qemu-e2k/target/arm/kvm64.c

1628 lines
48 KiB
C

/*
* ARM implementation of KVM hooks, 64 bit specific code
*
* Copyright Mian-M. Hamayun 2013, Virtual Open Systems
* Copyright Alex Bennée 2014, Linaro
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include <sys/ioctl.h>
#include <sys/ptrace.h>
#include <linux/elf.h>
#include <linux/kvm.h>
#include "qemu-common.h"
#include "qapi/error.h"
#include "cpu.h"
#include "qemu/timer.h"
#include "qemu/error-report.h"
#include "qemu/host-utils.h"
#include "qemu/main-loop.h"
#include "exec/gdbstub.h"
#include "sysemu/runstate.h"
#include "sysemu/kvm.h"
#include "sysemu/kvm_int.h"
#include "kvm_arm.h"
#include "internals.h"
#include "hw/acpi/acpi.h"
#include "hw/acpi/ghes.h"
#include "hw/arm/virt.h"
static bool have_guest_debug;
/*
* Although the ARM implementation of hardware assisted debugging
* allows for different breakpoints per-core, the current GDB
* interface treats them as a global pool of registers (which seems to
* be the case for x86, ppc and s390). As a result we store one copy
* of registers which is used for all active cores.
*
* Write access is serialised by virtue of the GDB protocol which
* updates things. Read access (i.e. when the values are copied to the
* vCPU) is also gated by GDB's run control.
*
* This is not unreasonable as most of the time debugging kernels you
* never know which core will eventually execute your function.
*/
typedef struct {
uint64_t bcr;
uint64_t bvr;
} HWBreakpoint;
/* The watchpoint registers can cover more area than the requested
* watchpoint so we need to store the additional information
* somewhere. We also need to supply a CPUWatchpoint to the GDB stub
* when the watchpoint is hit.
*/
typedef struct {
uint64_t wcr;
uint64_t wvr;
CPUWatchpoint details;
} HWWatchpoint;
/* Maximum and current break/watch point counts */
int max_hw_bps, max_hw_wps;
GArray *hw_breakpoints, *hw_watchpoints;
#define cur_hw_wps (hw_watchpoints->len)
#define cur_hw_bps (hw_breakpoints->len)
#define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i))
#define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i))
/**
* kvm_arm_init_debug() - check for guest debug capabilities
* @cs: CPUState
*
* kvm_check_extension returns the number of debug registers we have
* or 0 if we have none.
*
*/
static void kvm_arm_init_debug(CPUState *cs)
{
have_guest_debug = kvm_check_extension(cs->kvm_state,
KVM_CAP_SET_GUEST_DEBUG);
max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
hw_watchpoints = g_array_sized_new(true, true,
sizeof(HWWatchpoint), max_hw_wps);
max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
hw_breakpoints = g_array_sized_new(true, true,
sizeof(HWBreakpoint), max_hw_bps);
return;
}
/**
* insert_hw_breakpoint()
* @addr: address of breakpoint
*
* See ARM ARM D2.9.1 for details but here we are only going to create
* simple un-linked breakpoints (i.e. we don't chain breakpoints
* together to match address and context or vmid). The hardware is
* capable of fancier matching but that will require exposing that
* fanciness to GDB's interface
*
* DBGBCR<n>_EL1, Debug Breakpoint Control Registers
*
* 31 24 23 20 19 16 15 14 13 12 9 8 5 4 3 2 1 0
* +------+------+-------+-----+----+------+-----+------+-----+---+
* | RES0 | BT | LBN | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
* +------+------+-------+-----+----+------+-----+------+-----+---+
*
* BT: Breakpoint type (0 = unlinked address match)
* LBN: Linked BP number (0 = unused)
* SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
* BAS: Byte Address Select (RES1 for AArch64)
* E: Enable bit
*
* DBGBVR<n>_EL1, Debug Breakpoint Value Registers
*
* 63 53 52 49 48 2 1 0
* +------+-----------+----------+-----+
* | RESS | VA[52:49] | VA[48:2] | 0 0 |
* +------+-----------+----------+-----+
*
* Depending on the addressing mode bits the top bits of the register
* are a sign extension of the highest applicable VA bit. Some
* versions of GDB don't do it correctly so we ensure they are correct
* here so future PC comparisons will work properly.
*/
static int insert_hw_breakpoint(target_ulong addr)
{
HWBreakpoint brk = {
.bcr = 0x1, /* BCR E=1, enable */
.bvr = sextract64(addr, 0, 53)
};
if (cur_hw_bps >= max_hw_bps) {
return -ENOBUFS;
}
brk.bcr = deposit32(brk.bcr, 1, 2, 0x3); /* PMC = 11 */
brk.bcr = deposit32(brk.bcr, 5, 4, 0xf); /* BAS = RES1 */
g_array_append_val(hw_breakpoints, brk);
return 0;
}
/**
* delete_hw_breakpoint()
* @pc: address of breakpoint
*
* Delete a breakpoint and shuffle any above down
*/
static int delete_hw_breakpoint(target_ulong pc)
{
int i;
for (i = 0; i < hw_breakpoints->len; i++) {
HWBreakpoint *brk = get_hw_bp(i);
if (brk->bvr == pc) {
g_array_remove_index(hw_breakpoints, i);
return 0;
}
}
return -ENOENT;
}
/**
* insert_hw_watchpoint()
* @addr: address of watch point
* @len: size of area
* @type: type of watch point
*
* See ARM ARM D2.10. As with the breakpoints we can do some advanced
* stuff if we want to. The watch points can be linked with the break
* points above to make them context aware. However for simplicity
* currently we only deal with simple read/write watch points.
*
* D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
*
* 31 29 28 24 23 21 20 19 16 15 14 13 12 5 4 3 2 1 0
* +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
* | RES0 | MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
* +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
*
* MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
* WT: 0 - unlinked, 1 - linked (not currently used)
* LBN: Linked BP number (not currently used)
* SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
* BAS: Byte Address Select
* LSC: Load/Store control (01: load, 10: store, 11: both)
* E: Enable
*
* The bottom 2 bits of the value register are masked. Therefore to
* break on any sizes smaller than an unaligned word you need to set
* MASK=0, BAS=bit per byte in question. For larger regions (^2) you
* need to ensure you mask the address as required and set BAS=0xff
*/
static int insert_hw_watchpoint(target_ulong addr,
target_ulong len, int type)
{
HWWatchpoint wp = {
.wcr = 1, /* E=1, enable */
.wvr = addr & (~0x7ULL),
.details = { .vaddr = addr, .len = len }
};
if (cur_hw_wps >= max_hw_wps) {
return -ENOBUFS;
}
/*
* HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
* valid whether EL3 is implemented or not
*/
wp.wcr = deposit32(wp.wcr, 1, 2, 3);
switch (type) {
case GDB_WATCHPOINT_READ:
wp.wcr = deposit32(wp.wcr, 3, 2, 1);
wp.details.flags = BP_MEM_READ;
break;
case GDB_WATCHPOINT_WRITE:
wp.wcr = deposit32(wp.wcr, 3, 2, 2);
wp.details.flags = BP_MEM_WRITE;
break;
case GDB_WATCHPOINT_ACCESS:
wp.wcr = deposit32(wp.wcr, 3, 2, 3);
wp.details.flags = BP_MEM_ACCESS;
break;
default:
g_assert_not_reached();
break;
}
if (len <= 8) {
/* we align the address and set the bits in BAS */
int off = addr & 0x7;
int bas = (1 << len) - 1;
wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
} else {
/* For ranges above 8 bytes we need to be a power of 2 */
if (is_power_of_2(len)) {
int bits = ctz64(len);
wp.wvr &= ~((1 << bits) - 1);
wp.wcr = deposit32(wp.wcr, 24, 4, bits);
wp.wcr = deposit32(wp.wcr, 5, 8, 0xff);
} else {
return -ENOBUFS;
}
}
g_array_append_val(hw_watchpoints, wp);
return 0;
}
static bool check_watchpoint_in_range(int i, target_ulong addr)
{
HWWatchpoint *wp = get_hw_wp(i);
uint64_t addr_top, addr_bottom = wp->wvr;
int bas = extract32(wp->wcr, 5, 8);
int mask = extract32(wp->wcr, 24, 4);
if (mask) {
addr_top = addr_bottom + (1 << mask);
} else {
/* BAS must be contiguous but can offset against the base
* address in DBGWVR */
addr_bottom = addr_bottom + ctz32(bas);
addr_top = addr_bottom + clo32(bas);
}
if (addr >= addr_bottom && addr <= addr_top) {
return true;
}
return false;
}
/**
* delete_hw_watchpoint()
* @addr: address of breakpoint
*
* Delete a breakpoint and shuffle any above down
*/
static int delete_hw_watchpoint(target_ulong addr,
target_ulong len, int type)
{
int i;
for (i = 0; i < cur_hw_wps; i++) {
if (check_watchpoint_in_range(i, addr)) {
g_array_remove_index(hw_watchpoints, i);
return 0;
}
}
return -ENOENT;
}
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
target_ulong len, int type)
{
switch (type) {
case GDB_BREAKPOINT_HW:
return insert_hw_breakpoint(addr);
break;
case GDB_WATCHPOINT_READ:
case GDB_WATCHPOINT_WRITE:
case GDB_WATCHPOINT_ACCESS:
return insert_hw_watchpoint(addr, len, type);
default:
return -ENOSYS;
}
}
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
target_ulong len, int type)
{
switch (type) {
case GDB_BREAKPOINT_HW:
return delete_hw_breakpoint(addr);
case GDB_WATCHPOINT_READ:
case GDB_WATCHPOINT_WRITE:
case GDB_WATCHPOINT_ACCESS:
return delete_hw_watchpoint(addr, len, type);
default:
return -ENOSYS;
}
}
void kvm_arch_remove_all_hw_breakpoints(void)
{
if (cur_hw_wps > 0) {
g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
}
if (cur_hw_bps > 0) {
g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
}
}
void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
{
int i;
memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
for (i = 0; i < max_hw_wps; i++) {
HWWatchpoint *wp = get_hw_wp(i);
ptr->dbg_wcr[i] = wp->wcr;
ptr->dbg_wvr[i] = wp->wvr;
}
for (i = 0; i < max_hw_bps; i++) {
HWBreakpoint *bp = get_hw_bp(i);
ptr->dbg_bcr[i] = bp->bcr;
ptr->dbg_bvr[i] = bp->bvr;
}
}
bool kvm_arm_hw_debug_active(CPUState *cs)
{
return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
}
static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
{
int i;
for (i = 0; i < cur_hw_bps; i++) {
HWBreakpoint *bp = get_hw_bp(i);
if (bp->bvr == pc) {
return true;
}
}
return false;
}
static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
{
int i;
for (i = 0; i < cur_hw_wps; i++) {
if (check_watchpoint_in_range(i, addr)) {
return &get_hw_wp(i)->details;
}
}
return NULL;
}
static bool kvm_arm_set_device_attr(CPUState *cs, struct kvm_device_attr *attr,
const char *name)
{
int err;
err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
if (err != 0) {
error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
return false;
}
err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
if (err != 0) {
error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
return false;
}
return true;
}
void kvm_arm_pmu_init(CPUState *cs)
{
struct kvm_device_attr attr = {
.group = KVM_ARM_VCPU_PMU_V3_CTRL,
.attr = KVM_ARM_VCPU_PMU_V3_INIT,
};
if (!ARM_CPU(cs)->has_pmu) {
return;
}
if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
error_report("failed to init PMU");
abort();
}
}
void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
{
struct kvm_device_attr attr = {
.group = KVM_ARM_VCPU_PMU_V3_CTRL,
.addr = (intptr_t)&irq,
.attr = KVM_ARM_VCPU_PMU_V3_IRQ,
};
if (!ARM_CPU(cs)->has_pmu) {
return;
}
if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
error_report("failed to set irq for PMU");
abort();
}
}
void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa)
{
struct kvm_device_attr attr = {
.group = KVM_ARM_VCPU_PVTIME_CTRL,
.attr = KVM_ARM_VCPU_PVTIME_IPA,
.addr = (uint64_t)&ipa,
};
if (ARM_CPU(cs)->kvm_steal_time == ON_OFF_AUTO_OFF) {
return;
}
if (!kvm_arm_set_device_attr(cs, &attr, "PVTIME IPA")) {
error_report("failed to init PVTIME IPA");
abort();
}
}
static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
{
uint64_t ret;
struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
int err;
assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
if (err < 0) {
return -1;
}
*pret = ret;
return 0;
}
static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
{
struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
return ioctl(fd, KVM_GET_ONE_REG, &idreg);
}
static bool kvm_arm_pauth_supported(void)
{
return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
}
bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
{
/* Identify the feature bits corresponding to the host CPU, and
* fill out the ARMHostCPUClass fields accordingly. To do this
* we have to create a scratch VM, create a single CPU inside it,
* and then query that CPU for the relevant ID registers.
*/
int fdarray[3];
bool sve_supported;
uint64_t features = 0;
uint64_t t;
int err;
/* Old kernels may not know about the PREFERRED_TARGET ioctl: however
* we know these will only support creating one kind of guest CPU,
* which is its preferred CPU type. Fortunately these old kernels
* support only a very limited number of CPUs.
*/
static const uint32_t cpus_to_try[] = {
KVM_ARM_TARGET_AEM_V8,
KVM_ARM_TARGET_FOUNDATION_V8,
KVM_ARM_TARGET_CORTEX_A57,
QEMU_KVM_ARM_TARGET_NONE
};
/*
* target = -1 informs kvm_arm_create_scratch_host_vcpu()
* to use the preferred target
*/
struct kvm_vcpu_init init = { .target = -1, };
/*
* Ask for Pointer Authentication if supported. We can't play the
* SVE trick of synthesising the ID reg as KVM won't tell us
* whether we have the architected or IMPDEF version of PAuth, so
* we have to use the actual ID regs.
*/
if (kvm_arm_pauth_supported()) {
init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
}
if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
return false;
}
ahcf->target = init.target;
ahcf->dtb_compatible = "arm,arm-v8";
err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
ARM64_SYS_REG(3, 0, 0, 4, 0));
if (unlikely(err < 0)) {
/*
* Before v4.15, the kernel only exposed a limited number of system
* registers, not including any of the interesting AArch64 ID regs.
* For the most part we could leave these fields as zero with minimal
* effect, since this does not affect the values seen by the guest.
*
* However, it could cause problems down the line for QEMU,
* so provide a minimal v8.0 default.
*
* ??? Could read MIDR and use knowledge from cpu64.c.
* ??? Could map a page of memory into our temp guest and
* run the tiniest of hand-crafted kernels to extract
* the values seen by the guest.
* ??? Either of these sounds like too much effort just
* to work around running a modern host kernel.
*/
ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
err = 0;
} else {
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
ARM64_SYS_REG(3, 0, 0, 4, 1));
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
ARM64_SYS_REG(3, 0, 0, 5, 0));
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
ARM64_SYS_REG(3, 0, 0, 5, 1));
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
ARM64_SYS_REG(3, 0, 0, 6, 0));
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
ARM64_SYS_REG(3, 0, 0, 6, 1));
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
ARM64_SYS_REG(3, 0, 0, 7, 0));
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
ARM64_SYS_REG(3, 0, 0, 7, 1));
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
ARM64_SYS_REG(3, 0, 0, 7, 2));
/*
* Note that if AArch32 support is not present in the host,
* the AArch32 sysregs are present to be read, but will
* return UNKNOWN values. This is neither better nor worse
* than skipping the reads and leaving 0, as we must avoid
* considering the values in every case.
*/
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
ARM64_SYS_REG(3, 0, 0, 1, 0));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
ARM64_SYS_REG(3, 0, 0, 1, 1));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
ARM64_SYS_REG(3, 0, 0, 3, 4));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
ARM64_SYS_REG(3, 0, 0, 1, 2));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
ARM64_SYS_REG(3, 0, 0, 1, 4));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
ARM64_SYS_REG(3, 0, 0, 1, 5));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
ARM64_SYS_REG(3, 0, 0, 1, 6));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
ARM64_SYS_REG(3, 0, 0, 1, 7));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
ARM64_SYS_REG(3, 0, 0, 2, 0));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
ARM64_SYS_REG(3, 0, 0, 2, 1));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
ARM64_SYS_REG(3, 0, 0, 2, 2));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
ARM64_SYS_REG(3, 0, 0, 2, 3));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
ARM64_SYS_REG(3, 0, 0, 2, 4));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
ARM64_SYS_REG(3, 0, 0, 2, 5));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
ARM64_SYS_REG(3, 0, 0, 2, 6));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
ARM64_SYS_REG(3, 0, 0, 2, 7));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
ARM64_SYS_REG(3, 0, 0, 3, 0));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
ARM64_SYS_REG(3, 0, 0, 3, 1));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
ARM64_SYS_REG(3, 0, 0, 3, 2));
/*
* DBGDIDR is a bit complicated because the kernel doesn't
* provide an accessor for it in 64-bit mode, which is what this
* scratch VM is in, and there's no architected "64-bit sysreg
* which reads the same as the 32-bit register" the way there is
* for other ID registers. Instead we synthesize a value from the
* AArch64 ID_AA64DFR0, the same way the kernel code in
* arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
* We only do this if the CPU supports AArch32 at EL1.
*/
if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
int ctx_cmps =
FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
int version = 6; /* ARMv8 debug architecture */
bool has_el3 =
!!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
uint32_t dbgdidr = 0;
dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
dbgdidr |= (1 << 15); /* RES1 bit */
ahcf->isar.dbgdidr = dbgdidr;
}
}
sve_supported = ioctl(fdarray[0], KVM_CHECK_EXTENSION, KVM_CAP_ARM_SVE) > 0;
/* Add feature bits that can't appear until after VCPU init. */
if (sve_supported) {
t = ahcf->isar.id_aa64pfr0;
t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
ahcf->isar.id_aa64pfr0 = t;
/*
* Before v5.1, KVM did not support SVE and did not expose
* ID_AA64ZFR0_EL1 even as RAZ. After v5.1, KVM still does
* not expose the register to "user" requests like this
* unless the host supports SVE.
*/
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
ARM64_SYS_REG(3, 0, 0, 4, 4));
}
kvm_arm_destroy_scratch_host_vcpu(fdarray);
if (err < 0) {
return false;
}
/*
* We can assume any KVM supporting CPU is at least a v8
* with VFPv4+Neon; this in turn implies most of the other
* feature bits.
*/
features |= 1ULL << ARM_FEATURE_V8;
features |= 1ULL << ARM_FEATURE_NEON;
features |= 1ULL << ARM_FEATURE_AARCH64;
features |= 1ULL << ARM_FEATURE_PMU;
features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
ahcf->features = features;
return true;
}
void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
{
bool has_steal_time = kvm_arm_steal_time_supported();
if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
} else {
cpu->kvm_steal_time = ON_OFF_AUTO_ON;
}
} else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
if (!has_steal_time) {
error_setg(errp, "'kvm-steal-time' cannot be enabled "
"on this host");
return;
} else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
/*
* DEN0057A chapter 2 says "This specification only covers
* systems in which the Execution state of the hypervisor
* as well as EL1 of virtual machines is AArch64.". And,
* to ensure that, the smc/hvc calls are only specified as
* smc64/hvc64.
*/
error_setg(errp, "'kvm-steal-time' cannot be enabled "
"for AArch32 guests");
return;
}
}
}
bool kvm_arm_aarch32_supported(void)
{
return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
}
bool kvm_arm_sve_supported(void)
{
return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
}
bool kvm_arm_steal_time_supported(void)
{
return kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
}
QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
void kvm_arm_sve_get_vls(CPUState *cs, unsigned long *map)
{
/* Only call this function if kvm_arm_sve_supported() returns true. */
static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
static bool probed;
uint32_t vq = 0;
int i, j;
bitmap_zero(map, ARM_MAX_VQ);
/*
* KVM ensures all host CPUs support the same set of vector lengths.
* So we only need to create the scratch VCPUs once and then cache
* the results.
*/
if (!probed) {
struct kvm_vcpu_init init = {
.target = -1,
.features[0] = (1 << KVM_ARM_VCPU_SVE),
};
struct kvm_one_reg reg = {
.id = KVM_REG_ARM64_SVE_VLS,
.addr = (uint64_t)&vls[0],
};
int fdarray[3], ret;
probed = true;
if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
error_report("failed to create scratch VCPU with SVE enabled");
abort();
}
ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
kvm_arm_destroy_scratch_host_vcpu(fdarray);
if (ret) {
error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
strerror(errno));
abort();
}
for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
if (vls[i]) {
vq = 64 - clz64(vls[i]) + i * 64;
break;
}
}
if (vq > ARM_MAX_VQ) {
warn_report("KVM supports vector lengths larger than "
"QEMU can enable");
}
}
for (i = 0; i < KVM_ARM64_SVE_VLS_WORDS; ++i) {
if (!vls[i]) {
continue;
}
for (j = 1; j <= 64; ++j) {
vq = j + i * 64;
if (vq > ARM_MAX_VQ) {
return;
}
if (vls[i] & (1UL << (j - 1))) {
set_bit(vq - 1, map);
}
}
}
}
static int kvm_arm_sve_set_vls(CPUState *cs)
{
uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = {0};
struct kvm_one_reg reg = {
.id = KVM_REG_ARM64_SVE_VLS,
.addr = (uint64_t)&vls[0],
};
ARMCPU *cpu = ARM_CPU(cs);
uint32_t vq;
int i, j;
assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
for (vq = 1; vq <= cpu->sve_max_vq; ++vq) {
if (test_bit(vq - 1, cpu->sve_vq_map)) {
i = (vq - 1) / 64;
j = (vq - 1) % 64;
vls[i] |= 1UL << j;
}
}
return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}
#define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
int kvm_arch_init_vcpu(CPUState *cs)
{
int ret;
uint64_t mpidr;
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
!object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
error_report("KVM is not supported for this guest CPU type");
return -EINVAL;
}
qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs);
/* Determine init features for this CPU */
memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
if (cs->start_powered_off) {
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
}
if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
cpu->psci_version = 2;
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
}
if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
}
if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
cpu->has_pmu = false;
}
if (cpu->has_pmu) {
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
} else {
env->features &= ~(1ULL << ARM_FEATURE_PMU);
}
if (cpu_isar_feature(aa64_sve, cpu)) {
assert(kvm_arm_sve_supported());
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
}
if (cpu_isar_feature(aa64_pauth, cpu)) {
cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
}
/* Do KVM_ARM_VCPU_INIT ioctl */
ret = kvm_arm_vcpu_init(cs);
if (ret) {
return ret;
}
if (cpu_isar_feature(aa64_sve, cpu)) {
ret = kvm_arm_sve_set_vls(cs);
if (ret) {
return ret;
}
ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE);
if (ret) {
return ret;
}
}
/*
* When KVM is in use, PSCI is emulated in-kernel and not by qemu.
* Currently KVM has its own idea about MPIDR assignment, so we
* override our defaults with what we get from KVM.
*/
ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
if (ret) {
return ret;
}
cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
kvm_arm_init_debug(cs);
/* Check whether user space can specify guest syndrome value */
kvm_arm_init_serror_injection(cs);
return kvm_arm_init_cpreg_list(cpu);
}
int kvm_arch_destroy_vcpu(CPUState *cs)
{
return 0;
}
bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
{
/* Return true if the regidx is a register we should synchronize
* via the cpreg_tuples array (ie is not a core or sve reg that
* we sync by hand in kvm_arch_get/put_registers())
*/
switch (regidx & KVM_REG_ARM_COPROC_MASK) {
case KVM_REG_ARM_CORE:
case KVM_REG_ARM64_SVE:
return false;
default:
return true;
}
}
typedef struct CPRegStateLevel {
uint64_t regidx;
int level;
} CPRegStateLevel;
/* All system registers not listed in the following table are assumed to be
* of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
* often, you must add it to this table with a state of either
* KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
*/
static const CPRegStateLevel non_runtime_cpregs[] = {
{ KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
};
int kvm_arm_cpreg_level(uint64_t regidx)
{
int i;
for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
const CPRegStateLevel *l = &non_runtime_cpregs[i];
if (l->regidx == regidx) {
return l->level;
}
}
return KVM_PUT_RUNTIME_STATE;
}
/* Callers must hold the iothread mutex lock */
static void kvm_inject_arm_sea(CPUState *c)
{
ARMCPU *cpu = ARM_CPU(c);
CPUARMState *env = &cpu->env;
uint32_t esr;
bool same_el;
c->exception_index = EXCP_DATA_ABORT;
env->exception.target_el = 1;
/*
* Set the DFSC to synchronous external abort and set FnV to not valid,
* this will tell guest the FAR_ELx is UNKNOWN for this abort.
*/
same_el = arm_current_el(env) == env->exception.target_el;
esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
env->exception.syndrome = esr;
arm_cpu_do_interrupt(c);
}
#define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
#define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
#define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
static int kvm_arch_put_fpsimd(CPUState *cs)
{
CPUARMState *env = &ARM_CPU(cs)->env;
struct kvm_one_reg reg;
int i, ret;
for (i = 0; i < 32; i++) {
uint64_t *q = aa64_vfp_qreg(env, i);
#ifdef HOST_WORDS_BIGENDIAN
uint64_t fp_val[2] = { q[1], q[0] };
reg.addr = (uintptr_t)fp_val;
#else
reg.addr = (uintptr_t)q;
#endif
reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
}
return 0;
}
/*
* KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
* and PREGS and the FFR have a slice size of 256 bits. However we simply hard
* code the slice index to zero for now as it's unlikely we'll need more than
* one slice for quite some time.
*/
static int kvm_arch_put_sve(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint64_t tmp[ARM_MAX_VQ * 2];
uint64_t *r;
struct kvm_one_reg reg;
int n, ret;
for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
reg.addr = (uintptr_t)r;
reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
}
for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
reg.addr = (uintptr_t)r;
reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
}
r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
reg.addr = (uintptr_t)r;
reg.id = KVM_REG_ARM64_SVE_FFR(0);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
return 0;
}
int kvm_arch_put_registers(CPUState *cs, int level)
{
struct kvm_one_reg reg;
uint64_t val;
uint32_t fpr;
int i, ret;
unsigned int el;
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
/* If we are in AArch32 mode then we need to copy the AArch32 regs to the
* AArch64 registers before pushing them out to 64-bit KVM.
*/
if (!is_a64(env)) {
aarch64_sync_32_to_64(env);
}
for (i = 0; i < 31; i++) {
reg.id = AARCH64_CORE_REG(regs.regs[i]);
reg.addr = (uintptr_t) &env->xregs[i];
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
}
/* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
* QEMU side we keep the current SP in xregs[31] as well.
*/
aarch64_save_sp(env, 1);
reg.id = AARCH64_CORE_REG(regs.sp);
reg.addr = (uintptr_t) &env->sp_el[0];
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
reg.id = AARCH64_CORE_REG(sp_el1);
reg.addr = (uintptr_t) &env->sp_el[1];
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
/* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
if (is_a64(env)) {
val = pstate_read(env);
} else {
val = cpsr_read(env);
}
reg.id = AARCH64_CORE_REG(regs.pstate);
reg.addr = (uintptr_t) &val;
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
reg.id = AARCH64_CORE_REG(regs.pc);
reg.addr = (uintptr_t) &env->pc;
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
reg.id = AARCH64_CORE_REG(elr_el1);
reg.addr = (uintptr_t) &env->elr_el[1];
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
/* Saved Program State Registers
*
* Before we restore from the banked_spsr[] array we need to
* ensure that any modifications to env->spsr are correctly
* reflected in the banks.
*/
el = arm_current_el(env);
if (el > 0 && !is_a64(env)) {
i = bank_number(env->uncached_cpsr & CPSR_M);
env->banked_spsr[i] = env->spsr;
}
/* KVM 0-4 map to QEMU banks 1-5 */
for (i = 0; i < KVM_NR_SPSR; i++) {
reg.id = AARCH64_CORE_REG(spsr[i]);
reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
}
if (cpu_isar_feature(aa64_sve, cpu)) {
ret = kvm_arch_put_sve(cs);
} else {
ret = kvm_arch_put_fpsimd(cs);
}
if (ret) {
return ret;
}
reg.addr = (uintptr_t)(&fpr);
fpr = vfp_get_fpsr(env);
reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
reg.addr = (uintptr_t)(&fpr);
fpr = vfp_get_fpcr(env);
reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
write_cpustate_to_list(cpu, true);
if (!write_list_to_kvmstate(cpu, level)) {
return -EINVAL;
}
/*
* Setting VCPU events should be triggered after syncing the registers
* to avoid overwriting potential changes made by KVM upon calling
* KVM_SET_VCPU_EVENTS ioctl
*/
ret = kvm_put_vcpu_events(cpu);
if (ret) {
return ret;
}
kvm_arm_sync_mpstate_to_kvm(cpu);
return ret;
}
static int kvm_arch_get_fpsimd(CPUState *cs)
{
CPUARMState *env = &ARM_CPU(cs)->env;
struct kvm_one_reg reg;
int i, ret;
for (i = 0; i < 32; i++) {
uint64_t *q = aa64_vfp_qreg(env, i);
reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
reg.addr = (uintptr_t)q;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
} else {
#ifdef HOST_WORDS_BIGENDIAN
uint64_t t;
t = q[0], q[0] = q[1], q[1] = t;
#endif
}
}
return 0;
}
/*
* KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
* and PREGS and the FFR have a slice size of 256 bits. However we simply hard
* code the slice index to zero for now as it's unlikely we'll need more than
* one slice for quite some time.
*/
static int kvm_arch_get_sve(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
struct kvm_one_reg reg;
uint64_t *r;
int n, ret;
for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
r = &env->vfp.zregs[n].d[0];
reg.addr = (uintptr_t)r;
reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
}
sve_bswap64(r, r, cpu->sve_max_vq * 2);
}
for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
r = &env->vfp.pregs[n].p[0];
reg.addr = (uintptr_t)r;
reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
}
sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
}
r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
reg.addr = (uintptr_t)r;
reg.id = KVM_REG_ARM64_SVE_FFR(0);
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
}
sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
return 0;
}
int kvm_arch_get_registers(CPUState *cs)
{
struct kvm_one_reg reg;
uint64_t val;
unsigned int el;
uint32_t fpr;
int i, ret;
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
for (i = 0; i < 31; i++) {
reg.id = AARCH64_CORE_REG(regs.regs[i]);
reg.addr = (uintptr_t) &env->xregs[i];
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
}
}
reg.id = AARCH64_CORE_REG(regs.sp);
reg.addr = (uintptr_t) &env->sp_el[0];
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
}
reg.id = AARCH64_CORE_REG(sp_el1);
reg.addr = (uintptr_t) &env->sp_el[1];
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
}
reg.id = AARCH64_CORE_REG(regs.pstate);
reg.addr = (uintptr_t) &val;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
}
env->aarch64 = ((val & PSTATE_nRW) == 0);
if (is_a64(env)) {
pstate_write(env, val);
} else {
cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
}
/* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
* QEMU side we keep the current SP in xregs[31] as well.
*/
aarch64_restore_sp(env, 1);
reg.id = AARCH64_CORE_REG(regs.pc);
reg.addr = (uintptr_t) &env->pc;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
}
/* If we are in AArch32 mode then we need to sync the AArch32 regs with the
* incoming AArch64 regs received from 64-bit KVM.
* We must perform this after all of the registers have been acquired from
* the kernel.
*/
if (!is_a64(env)) {
aarch64_sync_64_to_32(env);
}
reg.id = AARCH64_CORE_REG(elr_el1);
reg.addr = (uintptr_t) &env->elr_el[1];
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
}
/* Fetch the SPSR registers
*
* KVM SPSRs 0-4 map to QEMU banks 1-5
*/
for (i = 0; i < KVM_NR_SPSR; i++) {
reg.id = AARCH64_CORE_REG(spsr[i]);
reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
}
}
el = arm_current_el(env);
if (el > 0 && !is_a64(env)) {
i = bank_number(env->uncached_cpsr & CPSR_M);
env->spsr = env->banked_spsr[i];
}
if (cpu_isar_feature(aa64_sve, cpu)) {
ret = kvm_arch_get_sve(cs);
} else {
ret = kvm_arch_get_fpsimd(cs);
}
if (ret) {
return ret;
}
reg.addr = (uintptr_t)(&fpr);
reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
}
vfp_set_fpsr(env, fpr);
reg.addr = (uintptr_t)(&fpr);
reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
}
vfp_set_fpcr(env, fpr);
ret = kvm_get_vcpu_events(cpu);
if (ret) {
return ret;
}
if (!write_kvmstate_to_list(cpu)) {
return -EINVAL;
}
/* Note that it's OK to have registers which aren't in CPUState,
* so we can ignore a failure return here.
*/
write_list_to_cpustate(cpu);
kvm_arm_sync_mpstate_to_qemu(cpu);
/* TODO: other registers */
return ret;
}
void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
{
ram_addr_t ram_addr;
hwaddr paddr;
assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
if (acpi_ghes_present() && addr) {
ram_addr = qemu_ram_addr_from_host(addr);
if (ram_addr != RAM_ADDR_INVALID &&
kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
kvm_hwpoison_page_add(ram_addr);
/*
* If this is a BUS_MCEERR_AR, we know we have been called
* synchronously from the vCPU thread, so we can easily
* synchronize the state and inject an error.
*
* TODO: we currently don't tell the guest at all about
* BUS_MCEERR_AO. In that case we might either be being
* called synchronously from the vCPU thread, or a bit
* later from the main thread, so doing the injection of
* the error would be more complicated.
*/
if (code == BUS_MCEERR_AR) {
kvm_cpu_synchronize_state(c);
if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
kvm_inject_arm_sea(c);
} else {
error_report("failed to record the error");
abort();
}
}
return;
}
if (code == BUS_MCEERR_AO) {
error_report("Hardware memory error at addr %p for memory used by "
"QEMU itself instead of guest system!", addr);
}
}
if (code == BUS_MCEERR_AR) {
error_report("Hardware memory error!");
exit(1);
}
}
/* C6.6.29 BRK instruction */
static const uint32_t brk_insn = 0xd4200000;
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
if (have_guest_debug) {
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
return -EINVAL;
}
return 0;
} else {
error_report("guest debug not supported on this kernel");
return -EINVAL;
}
}
int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
static uint32_t brk;
if (have_guest_debug) {
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
brk != brk_insn ||
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
return -EINVAL;
}
return 0;
} else {
error_report("guest debug not supported on this kernel");
return -EINVAL;
}
}
/* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
*
* To minimise translating between kernel and user-space the kernel
* ABI just provides user-space with the full exception syndrome
* register value to be decoded in QEMU.
*/
bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
{
int hsr_ec = syn_get_ec(debug_exit->hsr);
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
/* Ensure PC is synchronised */
kvm_cpu_synchronize_state(cs);
switch (hsr_ec) {
case EC_SOFTWARESTEP:
if (cs->singlestep_enabled) {
return true;
} else {
/*
* The kernel should have suppressed the guest's ability to
* single step at this point so something has gone wrong.
*/
error_report("%s: guest single-step while debugging unsupported"
" (%"PRIx64", %"PRIx32")",
__func__, env->pc, debug_exit->hsr);
return false;
}
break;
case EC_AA64_BKPT:
if (kvm_find_sw_breakpoint(cs, env->pc)) {
return true;
}
break;
case EC_BREAKPOINT:
if (find_hw_breakpoint(cs, env->pc)) {
return true;
}
break;
case EC_WATCHPOINT:
{
CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
if (wp) {
cs->watchpoint_hit = wp;
return true;
}
break;
}
default:
error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
__func__, debug_exit->hsr, env->pc);
}
/* If we are not handling the debug exception it must belong to
* the guest. Let's re-use the existing TCG interrupt code to set
* everything up properly.
*/
cs->exception_index = EXCP_BKPT;
env->exception.syndrome = debug_exit->hsr;
env->exception.vaddress = debug_exit->far;
env->exception.target_el = 1;
qemu_mutex_lock_iothread();
arm_cpu_do_interrupt(cs);
qemu_mutex_unlock_iothread();
return false;
}
#define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
#define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
/*
* ESR_EL1
* ISS encoding
* AARCH64: DFSC, bits [5:0]
* AARCH32:
* TTBCR.EAE == 0
* FS[4] - DFSR[10]
* FS[3:0] - DFSR[3:0]
* TTBCR.EAE == 1
* FS, bits [5:0]
*/
#define ESR_DFSC(aarch64, lpae, v) \
((aarch64 || (lpae)) ? ((v) & 0x3F) \
: (((v) >> 6) | ((v) & 0x1F)))
#define ESR_DFSC_EXTABT(aarch64, lpae) \
((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
bool kvm_arm_verify_ext_dabt_pending(CPUState *cs)
{
uint64_t dfsr_val;
if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
int lpae = 0;
if (!aarch64_mode) {
uint64_t ttbcr;
if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
lpae = arm_feature(env, ARM_FEATURE_LPAE)
&& (ttbcr & TTBCR_EAE);
}
}
/*
* The verification here is based on the DFSC bits
* of the ESR_EL1 reg only
*/
return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
ESR_DFSC_EXTABT(aarch64_mode, lpae));
}
return false;
}