2_vm_state_offset(s);
bdi->is_dirty = s->incompatible_features & QCOW2_INCOMPAT_DIRTY;
return 0;
}
static ImageInfoSpecific *qcow2_get_specific_info(BlockDriverState *bs,
Error **errp)
{
BDRVQcow2State *s = bs->opaque;
ImageInfoSpecific *spec_info;
QCryptoBlockInfo *encrypt_info = NULL;
if (s->crypto != NULL) {
encrypt_info = qcrypto_block_get_info(s->crypto, errp);
if (!encrypt_info) {
return NULL;
}
}
spec_info = g_new(ImageInfoSpecific, 1);
*spec_info = (ImageInfoSpecific){
.type = IMAGE_INFO_SPECIFIC_KIND_QCOW2,
.u.qcow2.data = g_new0(ImageInfoSpecificQCow2, 1),
};
if (s->qcow_version == 2) {
*spec_info->u.qcow2.data = (ImageInfoSpecificQCow2){
.compat = g_strdup("0.10"),
.refcount_bits = s->refcount_bits,
};
} else if (s->qcow_version == 3) {
Qcow2BitmapInfoList *bitmaps;
if (!qcow2_get_bitmap_info_list(bs, &bitmaps, errp)) {
qapi_free_ImageInfoSpecific(spec_info);
qapi_free_QCryptoBlockInfo(encrypt_info);
return NULL;
}
*spec_info->u.qcow2.data = (ImageInfoSpecificQCow2){
.compat = g_strdup("1.1"),
.lazy_refcounts = s->compatible_features &
QCOW2_COMPAT_LAZY_REFCOUNTS,
.has_lazy_refcounts = true,
.corrupt = s->incompatible_features &
QCOW2_INCOMPAT_CORRUPT,
.has_corrupt = true,
.has_extended_l2 = true,
.extended_l2 = has_subclusters(s),
.refcount_bits = s->refcount_bits,
.has_bitmaps = !!bitmaps,
.bitmaps = bitmaps,
.data_file = g_strdup(s->image_data_file),
.has_data_file_raw = has_data_file(bs),
.data_file_raw = data_file_is_raw(bs),
.compression_type = s->compression_type,
};
} else {
/* if this assertion fails, this probably means a new version was
* added without having it covered here */
assert(false);
}
if (encrypt_info) {
ImageInfoSpecificQCow2Encryption *qencrypt =
g_new(ImageInfoSpecificQCow2Encryption, 1);
switch (encrypt_info->format) {
case Q_CRYPTO_BLOCK_FORMAT_QCOW:
qencrypt->format = BLOCKDEV_QCOW2_ENCRYPTION_FORMAT_AES;
break;
case Q_CRYPTO_BLOCK_FORMAT_LUKS:
qencrypt->format = BLOCKDEV_QCOW2_ENCRYPTION_FORMAT_LUKS;
qencrypt->u.luks = encrypt_info->u.luks;
break;
default:
abort();
}
/* Since we did shallow copy above, erase any pointers
* in the original info */
memset(&encrypt_info->u, 0, sizeof(encrypt_info->u));
qapi_free_QCryptoBlockInfo(encrypt_info);
spec_info->u.qcow2.data->encrypt = qencrypt;
}
return spec_info;
}
static int qcow2_has_zero_init(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
bool preallocated;
if (qemu_in_coroutine()) {
qemu_co_mutex_lock(&s->lock);
}
/*
* Check preallocation status: Preallocated images have all L2
* tables allocated, nonpreallocated images have none. It is
* therefore enough to check the first one.
*/
preallocated = s->l1_size > 0 && s->l1_table[0] != 0;
if (qemu_in_coroutine()) {
qemu_co_mutex_unlock(&s->lock);
}
if (!preallocated) {
return 1;
} else if (bs->encrypted) {
return 0;
} else {
return bdrv_has_zero_init(s->data_file->bs);
}
}
/*
* Check the request to vmstate. On success return
* qcow2_vm_state_offset(bs) + @pos
*/
static int64_t qcow2_check_vmstate_request(BlockDriverState *bs,
QEMUIOVector *qiov, int64_t pos)
{
BDRVQcow2State *s = bs->opaque;
int64_t vmstate_offset = qcow2_vm_state_offset(s);
int ret;
/* Incoming requests must be OK */
bdrv_check_qiov_request(pos, qiov->size, qiov, 0, &error_abort);
if (INT64_MAX - pos < vmstate_offset) {
return -EIO;
}
pos += vmstate_offset;
ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
if (ret < 0) {
return ret;
}
return pos;
}
static int coroutine_fn GRAPH_RDLOCK
qcow2_co_save_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
{
int64_t offset = qcow2_check_vmstate_request(bs, qiov, pos);
if (offset < 0) {
return offset;
}
BLKDBG_EVENT(bs->file, BLKDBG_VMSTATE_SAVE);
return bs->drv->bdrv_co_pwritev_part(bs, offset, qiov->size, qiov, 0, 0);
}
static int coroutine_fn GRAPH_RDLOCK
qcow2_co_load_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
{
int64_t offset = qcow2_check_vmstate_request(bs, qiov, pos);
if (offset < 0) {
return offset;
}
BLKDBG_EVENT(bs->file, BLKDBG_VMSTATE_LOAD);
return bs->drv->bdrv_co_preadv_part(bs, offset, qiov->size, qiov, 0, 0);
}
static int qcow2_has_compressed_clusters(BlockDriverState *bs)
{
int64_t offset = 0;
int64_t bytes = bdrv_getlength(bs);
if (bytes < 0) {
return bytes;
}
while (bytes != 0) {
int ret;
QCow2SubclusterType type;
unsigned int cur_bytes = MIN(INT_MAX, bytes);
uint64_t host_offset;
ret = qcow2_get_host_offset(bs, offset, &cur_bytes, &host_offset,
&type);
if (ret < 0) {
return ret;
}
if (type == QCOW2_SUBCLUSTER_COMPRESSED) {
return 1;
}
offset += cur_bytes;
bytes -= cur_bytes;
}
return 0;
}
/*
* Downgrades an image's version. To achieve this, any incompatible features
* have to be removed.
*/
static int qcow2_downgrade(BlockDriverState *bs, int target_version,
BlockDriverAmendStatusCB *status_cb, void *cb_opaque,
Error **errp)
{
BDRVQcow2State *s = bs->opaque;
int current_version = s->qcow_version;
int ret;
int i;
/* This is qcow2_downgrade(), not qcow2_upgrade() */
assert(target_version < current_version);
/* There are no other versions (now) that you can downgrade to */
assert(target_version == 2);
if (s->refcount_order != 4) {
error_setg(errp, "compat=0.10 requires refcount_bits=16");
return -ENOTSUP;
}
if (has_data_file(bs)) {
error_setg(errp, "Cannot downgrade an image with a data file");
return -ENOTSUP;
}
/*
* If any internal snapshot has a different size than the current
* image size, or VM state size that exceeds 32 bits, downgrading
* is unsafe. Even though we would still use v3-compliant output
* to preserve that data, other v2 programs might not realize
* those optional fields are important.
*/
for (i = 0; i < s->nb_snapshots; i++) {
if (s->snapshots[i].vm_state_size > UINT32_MAX ||
s->snapshots[i].disk_size != bs->total_sectors * BDRV_SECTOR_SIZE) {
error_setg(errp, "Internal snapshots prevent downgrade of image");
return -ENOTSUP;
}
}
/* clear incompatible features */
if (s->incompatible_features & QCOW2_INCOMPAT_DIRTY) {
ret = qcow2_mark_clean(bs);
if (ret < 0) {
error_setg_errno(errp, -ret, "Failed to make the image clean");
return ret;
}
}
/* with QCOW2_INCOMPAT_CORRUPT, it is pretty much impossible to get here in
* the first place; if that happens nonetheless, returning -ENOTSUP is the
* best thing to do anyway */
if (s->incompatible_features & ~QCOW2_INCOMPAT_COMPRESSION) {
error_setg(errp, "Cannot downgrade an image with incompatible features "
"0x%" PRIx64 " set",
s->incompatible_features & ~QCOW2_INCOMPAT_COMPRESSION);
return -ENOTSUP;
}
/* since we can ignore compatible features, we can set them to 0 as well */
s->compatible_features = 0;
/* if lazy refcounts have been used, they have already been fixed through
* clearing the dirty flag */
/* clearing autoclear features is trivial */
s->autoclear_features = 0;
ret = qcow2_expand_zero_clusters(bs, status_cb, cb_opaque);
if (ret < 0) {
error_setg_errno(errp, -ret, "Failed to turn zero into data clusters");
return ret;
}
if (s->incompatible_features & QCOW2_INCOMPAT_COMPRESSION) {
ret = qcow2_has_compressed_clusters(bs);
if (ret < 0) {
error_setg(errp, "Failed to check block status");
return -EINVAL;
}
if (ret) {
error_setg(errp, "Cannot downgrade an image with zstd compression "
"type and existing compressed clusters");
return -ENOTSUP;
}
/*
* No compressed clusters for now, so just chose default zlib
* compression.
*/
s->incompatible_features &= ~QCOW2_INCOMPAT_COMPRESSION;
s->compression_type = QCOW2_COMPRESSION_TYPE_ZLIB;
}
assert(s->incompatible_features == 0);
s->qcow_version = target_version;
ret = qcow2_update_header(bs);
if (ret < 0) {
s->qcow_version = current_version;
error_setg_errno(errp, -ret, "Failed to update the image header");
return ret;
}
return 0;
}
/*
* Upgrades an image's version. While newer versions encompass all
* features of older versions, some things may have to be presented
* differently.
*/
static int qcow2_upgrade(BlockDriverState *bs, int target_version,
BlockDriverAmendStatusCB *status_cb, void *cb_opaque,
Error **errp)
{
BDRVQcow2State *s = bs->opaque;
bool need_snapshot_update;
int current_version = s->qcow_version;
int i;
int ret;
/* This is qcow2_upgrade(), not qcow2_downgrade() */
assert(target_version > current_version);
/* There are no other versions (yet) that you can upgrade to */
assert(target_version == 3);
status_cb(bs, 0, 2, cb_opaque);
/*
* In v2, snapshots do not need to have extra data. v3 requires
* the 64-bit VM state size and the virtual disk size to be
* present.
* qcow2_write_snapshots() will always write the list in the
* v3-compliant format.
*/
need_snapshot_update = false;
for (i = 0; i < s->nb_snapshots; i++) {
if (s->snapshots[i].extra_data_size <
sizeof_field(QCowSnapshotExtraData, vm_state_size_large) +
sizeof_field(QCowSnapshotExtraData, disk_size))
{
need_snapshot_update = true;
break;
}
}
if (need_snapshot_update) {
ret = qcow2_write_snapshots(bs);
if (ret < 0) {
error_setg_errno(errp, -ret, "Failed to update the snapshot table");
return ret;
}
}
status_cb(bs, 1, 2, cb_opaque);
s->qcow_version = target_version;
ret = qcow2_update_header(bs);
if (ret < 0) {
s->qcow_version = current_version;
error_setg_errno(errp, -ret, "Failed to update the image header");
return ret;
}
status_cb(bs, 2, 2, cb_opaque);
return 0;
}
typedef enum Qcow2AmendOperation {
/* This is the value Qcow2AmendHelperCBInfo::last_operation will be
* statically initialized to so that the helper CB can discern the first
* invocation from an operation change */
QCOW2_NO_OPERATION = 0,
QCOW2_UPGRADING,
QCOW2_UPDATING_ENCRYPTION,
QCOW2_CHANGING_REFCOUNT_ORDER,
QCOW2_DOWNGRADING,
} Qcow2AmendOperation;
typedef struct Qcow2AmendHelperCBInfo {
/* The code coordinating the amend operations should only modify
* these four fields; the rest will be managed by the CB */
BlockDriverAmendStatusCB *original_status_cb;
void *original_cb_opaque;
Qcow2AmendOperation current_operation;
/* Total number of operations to perform (only set once) */
int total_operations;
/* The following fields are managed by the CB */
/* Number of operations completed */
int operations_completed;
/* Cumulative offset of all completed operations */
int64_t offset_completed;
Qcow2AmendOperation last_operation;
int64_t last_work_size;
} Qcow2AmendHelperCBInfo;
static void qcow2_amend_helper_cb(BlockDriverState *bs,
int64_t operation_offset,
int64_t operation_work_size, void *opaque)
{
Qcow2AmendHelperCBInfo *info = opaque;
int64_t current_work_size;
int64_t projected_work_size;
if (info->current_operation != info->last_operation) {
if (info->last_operation != QCOW2_NO_OPERATION) {
info->offset_completed += info->last_work_size;
info->operations_completed++;
}
info->last_operation = info->current_operation;
}
assert(info->total_operations > 0);
assert(info->operations_completed < info->total_operations);
info->last_work_size = operation_work_size;
current_work_size = info->offset_completed + operation_work_size;
/* current_work_size is the total work size for (operations_completed + 1)
* operations (which includes this one), so multiply it by the number of
* operations not covered and divide it by the number of operations
* covered to get a projection for the operations not covered */
projected_work_size = current_work_size * (info->total_operations -
info->operations_completed - 1)
/ (info->operations_completed + 1);
info->original_status_cb(bs, info->offset_completed + operation_offset,
current_work_size + projected_work_size,
info->original_cb_opaque);
}
static int qcow2_amend_options(BlockDriverState *bs, QemuOpts *opts,
BlockDriverAmendStatusCB *status_cb,
void *cb_opaque,
bool force,
Error **errp)
{
BDRVQcow2State *s = bs->opaque;
int old_version = s->qcow_version, new_version = old_version;
uint64_t new_size = 0;
const char *backing_file = NULL, *backing_format = NULL, *data_file = NULL;
bool lazy_refcounts = s->use_lazy_refcounts;
bool data_file_raw = data_file_is_raw(bs);
const char *compat = NULL;
int refcount_bits = s->refcount_bits;
int ret;
QemuOptDesc *desc = opts->list->desc;
Qcow2AmendHelperCBInfo helper_cb_info;
bool encryption_update = false;
while (desc && desc->name) {
if (!qemu_opt_find(opts, desc->name)) {
/* only change explicitly defined options */
desc++;
continue;
}
if (!strcmp(desc->name, BLOCK_OPT_COMPAT_LEVEL)) {
compat = qemu_opt_get(opts, BLOCK_OPT_COMPAT_LEVEL);
if (!compat) {
/* preserve default */
} else if (!strcmp(compat, "0.10") || !strcmp(compat, "v2")) {
new_version = 2;
} else if (!strcmp(compat, "1.1") || !strcmp(compat, "v3")) {
new_version = 3;
} else {
error_setg(errp, "Unknown compatibility level %s", compat);
return -EINVAL;
}
} else if (!strcmp(desc->name, BLOCK_OPT_SIZE)) {
new_size = qemu_opt_get_size(opts, BLOCK_OPT_SIZE, 0);
} else if (!strcmp(desc->name, BLOCK_OPT_BACKING_FILE)) {
backing_file = qemu_opt_get(opts, BLOCK_OPT_BACKING_FILE);
} else if (!strcmp(desc->name, BLOCK_OPT_BACKING_FMT)) {
backing_format = qemu_opt_get(opts, BLOCK_OPT_BACKING_FMT);
} else if (g_str_has_prefix(desc->name, "encrypt.")) {
if (!s->crypto) {
error_setg(errp,
"Can't amend encryption options - encryption not present");
return -EINVAL;
}
if (s->crypt_method_header != QCOW_CRYPT_LUKS) {
error_setg(errp,
"Only LUKS encryption options can be amended");
return -ENOTSUP;
}
encryption_update = true;
} else if (!strcmp(desc->name, BLOCK_OPT_LAZY_REFCOUNTS)) {
lazy_refcounts = qemu_opt_get_bool(opts, BLOCK_OPT_LAZY_REFCOUNTS,
lazy_refcounts);
} else if (!strcmp(desc->name, BLOCK_OPT_REFCOUNT_BITS)) {
refcount_bits = qemu_opt_get_number(opts, BLOCK_OPT_REFCOUNT_BITS,
refcount_bits);
if (refcount_bits <= 0 || refcount_bits > 64 ||
!is_power_of_2(refcount_bits))
{
error_setg(errp, "Refcount width must be a power of two and "
"may not exceed 64 bits");
return -EINVAL;
}
} else if (!strcmp(desc->name, BLOCK_OPT_DATA_FILE)) {
data_file = qemu_opt_get(opts, BLOCK_OPT_DATA_FILE);
if (data_file && !has_data_file(bs)) {
error_setg(errp, "data-file can only be set for images that "
"use an external data file");
return -EINVAL;
}
} else if (!strcmp(desc->name, BLOCK_OPT_DATA_FILE_RAW)) {
data_file_raw = qemu_opt_get_bool(opts, BLOCK_OPT_DATA_FILE_RAW,
data_file_raw);
if (data_file_raw && !data_file_is_raw(bs)) {
error_setg(errp, "data-file-raw cannot be set on existing "
"images");
return -EINVAL;
}
} else {
/* if this point is reached, this probably means a new option was
* added without having it covered here */
abort();
}
desc++;
}
helper_cb_info = (Qcow2AmendHelperCBInfo){
.original_status_cb = status_cb,
.original_cb_opaque = cb_opaque,
.total_operations = (new_version != old_version)
+ (s->refcount_bits != refcount_bits) +
(encryption_update == true)
};
/* Upgrade first (some features may require compat=1.1) */
if (new_version > old_version) {
helper_cb_info.current_operation = QCOW2_UPGRADING;
ret = qcow2_upgrade(bs, new_version, &qcow2_amend_helper_cb,
&helper_cb_info, errp);
if (ret < 0) {
return ret;
}
}
if (encryption_update) {
QDict *amend_opts_dict;
QCryptoBlockAmendOptions *amend_opts;
helper_cb_info.current_operation = QCOW2_UPDATING_ENCRYPTION;
amend_opts_dict = qcow2_extract_crypto_opts(opts, "luks", errp);
if (!amend_opts_dict) {
return -EINVAL;
}
amend_opts = block_crypto_amend_opts_init(amend_opts_dict, errp);
qobject_unref(amend_opts_dict);
if (!amend_opts) {
return -EINVAL;
}
ret = qcrypto_block_amend_options(s->crypto,
qcow2_crypto_hdr_read_func,
qcow2_crypto_hdr_write_func,
bs,
amend_opts,
force,
errp);
qapi_free_QCryptoBlockAmendOptions(amend_opts);
if (ret < 0) {
return ret;
}
}
if (s->refcount_bits != refcount_bits) {
int refcount_order = ctz32(refcount_bits);
if (new_version < 3 && refcount_bits != 16) {
error_setg(errp, "Refcount widths other than 16 bits require "
"compatibility level 1.1 or above (use compat=1.1 or "
"greater)");
return -EINVAL;
}
helper_cb_info.current_operation = QCOW2_CHANGING_REFCOUNT_ORDER;
ret = qcow2_change_refcount_order(bs, refcount_order,
&qcow2_amend_helper_cb,
&helper_cb_info, errp);
if (ret < 0) {
return ret;
}
}
/* data-file-raw blocks backing files, so clear it first if requested */
if (data_file_raw) {
s->autoclear_features |= QCOW2_AUTOCLEAR_DATA_FILE_RAW;
} else {
s->autoclear_features &= ~QCOW2_AUTOCLEAR_DATA_FILE_RAW;
}
if (data_file) {
g_free(s->image_data_file);
s->image_data_file = *data_file ? g_strdup(data_file) : NULL;
}
ret = qcow2_update_header(bs);
if (ret < 0) {
error_setg_errno(errp, -ret, "Failed to update the image header");
return ret;
}
if (backing_file || backing_format) {
if (g_strcmp0(backing_file, s->image_backing_file) ||
g_strcmp0(backing_format, s->image_backing_format)) {
error_setg(errp, "Cannot amend the backing file");
error_append_hint(errp,
"You can use 'qemu-img rebase' instead.\n");
return -EINVAL;
}
}
if (s->use_lazy_refcounts != lazy_refcounts) {
if (lazy_refcounts) {
if (new_version < 3) {
error_setg(errp, "Lazy refcounts only supported with "
"compatibility level 1.1 and above (use compat=1.1 "
"or greater)");
return -EINVAL;
}
s->compatible_features |= QCOW2_COMPAT_LAZY_REFCOUNTS;
ret = qcow2_update_header(bs);
if (ret < 0) {
s->compatible_features &= ~QCOW2_COMPAT_LAZY_REFCOUNTS;
error_setg_errno(errp, -ret, "Failed to update the image header");
return ret;
}
s->use_lazy_refcounts = true;
} else {
/* make image clean first */
ret = qcow2_mark_clean(bs);
if (ret < 0) {
error_setg_errno(errp, -ret, "Failed to make the image clean");
return ret;
}
/* now disallow lazy refcounts */
s->compatible_features &= ~QCOW2_COMPAT_LAZY_REFCOUNTS;
ret = qcow2_update_header(bs);
if (ret < 0) {
s->compatible_features |= QCOW2_COMPAT_LAZY_REFCOUNTS;
error_setg_errno(errp, -ret, "Failed to update the image header");
return ret;
}
s->use_lazy_refcounts = false;
}
}
if (new_size) {
BlockBackend *blk = blk_new_with_bs(bs, BLK_PERM_RESIZE, BLK_PERM_ALL,
errp);
if (!blk) {
return -EPERM;
}
/*
* Amending image options should ensure that the image has
* exactly the given new values, so pass exact=true here.
*/
ret = blk_truncate(blk, new_size, true, PREALLOC_MODE_OFF, 0, errp);
blk_unref(blk);
if (ret < 0) {
return ret;
}
}
/* Downgrade last (so unsupported features can be removed before) */
if (new_version < old_version) {
helper_cb_info.current_operation = QCOW2_DOWNGRADING;
ret = qcow2_downgrade(bs, new_version, &qcow2_amend_helper_cb,
&helper_cb_info, errp);
if (ret < 0) {
return ret;
}
}
return 0;
}
static int coroutine_fn qcow2_co_amend(BlockDriverState *bs,
BlockdevAmendOptions *opts,
bool force,
Error **errp)
{
BlockdevAmendOptionsQcow2 *qopts = &opts->u.qcow2;
BDRVQcow2State *s = bs->opaque;
int ret = 0;
if (qopts->encrypt) {
if (!s->crypto) {
error_setg(errp, "image is not encrypted, can't amend");
return -EOPNOTSUPP;
}
if (qopts->encrypt->format != Q_CRYPTO_BLOCK_FORMAT_LUKS) {
error_setg(errp,
"Amend can't be used to change the qcow2 encryption format");
return -EOPNOTSUPP;
}
if (s->crypt_method_header != QCOW_CRYPT_LUKS) {
error_setg(errp,
"Only LUKS encryption options can be amended for qcow2 with blockdev-amend");
return -EOPNOTSUPP;
}
ret = qcrypto_block_amend_options(s->crypto,
qcow2_crypto_hdr_read_func,
qcow2_crypto_hdr_write_func,
bs,
qopts->encrypt,
force,
errp);
}
return ret;
}
/*
* If offset or size are negative, respectively, they will not be included in
* the BLOCK_IMAGE_CORRUPTED event emitted.
* fatal will be ignored for read-only BDS; corruptions found there will always
* be considered non-fatal.
*/
void qcow2_signal_corruption(BlockDriverState *bs, bool fatal, int64_t offset,
int64_t size, const char *message_format, ...)
{
BDRVQcow2State *s = bs->opaque;
const char *node_name;
char *message;
va_list ap;
fatal = fatal && bdrv_is_writable(bs);
if (s->signaled_corruption &&
(!fatal || (s->incompatible_features & QCOW2_INCOMPAT_CORRUPT)))
{
return;
}
va_start(ap, message_format);
message = g_strdup_vprintf(message_format, ap);
va_end(ap);
if (fatal) {
fprintf(stderr, "qcow2: Marking image as corrupt: %s; further "
"corruption events will be suppressed\n", message);
} else {
fprintf(stderr, "qcow2: Image is corrupt: %s; further non-fatal "
"corruption events will be suppressed\n", message);
}
node_name = bdrv_get_node_name(bs);
qapi_event_send_block_image_corrupted(bdrv_get_device_name(bs),
*node_name ? node_name : NULL,
message, offset >= 0, offset,
size >= 0, size,
fatal);
g_free(message);
if (fatal) {
qcow2_mark_corrupt(bs);
bs->drv = NULL; /* make BDS unusable */
}
s->signaled_corruption = true;
}
#define QCOW_COMMON_OPTIONS \
{ \
.name = BLOCK_OPT_SIZE, \
.type = QEMU_OPT_SIZE, \
.help = "Virtual disk size" \
}, \
{ \
.name = BLOCK_OPT_COMPAT_LEVEL, \
.type = QEMU_OPT_STRING, \
.help = "Compatibility level (v2 [0.10] or v3 [1.1])" \
}, \
{ \
.name = BLOCK_OPT_BACKING_FILE, \
.type = QEMU_OPT_STRING, \
.help = "File name of a base image" \
}, \
{ \
.name = BLOCK_OPT_BACKING_FMT, \
.type = QEMU_OPT_STRING, \
.help = "Image format of the base image" \
}, \
{ \
.name = BLOCK_OPT_DATA_FILE, \
.type = QEMU_OPT_STRING, \
.help = "File name of an external data file" \
}, \
{ \
.name = BLOCK_OPT_DATA_FILE_RAW, \
.type = QEMU_OPT_BOOL, \
.help = "The external data file must stay valid " \
"as a raw image" \
}, \
{ \
.name = BLOCK_OPT_LAZY_REFCOUNTS, \
.type = QEMU_OPT_BOOL, \
.help = "Postpone refcount updates", \
.def_value_str = "off" \
}, \
{ \
.name = BLOCK_OPT_REFCOUNT_BITS, \
.type = QEMU_OPT_NUMBER, \
.help = "Width of a reference count entry in bits", \
.def_value_str = "16" \
}
static QemuOptsList qcow2_create_opts = {
.name = "qcow2-create-opts",
.head = QTAILQ_HEAD_INITIALIZER(qcow2_create_opts.head),
.desc = {
{ \
.name = BLOCK_OPT_ENCRYPT, \
.type = QEMU_OPT_BOOL, \
.help = "Encrypt the image with format 'aes'. (Deprecated " \
"in favor of " BLOCK_OPT_ENCRYPT_FORMAT "=aes)", \
}, \
{ \
.name = BLOCK_OPT_ENCRYPT_FORMAT, \
.type = QEMU_OPT_STRING, \
.help = "Encrypt the image, format choices: 'aes', 'luks'", \
}, \
BLOCK_CRYPTO_OPT_DEF_KEY_SECRET("encrypt.", \
"ID of secret providing qcow AES key or LUKS passphrase"), \
BLOCK_CRYPTO_OPT_DEF_LUKS_CIPHER_ALG("encrypt."), \
BLOCK_CRYPTO_OPT_DEF_LUKS_CIPHER_MODE("encrypt."), \
BLOCK_CRYPTO_OPT_DEF_LUKS_IVGEN_ALG("encrypt."), \
BLOCK_CRYPTO_OPT_DEF_LUKS_IVGEN_HASH_ALG("encrypt."), \
BLOCK_CRYPTO_OPT_DEF_LUKS_HASH_ALG("encrypt."), \
BLOCK_CRYPTO_OPT_DEF_LUKS_ITER_TIME("encrypt."), \
{ \
.name = BLOCK_OPT_CLUSTER_SIZE, \
.type = QEMU_OPT_SIZE, \
.help = "qcow2 cluster size", \
.def_value_str = stringify(DEFAULT_CLUSTER_SIZE) \
}, \
{ \
.name = BLOCK_OPT_EXTL2, \
.type = QEMU_OPT_BOOL, \
.help = "Extended L2 tables", \
.def_value_str = "off" \
}, \
{ \
.name = BLOCK_OPT_PREALLOC, \
.type = QEMU_OPT_STRING, \
.help = "Preallocation mode (allowed values: off, " \
"metadata, falloc, full)" \
}, \
{ \
.name = BLOCK_OPT_COMPRESSION_TYPE, \
.type = QEMU_OPT_STRING, \
.help = "Compression method used for image cluster " \
"compression", \
.def_value_str = "zlib" \
},
QCOW_COMMON_OPTIONS,
{ /* end of list */ }
}
};
static QemuOptsList qcow2_amend_opts = {
.name = "qcow2-amend-opts",
.head = QTAILQ_HEAD_INITIALIZER(qcow2_amend_opts.head),
.desc = {
BLOCK_CRYPTO_OPT_DEF_LUKS_STATE("encrypt."),
BLOCK_CRYPTO_OPT_DEF_LUKS_KEYSLOT("encrypt."),
BLOCK_CRYPTO_OPT_DEF_LUKS_OLD_SECRET("encrypt."),
BLOCK_CRYPTO_OPT_DEF_LUKS_NEW_SECRET("encrypt."),
BLOCK_CRYPTO_OPT_DEF_LUKS_ITER_TIME("encrypt."),
QCOW_COMMON_OPTIONS,
{ /* end of list */ }
}
};
static const char *const qcow2_strong_runtime_opts[] = {
"encrypt." BLOCK_CRYPTO_OPT_QCOW_KEY_SECRET,
NULL
};
BlockDriver bdrv_qcow2 = {
.format_name = "qcow2",
.instance_size = sizeof(BDRVQcow2State),
.bdrv_probe = qcow2_probe,
.bdrv_open = qcow2_open,
.bdrv_close = qcow2_close,
.bdrv_reopen_prepare = qcow2_reopen_prepare,
.bdrv_reopen_commit = qcow2_reopen_commit,
.bdrv_reopen_commit_post = qcow2_reopen_commit_post,
.bdrv_reopen_abort = qcow2_reopen_abort,
.bdrv_join_options = qcow2_join_options,
.bdrv_child_perm = bdrv_default_perms,
.bdrv_co_create_opts = qcow2_co_create_opts,
.bdrv_co_create = qcow2_co_create,
.bdrv_has_zero_init = qcow2_has_zero_init,
.bdrv_co_block_status = qcow2_co_block_status,
.bdrv_co_preadv_part = qcow2_co_preadv_part,
.bdrv_co_pwritev_part = qcow2_co_pwritev_part,
.bdrv_co_flush_to_os = qcow2_co_flush_to_os,
.bdrv_co_pwrite_zeroes = qcow2_co_pwrite_zeroes,
.bdrv_co_pdiscard = qcow2_co_pdiscard,
.bdrv_co_copy_range_from = qcow2_co_copy_range_from,
.bdrv_co_copy_range_to = qcow2_co_copy_range_to,
.bdrv_co_truncate = qcow2_co_truncate,
.bdrv_co_pwritev_compressed_part = qcow2_co_pwritev_compressed_part,
.bdrv_make_empty = qcow2_make_empty,
.bdrv_snapshot_create = qcow2_snapshot_create,
.bdrv_snapshot_goto = qcow2_snapshot_goto,
.bdrv_snapshot_delete = qcow2_snapshot_delete,
.bdrv_snapshot_list = qcow2_snapshot_list,
.bdrv_snapshot_load_tmp = qcow2_snapshot_load_tmp,
.bdrv_measure = qcow2_measure,
.bdrv_co_get_info = qcow2_co_get_info,
.bdrv_get_specific_info = qcow2_get_specific_info,
.bdrv_co_save_vmstate = qcow2_co_save_vmstate,
.bdrv_co_load_vmstate = qcow2_co_load_vmstate,
.is_format = true,
.supports_backing = true,
.bdrv_change_backing_file = qcow2_change_backing_file,
.bdrv_refresh_limits = qcow2_refresh_limits,
.bdrv_co_invalidate_cache = qcow2_co_invalidate_cache,
.bdrv_inactivate = qcow2_inactivate,
.create_opts = &qcow2_create_opts,
.amend_opts = &qcow2_amend_opts,
.strong_runtime_opts = qcow2_strong_runtime_opts,
.mutable_opts = mutable_opts,
.bdrv_co_check = qcow2_co_check,
.bdrv_amend_options = qcow2_amend_options,
.bdrv_co_amend = qcow2_co_amend,
.bdrv_detach_aio_context = qcow2_detach_aio_context,
.bdrv_attach_aio_context = qcow2_attach_aio_context,
.bdrv_supports_persistent_dirty_bitmap =
qcow2_supports_persistent_dirty_bitmap,
.bdrv_co_can_store_new_dirty_bitmap = qcow2_co_can_store_new_dirty_bitmap,
.bdrv_co_remove_persistent_dirty_bitmap =
qcow2_co_remove_persistent_dirty_bitmap,
};
static void bdrv_qcow2_init(void)
{
bdrv_register(&bdrv_qcow2);
}
block_init(bdrv_qcow2_init);