2902 lines
104 KiB
C
2902 lines
104 KiB
C
/*
|
|
* ARM generic helpers.
|
|
*
|
|
* This code is licensed under the GNU GPL v2 or later.
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/units.h"
|
|
#include "target/arm/idau.h"
|
|
#include "trace.h"
|
|
#include "cpu.h"
|
|
#include "internals.h"
|
|
#include "exec/gdbstub.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "qemu/host-utils.h"
|
|
#include "qemu/main-loop.h"
|
|
#include "qemu/bitops.h"
|
|
#include "qemu/crc32c.h"
|
|
#include "qemu/qemu-print.h"
|
|
#include "exec/exec-all.h"
|
|
#include <zlib.h> /* For crc32 */
|
|
#include "semihosting/semihost.h"
|
|
#include "sysemu/cpus.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "qemu/range.h"
|
|
#include "qapi/qapi-commands-machine-target.h"
|
|
#include "qapi/error.h"
|
|
#include "qemu/guest-random.h"
|
|
#ifdef CONFIG_TCG
|
|
#include "arm_ldst.h"
|
|
#include "exec/cpu_ldst.h"
|
|
#include "semihosting/common-semi.h"
|
|
#endif
|
|
|
|
static void v7m_msr_xpsr(CPUARMState *env, uint32_t mask,
|
|
uint32_t reg, uint32_t val)
|
|
{
|
|
/* Only APSR is actually writable */
|
|
if (!(reg & 4)) {
|
|
uint32_t apsrmask = 0;
|
|
|
|
if (mask & 8) {
|
|
apsrmask |= XPSR_NZCV | XPSR_Q;
|
|
}
|
|
if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
|
|
apsrmask |= XPSR_GE;
|
|
}
|
|
xpsr_write(env, val, apsrmask);
|
|
}
|
|
}
|
|
|
|
static uint32_t v7m_mrs_xpsr(CPUARMState *env, uint32_t reg, unsigned el)
|
|
{
|
|
uint32_t mask = 0;
|
|
|
|
if ((reg & 1) && el) {
|
|
mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
|
|
}
|
|
if (!(reg & 4)) {
|
|
mask |= XPSR_NZCV | XPSR_Q; /* APSR */
|
|
if (arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
|
|
mask |= XPSR_GE;
|
|
}
|
|
}
|
|
/* EPSR reads as zero */
|
|
return xpsr_read(env) & mask;
|
|
}
|
|
|
|
static uint32_t v7m_mrs_control(CPUARMState *env, uint32_t secure)
|
|
{
|
|
uint32_t value = env->v7m.control[secure];
|
|
|
|
if (!secure) {
|
|
/* SFPA is RAZ/WI from NS; FPCA is stored in the M_REG_S bank */
|
|
value |= env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
|
|
void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
|
|
{
|
|
uint32_t mask = extract32(maskreg, 8, 4);
|
|
uint32_t reg = extract32(maskreg, 0, 8);
|
|
|
|
switch (reg) {
|
|
case 0 ... 7: /* xPSR sub-fields */
|
|
v7m_msr_xpsr(env, mask, reg, val);
|
|
break;
|
|
case 20: /* CONTROL */
|
|
/* There are no sub-fields that are actually writable from EL0. */
|
|
break;
|
|
default:
|
|
/* Unprivileged writes to other registers are ignored */
|
|
break;
|
|
}
|
|
}
|
|
|
|
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
|
|
{
|
|
switch (reg) {
|
|
case 0 ... 7: /* xPSR sub-fields */
|
|
return v7m_mrs_xpsr(env, reg, 0);
|
|
case 20: /* CONTROL */
|
|
return v7m_mrs_control(env, 0);
|
|
default:
|
|
/* Unprivileged reads others as zero. */
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
|
|
{
|
|
/* translate.c should never generate calls here in user-only mode */
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
|
|
{
|
|
/* translate.c should never generate calls here in user-only mode */
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
|
|
{
|
|
/* translate.c should never generate calls here in user-only mode */
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
|
|
{
|
|
/* translate.c should never generate calls here in user-only mode */
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
|
|
{
|
|
/* translate.c should never generate calls here in user-only mode */
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
|
|
{
|
|
/*
|
|
* The TT instructions can be used by unprivileged code, but in
|
|
* user-only emulation we don't have the MPU.
|
|
* Luckily since we know we are NonSecure unprivileged (and that in
|
|
* turn means that the A flag wasn't specified), all the bits in the
|
|
* register must be zero:
|
|
* IREGION: 0 because IRVALID is 0
|
|
* IRVALID: 0 because NS
|
|
* S: 0 because NS
|
|
* NSRW: 0 because NS
|
|
* NSR: 0 because NS
|
|
* RW: 0 because unpriv and A flag not set
|
|
* R: 0 because unpriv and A flag not set
|
|
* SRVALID: 0 because NS
|
|
* MRVALID: 0 because unpriv and A flag not set
|
|
* SREGION: 0 becaus SRVALID is 0
|
|
* MREGION: 0 because MRVALID is 0
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
#else
|
|
|
|
/*
|
|
* What kind of stack write are we doing? This affects how exceptions
|
|
* generated during the stacking are treated.
|
|
*/
|
|
typedef enum StackingMode {
|
|
STACK_NORMAL,
|
|
STACK_IGNFAULTS,
|
|
STACK_LAZYFP,
|
|
} StackingMode;
|
|
|
|
static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
|
|
ARMMMUIdx mmu_idx, StackingMode mode)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
CPUARMState *env = &cpu->env;
|
|
MemTxAttrs attrs = {};
|
|
MemTxResult txres;
|
|
target_ulong page_size;
|
|
hwaddr physaddr;
|
|
int prot;
|
|
ARMMMUFaultInfo fi = {};
|
|
ARMCacheAttrs cacheattrs = {};
|
|
bool secure = mmu_idx & ARM_MMU_IDX_M_S;
|
|
int exc;
|
|
bool exc_secure;
|
|
|
|
if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
|
|
&attrs, &prot, &page_size, &fi, &cacheattrs)) {
|
|
/* MPU/SAU lookup failed */
|
|
if (fi.type == ARMFault_QEMU_SFault) {
|
|
if (mode == STACK_LAZYFP) {
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...SecureFault with SFSR.LSPERR "
|
|
"during lazy stacking\n");
|
|
env->v7m.sfsr |= R_V7M_SFSR_LSPERR_MASK;
|
|
} else {
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...SecureFault with SFSR.AUVIOL "
|
|
"during stacking\n");
|
|
env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
|
|
}
|
|
env->v7m.sfsr |= R_V7M_SFSR_SFARVALID_MASK;
|
|
env->v7m.sfar = addr;
|
|
exc = ARMV7M_EXCP_SECURE;
|
|
exc_secure = false;
|
|
} else {
|
|
if (mode == STACK_LAZYFP) {
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...MemManageFault with CFSR.MLSPERR\n");
|
|
env->v7m.cfsr[secure] |= R_V7M_CFSR_MLSPERR_MASK;
|
|
} else {
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...MemManageFault with CFSR.MSTKERR\n");
|
|
env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
|
|
}
|
|
exc = ARMV7M_EXCP_MEM;
|
|
exc_secure = secure;
|
|
}
|
|
goto pend_fault;
|
|
}
|
|
address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
|
|
attrs, &txres);
|
|
if (txres != MEMTX_OK) {
|
|
/* BusFault trying to write the data */
|
|
if (mode == STACK_LAZYFP) {
|
|
qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.LSPERR\n");
|
|
env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_LSPERR_MASK;
|
|
} else {
|
|
qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
|
|
env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
|
|
}
|
|
exc = ARMV7M_EXCP_BUS;
|
|
exc_secure = false;
|
|
goto pend_fault;
|
|
}
|
|
return true;
|
|
|
|
pend_fault:
|
|
/*
|
|
* By pending the exception at this point we are making
|
|
* the IMPDEF choice "overridden exceptions pended" (see the
|
|
* MergeExcInfo() pseudocode). The other choice would be to not
|
|
* pend them now and then make a choice about which to throw away
|
|
* later if we have two derived exceptions.
|
|
* The only case when we must not pend the exception but instead
|
|
* throw it away is if we are doing the push of the callee registers
|
|
* and we've already generated a derived exception (this is indicated
|
|
* by the caller passing STACK_IGNFAULTS). Even in this case we will
|
|
* still update the fault status registers.
|
|
*/
|
|
switch (mode) {
|
|
case STACK_NORMAL:
|
|
armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
|
|
break;
|
|
case STACK_LAZYFP:
|
|
armv7m_nvic_set_pending_lazyfp(env->nvic, exc, exc_secure);
|
|
break;
|
|
case STACK_IGNFAULTS:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
|
|
ARMMMUIdx mmu_idx)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
CPUARMState *env = &cpu->env;
|
|
MemTxAttrs attrs = {};
|
|
MemTxResult txres;
|
|
target_ulong page_size;
|
|
hwaddr physaddr;
|
|
int prot;
|
|
ARMMMUFaultInfo fi = {};
|
|
ARMCacheAttrs cacheattrs = {};
|
|
bool secure = mmu_idx & ARM_MMU_IDX_M_S;
|
|
int exc;
|
|
bool exc_secure;
|
|
uint32_t value;
|
|
|
|
if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
|
|
&attrs, &prot, &page_size, &fi, &cacheattrs)) {
|
|
/* MPU/SAU lookup failed */
|
|
if (fi.type == ARMFault_QEMU_SFault) {
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...SecureFault with SFSR.AUVIOL during unstack\n");
|
|
env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
|
|
env->v7m.sfar = addr;
|
|
exc = ARMV7M_EXCP_SECURE;
|
|
exc_secure = false;
|
|
} else {
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...MemManageFault with CFSR.MUNSTKERR\n");
|
|
env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
|
|
exc = ARMV7M_EXCP_MEM;
|
|
exc_secure = secure;
|
|
}
|
|
goto pend_fault;
|
|
}
|
|
|
|
value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
|
|
attrs, &txres);
|
|
if (txres != MEMTX_OK) {
|
|
/* BusFault trying to read the data */
|
|
qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
|
|
env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
|
|
exc = ARMV7M_EXCP_BUS;
|
|
exc_secure = false;
|
|
goto pend_fault;
|
|
}
|
|
|
|
*dest = value;
|
|
return true;
|
|
|
|
pend_fault:
|
|
/*
|
|
* By pending the exception at this point we are making
|
|
* the IMPDEF choice "overridden exceptions pended" (see the
|
|
* MergeExcInfo() pseudocode). The other choice would be to not
|
|
* pend them now and then make a choice about which to throw away
|
|
* later if we have two derived exceptions.
|
|
*/
|
|
armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
|
|
return false;
|
|
}
|
|
|
|
void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
|
|
{
|
|
/*
|
|
* Preserve FP state (because LSPACT was set and we are about
|
|
* to execute an FP instruction). This corresponds to the
|
|
* PreserveFPState() pseudocode.
|
|
* We may throw an exception if the stacking fails.
|
|
*/
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
|
|
bool negpri = !(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_HFRDY_MASK);
|
|
bool is_priv = !(env->v7m.fpccr[is_secure] & R_V7M_FPCCR_USER_MASK);
|
|
bool splimviol = env->v7m.fpccr[is_secure] & R_V7M_FPCCR_SPLIMVIOL_MASK;
|
|
uint32_t fpcar = env->v7m.fpcar[is_secure];
|
|
bool stacked_ok = true;
|
|
bool ts = is_secure && (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
|
|
bool take_exception;
|
|
|
|
/* Take the iothread lock as we are going to touch the NVIC */
|
|
qemu_mutex_lock_iothread();
|
|
|
|
/* Check the background context had access to the FPU */
|
|
if (!v7m_cpacr_pass(env, is_secure, is_priv)) {
|
|
armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, is_secure);
|
|
env->v7m.cfsr[is_secure] |= R_V7M_CFSR_NOCP_MASK;
|
|
stacked_ok = false;
|
|
} else if (!is_secure && !extract32(env->v7m.nsacr, 10, 1)) {
|
|
armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
|
|
env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
|
|
stacked_ok = false;
|
|
}
|
|
|
|
if (!splimviol && stacked_ok) {
|
|
/* We only stack if the stack limit wasn't violated */
|
|
int i;
|
|
ARMMMUIdx mmu_idx;
|
|
|
|
mmu_idx = arm_v7m_mmu_idx_all(env, is_secure, is_priv, negpri);
|
|
for (i = 0; i < (ts ? 32 : 16); i += 2) {
|
|
uint64_t dn = *aa32_vfp_dreg(env, i / 2);
|
|
uint32_t faddr = fpcar + 4 * i;
|
|
uint32_t slo = extract64(dn, 0, 32);
|
|
uint32_t shi = extract64(dn, 32, 32);
|
|
|
|
if (i >= 16) {
|
|
faddr += 8; /* skip the slot for the FPSCR/VPR */
|
|
}
|
|
stacked_ok = stacked_ok &&
|
|
v7m_stack_write(cpu, faddr, slo, mmu_idx, STACK_LAZYFP) &&
|
|
v7m_stack_write(cpu, faddr + 4, shi, mmu_idx, STACK_LAZYFP);
|
|
}
|
|
|
|
stacked_ok = stacked_ok &&
|
|
v7m_stack_write(cpu, fpcar + 0x40,
|
|
vfp_get_fpscr(env), mmu_idx, STACK_LAZYFP);
|
|
if (cpu_isar_feature(aa32_mve, cpu)) {
|
|
stacked_ok = stacked_ok &&
|
|
v7m_stack_write(cpu, fpcar + 0x44,
|
|
env->v7m.vpr, mmu_idx, STACK_LAZYFP);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We definitely pended an exception, but it's possible that it
|
|
* might not be able to be taken now. If its priority permits us
|
|
* to take it now, then we must not update the LSPACT or FP regs,
|
|
* but instead jump out to take the exception immediately.
|
|
* If it's just pending and won't be taken until the current
|
|
* handler exits, then we do update LSPACT and the FP regs.
|
|
*/
|
|
take_exception = !stacked_ok &&
|
|
armv7m_nvic_can_take_pending_exception(env->nvic);
|
|
|
|
qemu_mutex_unlock_iothread();
|
|
|
|
if (take_exception) {
|
|
raise_exception_ra(env, EXCP_LAZYFP, 0, 1, GETPC());
|
|
}
|
|
|
|
env->v7m.fpccr[is_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
|
|
|
|
if (ts) {
|
|
/* Clear s0 to s31 and the FPSCR and VPR */
|
|
int i;
|
|
|
|
for (i = 0; i < 32; i += 2) {
|
|
*aa32_vfp_dreg(env, i / 2) = 0;
|
|
}
|
|
vfp_set_fpscr(env, 0);
|
|
if (cpu_isar_feature(aa32_mve, cpu)) {
|
|
env->v7m.vpr = 0;
|
|
}
|
|
}
|
|
/*
|
|
* Otherwise s0 to s15, FPSCR and VPR are UNKNOWN; we choose to leave them
|
|
* unchanged.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Write to v7M CONTROL.SPSEL bit for the specified security bank.
|
|
* This may change the current stack pointer between Main and Process
|
|
* stack pointers if it is done for the CONTROL register for the current
|
|
* security state.
|
|
*/
|
|
static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
|
|
bool new_spsel,
|
|
bool secstate)
|
|
{
|
|
bool old_is_psp = v7m_using_psp(env);
|
|
|
|
env->v7m.control[secstate] =
|
|
deposit32(env->v7m.control[secstate],
|
|
R_V7M_CONTROL_SPSEL_SHIFT,
|
|
R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
|
|
|
|
if (secstate == env->v7m.secure) {
|
|
bool new_is_psp = v7m_using_psp(env);
|
|
uint32_t tmp;
|
|
|
|
if (old_is_psp != new_is_psp) {
|
|
tmp = env->v7m.other_sp;
|
|
env->v7m.other_sp = env->regs[13];
|
|
env->regs[13] = tmp;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Write to v7M CONTROL.SPSEL bit. This may change the current
|
|
* stack pointer between Main and Process stack pointers.
|
|
*/
|
|
static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
|
|
{
|
|
write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
|
|
}
|
|
|
|
void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
|
|
{
|
|
/*
|
|
* Write a new value to v7m.exception, thus transitioning into or out
|
|
* of Handler mode; this may result in a change of active stack pointer.
|
|
*/
|
|
bool new_is_psp, old_is_psp = v7m_using_psp(env);
|
|
uint32_t tmp;
|
|
|
|
env->v7m.exception = new_exc;
|
|
|
|
new_is_psp = v7m_using_psp(env);
|
|
|
|
if (old_is_psp != new_is_psp) {
|
|
tmp = env->v7m.other_sp;
|
|
env->v7m.other_sp = env->regs[13];
|
|
env->regs[13] = tmp;
|
|
}
|
|
}
|
|
|
|
/* Switch M profile security state between NS and S */
|
|
static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
|
|
{
|
|
uint32_t new_ss_msp, new_ss_psp;
|
|
|
|
if (env->v7m.secure == new_secstate) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* All the banked state is accessed by looking at env->v7m.secure
|
|
* except for the stack pointer; rearrange the SP appropriately.
|
|
*/
|
|
new_ss_msp = env->v7m.other_ss_msp;
|
|
new_ss_psp = env->v7m.other_ss_psp;
|
|
|
|
if (v7m_using_psp(env)) {
|
|
env->v7m.other_ss_psp = env->regs[13];
|
|
env->v7m.other_ss_msp = env->v7m.other_sp;
|
|
} else {
|
|
env->v7m.other_ss_msp = env->regs[13];
|
|
env->v7m.other_ss_psp = env->v7m.other_sp;
|
|
}
|
|
|
|
env->v7m.secure = new_secstate;
|
|
|
|
if (v7m_using_psp(env)) {
|
|
env->regs[13] = new_ss_psp;
|
|
env->v7m.other_sp = new_ss_msp;
|
|
} else {
|
|
env->regs[13] = new_ss_msp;
|
|
env->v7m.other_sp = new_ss_psp;
|
|
}
|
|
}
|
|
|
|
void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
|
|
{
|
|
/*
|
|
* Handle v7M BXNS:
|
|
* - if the return value is a magic value, do exception return (like BX)
|
|
* - otherwise bit 0 of the return value is the target security state
|
|
*/
|
|
uint32_t min_magic;
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
|
|
/* Covers FNC_RETURN and EXC_RETURN magic */
|
|
min_magic = FNC_RETURN_MIN_MAGIC;
|
|
} else {
|
|
/* EXC_RETURN magic only */
|
|
min_magic = EXC_RETURN_MIN_MAGIC;
|
|
}
|
|
|
|
if (dest >= min_magic) {
|
|
/*
|
|
* This is an exception return magic value; put it where
|
|
* do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
|
|
* Note that if we ever add gen_ss_advance() singlestep support to
|
|
* M profile this should count as an "instruction execution complete"
|
|
* event (compare gen_bx_excret_final_code()).
|
|
*/
|
|
env->regs[15] = dest & ~1;
|
|
env->thumb = dest & 1;
|
|
HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
|
|
/* notreached */
|
|
}
|
|
|
|
/* translate.c should have made BXNS UNDEF unless we're secure */
|
|
assert(env->v7m.secure);
|
|
|
|
if (!(dest & 1)) {
|
|
env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
|
|
}
|
|
switch_v7m_security_state(env, dest & 1);
|
|
env->thumb = 1;
|
|
env->regs[15] = dest & ~1;
|
|
arm_rebuild_hflags(env);
|
|
}
|
|
|
|
void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
|
|
{
|
|
/*
|
|
* Handle v7M BLXNS:
|
|
* - bit 0 of the destination address is the target security state
|
|
*/
|
|
|
|
/* At this point regs[15] is the address just after the BLXNS */
|
|
uint32_t nextinst = env->regs[15] | 1;
|
|
uint32_t sp = env->regs[13] - 8;
|
|
uint32_t saved_psr;
|
|
|
|
/* translate.c will have made BLXNS UNDEF unless we're secure */
|
|
assert(env->v7m.secure);
|
|
|
|
if (dest & 1) {
|
|
/*
|
|
* Target is Secure, so this is just a normal BLX,
|
|
* except that the low bit doesn't indicate Thumb/not.
|
|
*/
|
|
env->regs[14] = nextinst;
|
|
env->thumb = 1;
|
|
env->regs[15] = dest & ~1;
|
|
return;
|
|
}
|
|
|
|
/* Target is non-secure: first push a stack frame */
|
|
if (!QEMU_IS_ALIGNED(sp, 8)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"BLXNS with misaligned SP is UNPREDICTABLE\n");
|
|
}
|
|
|
|
if (sp < v7m_sp_limit(env)) {
|
|
raise_exception(env, EXCP_STKOF, 0, 1);
|
|
}
|
|
|
|
saved_psr = env->v7m.exception;
|
|
if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
|
|
saved_psr |= XPSR_SFPA;
|
|
}
|
|
|
|
/* Note that these stores can throw exceptions on MPU faults */
|
|
cpu_stl_data_ra(env, sp, nextinst, GETPC());
|
|
cpu_stl_data_ra(env, sp + 4, saved_psr, GETPC());
|
|
|
|
env->regs[13] = sp;
|
|
env->regs[14] = 0xfeffffff;
|
|
if (arm_v7m_is_handler_mode(env)) {
|
|
/*
|
|
* Write a dummy value to IPSR, to avoid leaking the current secure
|
|
* exception number to non-secure code. This is guaranteed not
|
|
* to cause write_v7m_exception() to actually change stacks.
|
|
*/
|
|
write_v7m_exception(env, 1);
|
|
}
|
|
env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
|
|
switch_v7m_security_state(env, 0);
|
|
env->thumb = 1;
|
|
env->regs[15] = dest;
|
|
arm_rebuild_hflags(env);
|
|
}
|
|
|
|
static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
|
|
bool spsel)
|
|
{
|
|
/*
|
|
* Return a pointer to the location where we currently store the
|
|
* stack pointer for the requested security state and thread mode.
|
|
* This pointer will become invalid if the CPU state is updated
|
|
* such that the stack pointers are switched around (eg changing
|
|
* the SPSEL control bit).
|
|
* Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
|
|
* Unlike that pseudocode, we require the caller to pass us in the
|
|
* SPSEL control bit value; this is because we also use this
|
|
* function in handling of pushing of the callee-saves registers
|
|
* part of the v8M stack frame (pseudocode PushCalleeStack()),
|
|
* and in the tailchain codepath the SPSEL bit comes from the exception
|
|
* return magic LR value from the previous exception. The pseudocode
|
|
* opencodes the stack-selection in PushCalleeStack(), but we prefer
|
|
* to make this utility function generic enough to do the job.
|
|
*/
|
|
bool want_psp = threadmode && spsel;
|
|
|
|
if (secure == env->v7m.secure) {
|
|
if (want_psp == v7m_using_psp(env)) {
|
|
return &env->regs[13];
|
|
} else {
|
|
return &env->v7m.other_sp;
|
|
}
|
|
} else {
|
|
if (want_psp) {
|
|
return &env->v7m.other_ss_psp;
|
|
} else {
|
|
return &env->v7m.other_ss_msp;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
|
|
uint32_t *pvec)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
CPUARMState *env = &cpu->env;
|
|
MemTxResult result;
|
|
uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
|
|
uint32_t vector_entry;
|
|
MemTxAttrs attrs = {};
|
|
ARMMMUIdx mmu_idx;
|
|
bool exc_secure;
|
|
|
|
mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
|
|
|
|
/*
|
|
* We don't do a get_phys_addr() here because the rules for vector
|
|
* loads are special: they always use the default memory map, and
|
|
* the default memory map permits reads from all addresses.
|
|
* Since there's no easy way to pass through to pmsav8_mpu_lookup()
|
|
* that we want this special case which would always say "yes",
|
|
* we just do the SAU lookup here followed by a direct physical load.
|
|
*/
|
|
attrs.secure = targets_secure;
|
|
attrs.user = false;
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
|
|
V8M_SAttributes sattrs = {};
|
|
|
|
v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
|
|
if (sattrs.ns) {
|
|
attrs.secure = false;
|
|
} else if (!targets_secure) {
|
|
/*
|
|
* NS access to S memory: the underlying exception which we escalate
|
|
* to HardFault is SecureFault, which always targets Secure.
|
|
*/
|
|
exc_secure = true;
|
|
goto load_fail;
|
|
}
|
|
}
|
|
|
|
vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
|
|
attrs, &result);
|
|
if (result != MEMTX_OK) {
|
|
/*
|
|
* Underlying exception is BusFault: its target security state
|
|
* depends on BFHFNMINS.
|
|
*/
|
|
exc_secure = !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
|
|
goto load_fail;
|
|
}
|
|
*pvec = vector_entry;
|
|
return true;
|
|
|
|
load_fail:
|
|
/*
|
|
* All vector table fetch fails are reported as HardFault, with
|
|
* HFSR.VECTTBL and .FORCED set. (FORCED is set because
|
|
* technically the underlying exception is a SecureFault or BusFault
|
|
* that is escalated to HardFault.) This is a terminal exception,
|
|
* so we will either take the HardFault immediately or else enter
|
|
* lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
|
|
* The HardFault is Secure if BFHFNMINS is 0 (meaning that all HFs are
|
|
* secure); otherwise it targets the same security state as the
|
|
* underlying exception.
|
|
* In v8.1M HardFaults from vector table fetch fails don't set FORCED.
|
|
*/
|
|
if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
|
|
exc_secure = true;
|
|
}
|
|
env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK;
|
|
if (!arm_feature(env, ARM_FEATURE_V8_1M)) {
|
|
env->v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
|
|
}
|
|
armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
|
|
return false;
|
|
}
|
|
|
|
static uint32_t v7m_integrity_sig(CPUARMState *env, uint32_t lr)
|
|
{
|
|
/*
|
|
* Return the integrity signature value for the callee-saves
|
|
* stack frame section. @lr is the exception return payload/LR value
|
|
* whose FType bit forms bit 0 of the signature if FP is present.
|
|
*/
|
|
uint32_t sig = 0xfefa125a;
|
|
|
|
if (!cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))
|
|
|| (lr & R_V7M_EXCRET_FTYPE_MASK)) {
|
|
sig |= 1;
|
|
}
|
|
return sig;
|
|
}
|
|
|
|
static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
|
|
bool ignore_faults)
|
|
{
|
|
/*
|
|
* For v8M, push the callee-saves register part of the stack frame.
|
|
* Compare the v8M pseudocode PushCalleeStack().
|
|
* In the tailchaining case this may not be the current stack.
|
|
*/
|
|
CPUARMState *env = &cpu->env;
|
|
uint32_t *frame_sp_p;
|
|
uint32_t frameptr;
|
|
ARMMMUIdx mmu_idx;
|
|
bool stacked_ok;
|
|
uint32_t limit;
|
|
bool want_psp;
|
|
uint32_t sig;
|
|
StackingMode smode = ignore_faults ? STACK_IGNFAULTS : STACK_NORMAL;
|
|
|
|
if (dotailchain) {
|
|
bool mode = lr & R_V7M_EXCRET_MODE_MASK;
|
|
bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
|
|
!mode;
|
|
|
|
mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
|
|
frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
|
|
lr & R_V7M_EXCRET_SPSEL_MASK);
|
|
want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
|
|
if (want_psp) {
|
|
limit = env->v7m.psplim[M_REG_S];
|
|
} else {
|
|
limit = env->v7m.msplim[M_REG_S];
|
|
}
|
|
} else {
|
|
mmu_idx = arm_mmu_idx(env);
|
|
frame_sp_p = &env->regs[13];
|
|
limit = v7m_sp_limit(env);
|
|
}
|
|
|
|
frameptr = *frame_sp_p - 0x28;
|
|
if (frameptr < limit) {
|
|
/*
|
|
* Stack limit failure: set SP to the limit value, and generate
|
|
* STKOF UsageFault. Stack pushes below the limit must not be
|
|
* performed. It is IMPDEF whether pushes above the limit are
|
|
* performed; we choose not to.
|
|
*/
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...STKOF during callee-saves register stacking\n");
|
|
env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
|
|
env->v7m.secure);
|
|
*frame_sp_p = limit;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Write as much of the stack frame as we can. A write failure may
|
|
* cause us to pend a derived exception.
|
|
*/
|
|
sig = v7m_integrity_sig(env, lr);
|
|
stacked_ok =
|
|
v7m_stack_write(cpu, frameptr, sig, mmu_idx, smode) &&
|
|
v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, smode) &&
|
|
v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, smode) &&
|
|
v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, smode) &&
|
|
v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, smode) &&
|
|
v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, smode) &&
|
|
v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, smode) &&
|
|
v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, smode) &&
|
|
v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, smode);
|
|
|
|
/* Update SP regardless of whether any of the stack accesses failed. */
|
|
*frame_sp_p = frameptr;
|
|
|
|
return !stacked_ok;
|
|
}
|
|
|
|
static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
|
|
bool ignore_stackfaults)
|
|
{
|
|
/*
|
|
* Do the "take the exception" parts of exception entry,
|
|
* but not the pushing of state to the stack. This is
|
|
* similar to the pseudocode ExceptionTaken() function.
|
|
*/
|
|
CPUARMState *env = &cpu->env;
|
|
uint32_t addr;
|
|
bool targets_secure;
|
|
int exc;
|
|
bool push_failed = false;
|
|
|
|
armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
|
|
qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
|
|
targets_secure ? "secure" : "nonsecure", exc);
|
|
|
|
if (dotailchain) {
|
|
/* Sanitize LR FType and PREFIX bits */
|
|
if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
|
|
lr |= R_V7M_EXCRET_FTYPE_MASK;
|
|
}
|
|
lr = deposit32(lr, 24, 8, 0xff);
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
|
|
(lr & R_V7M_EXCRET_S_MASK)) {
|
|
/*
|
|
* The background code (the owner of the registers in the
|
|
* exception frame) is Secure. This means it may either already
|
|
* have or now needs to push callee-saves registers.
|
|
*/
|
|
if (targets_secure) {
|
|
if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
|
|
/*
|
|
* We took an exception from Secure to NonSecure
|
|
* (which means the callee-saved registers got stacked)
|
|
* and are now tailchaining to a Secure exception.
|
|
* Clear DCRS so eventual return from this Secure
|
|
* exception unstacks the callee-saved registers.
|
|
*/
|
|
lr &= ~R_V7M_EXCRET_DCRS_MASK;
|
|
}
|
|
} else {
|
|
/*
|
|
* We're going to a non-secure exception; push the
|
|
* callee-saves registers to the stack now, if they're
|
|
* not already saved.
|
|
*/
|
|
if (lr & R_V7M_EXCRET_DCRS_MASK &&
|
|
!(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
|
|
push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
|
|
ignore_stackfaults);
|
|
}
|
|
lr |= R_V7M_EXCRET_DCRS_MASK;
|
|
}
|
|
}
|
|
|
|
lr &= ~R_V7M_EXCRET_ES_MASK;
|
|
if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
|
|
lr |= R_V7M_EXCRET_ES_MASK;
|
|
}
|
|
lr &= ~R_V7M_EXCRET_SPSEL_MASK;
|
|
if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
|
|
lr |= R_V7M_EXCRET_SPSEL_MASK;
|
|
}
|
|
|
|
/*
|
|
* Clear registers if necessary to prevent non-secure exception
|
|
* code being able to see register values from secure code.
|
|
* Where register values become architecturally UNKNOWN we leave
|
|
* them with their previous values. v8.1M is tighter than v8.0M
|
|
* here and always zeroes the caller-saved registers regardless
|
|
* of the security state the exception is targeting.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
|
|
if (!targets_secure || arm_feature(env, ARM_FEATURE_V8_1M)) {
|
|
/*
|
|
* Always clear the caller-saved registers (they have been
|
|
* pushed to the stack earlier in v7m_push_stack()).
|
|
* Clear callee-saved registers if the background code is
|
|
* Secure (in which case these regs were saved in
|
|
* v7m_push_callee_stack()).
|
|
*/
|
|
int i;
|
|
/*
|
|
* r4..r11 are callee-saves, zero only if background
|
|
* state was Secure (EXCRET.S == 1) and exception
|
|
* targets Non-secure state
|
|
*/
|
|
bool zero_callee_saves = !targets_secure &&
|
|
(lr & R_V7M_EXCRET_S_MASK);
|
|
|
|
for (i = 0; i < 13; i++) {
|
|
if (i < 4 || i > 11 || zero_callee_saves) {
|
|
env->regs[i] = 0;
|
|
}
|
|
}
|
|
/* Clear EAPSR */
|
|
xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (push_failed && !ignore_stackfaults) {
|
|
/*
|
|
* Derived exception on callee-saves register stacking:
|
|
* we might now want to take a different exception which
|
|
* targets a different security state, so try again from the top.
|
|
*/
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...derived exception on callee-saves register stacking");
|
|
v7m_exception_taken(cpu, lr, true, true);
|
|
return;
|
|
}
|
|
|
|
if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
|
|
/* Vector load failed: derived exception */
|
|
qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
|
|
v7m_exception_taken(cpu, lr, true, true);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Now we've done everything that might cause a derived exception
|
|
* we can go ahead and activate whichever exception we're going to
|
|
* take (which might now be the derived exception).
|
|
*/
|
|
armv7m_nvic_acknowledge_irq(env->nvic);
|
|
|
|
/* Switch to target security state -- must do this before writing SPSEL */
|
|
switch_v7m_security_state(env, targets_secure);
|
|
write_v7m_control_spsel(env, 0);
|
|
arm_clear_exclusive(env);
|
|
/* Clear SFPA and FPCA (has no effect if no FPU) */
|
|
env->v7m.control[M_REG_S] &=
|
|
~(R_V7M_CONTROL_FPCA_MASK | R_V7M_CONTROL_SFPA_MASK);
|
|
/* Clear IT bits */
|
|
env->condexec_bits = 0;
|
|
env->regs[14] = lr;
|
|
env->regs[15] = addr & 0xfffffffe;
|
|
env->thumb = addr & 1;
|
|
arm_rebuild_hflags(env);
|
|
}
|
|
|
|
static void v7m_update_fpccr(CPUARMState *env, uint32_t frameptr,
|
|
bool apply_splim)
|
|
{
|
|
/*
|
|
* Like the pseudocode UpdateFPCCR: save state in FPCAR and FPCCR
|
|
* that we will need later in order to do lazy FP reg stacking.
|
|
*/
|
|
bool is_secure = env->v7m.secure;
|
|
void *nvic = env->nvic;
|
|
/*
|
|
* Some bits are unbanked and live always in fpccr[M_REG_S]; some bits
|
|
* are banked and we want to update the bit in the bank for the
|
|
* current security state; and in one case we want to specifically
|
|
* update the NS banked version of a bit even if we are secure.
|
|
*/
|
|
uint32_t *fpccr_s = &env->v7m.fpccr[M_REG_S];
|
|
uint32_t *fpccr_ns = &env->v7m.fpccr[M_REG_NS];
|
|
uint32_t *fpccr = &env->v7m.fpccr[is_secure];
|
|
bool hfrdy, bfrdy, mmrdy, ns_ufrdy, s_ufrdy, sfrdy, monrdy;
|
|
|
|
env->v7m.fpcar[is_secure] = frameptr & ~0x7;
|
|
|
|
if (apply_splim && arm_feature(env, ARM_FEATURE_V8)) {
|
|
bool splimviol;
|
|
uint32_t splim = v7m_sp_limit(env);
|
|
bool ign = armv7m_nvic_neg_prio_requested(nvic, is_secure) &&
|
|
(env->v7m.ccr[is_secure] & R_V7M_CCR_STKOFHFNMIGN_MASK);
|
|
|
|
splimviol = !ign && frameptr < splim;
|
|
*fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, SPLIMVIOL, splimviol);
|
|
}
|
|
|
|
*fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, LSPACT, 1);
|
|
|
|
*fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, S, is_secure);
|
|
|
|
*fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, USER, arm_current_el(env) == 0);
|
|
|
|
*fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, THREAD,
|
|
!arm_v7m_is_handler_mode(env));
|
|
|
|
hfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_HARD, false);
|
|
*fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
|
|
|
|
bfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_BUS, false);
|
|
*fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
|
|
|
|
mmrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_MEM, is_secure);
|
|
*fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, MMRDY, mmrdy);
|
|
|
|
ns_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, false);
|
|
*fpccr_ns = FIELD_DP32(*fpccr_ns, V7M_FPCCR, UFRDY, ns_ufrdy);
|
|
|
|
monrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_DEBUG, false);
|
|
*fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, MONRDY, monrdy);
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
|
|
s_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, true);
|
|
*fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, UFRDY, s_ufrdy);
|
|
|
|
sfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_SECURE, false);
|
|
*fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, SFRDY, sfrdy);
|
|
}
|
|
}
|
|
|
|
void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
|
|
{
|
|
/* fptr is the value of Rn, the frame pointer we store the FP regs to */
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
bool s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
|
|
bool lspact = env->v7m.fpccr[s] & R_V7M_FPCCR_LSPACT_MASK;
|
|
uintptr_t ra = GETPC();
|
|
|
|
assert(env->v7m.secure);
|
|
|
|
if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
|
|
return;
|
|
}
|
|
|
|
/* Check access to the coprocessor is permitted */
|
|
if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
|
|
raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
|
|
}
|
|
|
|
if (lspact) {
|
|
/* LSPACT should not be active when there is active FP state */
|
|
raise_exception_ra(env, EXCP_LSERR, 0, 1, GETPC());
|
|
}
|
|
|
|
if (fptr & 7) {
|
|
raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
|
|
}
|
|
|
|
/*
|
|
* Note that we do not use v7m_stack_write() here, because the
|
|
* accesses should not set the FSR bits for stacking errors if they
|
|
* fail. (In pseudocode terms, they are AccType_NORMAL, not AccType_STACK
|
|
* or AccType_LAZYFP). Faults in cpu_stl_data_ra() will throw exceptions
|
|
* and longjmp out.
|
|
*/
|
|
if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
|
|
bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
|
|
int i;
|
|
|
|
for (i = 0; i < (ts ? 32 : 16); i += 2) {
|
|
uint64_t dn = *aa32_vfp_dreg(env, i / 2);
|
|
uint32_t faddr = fptr + 4 * i;
|
|
uint32_t slo = extract64(dn, 0, 32);
|
|
uint32_t shi = extract64(dn, 32, 32);
|
|
|
|
if (i >= 16) {
|
|
faddr += 8; /* skip the slot for the FPSCR */
|
|
}
|
|
cpu_stl_data_ra(env, faddr, slo, ra);
|
|
cpu_stl_data_ra(env, faddr + 4, shi, ra);
|
|
}
|
|
cpu_stl_data_ra(env, fptr + 0x40, vfp_get_fpscr(env), ra);
|
|
if (cpu_isar_feature(aa32_mve, cpu)) {
|
|
cpu_stl_data_ra(env, fptr + 0x44, env->v7m.vpr, ra);
|
|
}
|
|
|
|
/*
|
|
* If TS is 0 then s0 to s15, FPSCR and VPR are UNKNOWN; we choose to
|
|
* leave them unchanged, matching our choice in v7m_preserve_fp_state.
|
|
*/
|
|
if (ts) {
|
|
for (i = 0; i < 32; i += 2) {
|
|
*aa32_vfp_dreg(env, i / 2) = 0;
|
|
}
|
|
vfp_set_fpscr(env, 0);
|
|
if (cpu_isar_feature(aa32_mve, cpu)) {
|
|
env->v7m.vpr = 0;
|
|
}
|
|
}
|
|
} else {
|
|
v7m_update_fpccr(env, fptr, false);
|
|
}
|
|
|
|
env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
|
|
}
|
|
|
|
void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
uintptr_t ra = GETPC();
|
|
|
|
/* fptr is the value of Rn, the frame pointer we load the FP regs from */
|
|
assert(env->v7m.secure);
|
|
|
|
if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
|
|
return;
|
|
}
|
|
|
|
/* Check access to the coprocessor is permitted */
|
|
if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
|
|
raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
|
|
}
|
|
|
|
if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
|
|
/* State in FP is still valid */
|
|
env->v7m.fpccr[M_REG_S] &= ~R_V7M_FPCCR_LSPACT_MASK;
|
|
} else {
|
|
bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
|
|
int i;
|
|
uint32_t fpscr;
|
|
|
|
if (fptr & 7) {
|
|
raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
|
|
}
|
|
|
|
for (i = 0; i < (ts ? 32 : 16); i += 2) {
|
|
uint32_t slo, shi;
|
|
uint64_t dn;
|
|
uint32_t faddr = fptr + 4 * i;
|
|
|
|
if (i >= 16) {
|
|
faddr += 8; /* skip the slot for the FPSCR and VPR */
|
|
}
|
|
|
|
slo = cpu_ldl_data_ra(env, faddr, ra);
|
|
shi = cpu_ldl_data_ra(env, faddr + 4, ra);
|
|
|
|
dn = (uint64_t) shi << 32 | slo;
|
|
*aa32_vfp_dreg(env, i / 2) = dn;
|
|
}
|
|
fpscr = cpu_ldl_data_ra(env, fptr + 0x40, ra);
|
|
vfp_set_fpscr(env, fpscr);
|
|
if (cpu_isar_feature(aa32_mve, cpu)) {
|
|
env->v7m.vpr = cpu_ldl_data_ra(env, fptr + 0x44, ra);
|
|
}
|
|
}
|
|
|
|
env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
|
|
}
|
|
|
|
static bool v7m_push_stack(ARMCPU *cpu)
|
|
{
|
|
/*
|
|
* Do the "set up stack frame" part of exception entry,
|
|
* similar to pseudocode PushStack().
|
|
* Return true if we generate a derived exception (and so
|
|
* should ignore further stack faults trying to process
|
|
* that derived exception.)
|
|
*/
|
|
bool stacked_ok = true, limitviol = false;
|
|
CPUARMState *env = &cpu->env;
|
|
uint32_t xpsr = xpsr_read(env);
|
|
uint32_t frameptr = env->regs[13];
|
|
ARMMMUIdx mmu_idx = arm_mmu_idx(env);
|
|
uint32_t framesize;
|
|
bool nsacr_cp10 = extract32(env->v7m.nsacr, 10, 1);
|
|
|
|
if ((env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) &&
|
|
(env->v7m.secure || nsacr_cp10)) {
|
|
if (env->v7m.secure &&
|
|
env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK) {
|
|
framesize = 0xa8;
|
|
} else {
|
|
framesize = 0x68;
|
|
}
|
|
} else {
|
|
framesize = 0x20;
|
|
}
|
|
|
|
/* Align stack pointer if the guest wants that */
|
|
if ((frameptr & 4) &&
|
|
(env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
|
|
frameptr -= 4;
|
|
xpsr |= XPSR_SPREALIGN;
|
|
}
|
|
|
|
xpsr &= ~XPSR_SFPA;
|
|
if (env->v7m.secure &&
|
|
(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
|
|
xpsr |= XPSR_SFPA;
|
|
}
|
|
|
|
frameptr -= framesize;
|
|
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
uint32_t limit = v7m_sp_limit(env);
|
|
|
|
if (frameptr < limit) {
|
|
/*
|
|
* Stack limit failure: set SP to the limit value, and generate
|
|
* STKOF UsageFault. Stack pushes below the limit must not be
|
|
* performed. It is IMPDEF whether pushes above the limit are
|
|
* performed; we choose not to.
|
|
*/
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...STKOF during stacking\n");
|
|
env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
|
|
env->v7m.secure);
|
|
env->regs[13] = limit;
|
|
/*
|
|
* We won't try to perform any further memory accesses but
|
|
* we must continue through the following code to check for
|
|
* permission faults during FPU state preservation, and we
|
|
* must update FPCCR if lazy stacking is enabled.
|
|
*/
|
|
limitviol = true;
|
|
stacked_ok = false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Write as much of the stack frame as we can. If we fail a stack
|
|
* write this will result in a derived exception being pended
|
|
* (which may be taken in preference to the one we started with
|
|
* if it has higher priority).
|
|
*/
|
|
stacked_ok = stacked_ok &&
|
|
v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, STACK_NORMAL) &&
|
|
v7m_stack_write(cpu, frameptr + 4, env->regs[1],
|
|
mmu_idx, STACK_NORMAL) &&
|
|
v7m_stack_write(cpu, frameptr + 8, env->regs[2],
|
|
mmu_idx, STACK_NORMAL) &&
|
|
v7m_stack_write(cpu, frameptr + 12, env->regs[3],
|
|
mmu_idx, STACK_NORMAL) &&
|
|
v7m_stack_write(cpu, frameptr + 16, env->regs[12],
|
|
mmu_idx, STACK_NORMAL) &&
|
|
v7m_stack_write(cpu, frameptr + 20, env->regs[14],
|
|
mmu_idx, STACK_NORMAL) &&
|
|
v7m_stack_write(cpu, frameptr + 24, env->regs[15],
|
|
mmu_idx, STACK_NORMAL) &&
|
|
v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, STACK_NORMAL);
|
|
|
|
if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) {
|
|
/* FPU is active, try to save its registers */
|
|
bool fpccr_s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
|
|
bool lspact = env->v7m.fpccr[fpccr_s] & R_V7M_FPCCR_LSPACT_MASK;
|
|
|
|
if (lspact && arm_feature(env, ARM_FEATURE_M_SECURITY)) {
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...SecureFault because LSPACT and FPCA both set\n");
|
|
env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
|
|
} else if (!env->v7m.secure && !nsacr_cp10) {
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...Secure UsageFault with CFSR.NOCP because "
|
|
"NSACR.CP10 prevents stacking FP regs\n");
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
|
|
env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
|
|
} else {
|
|
if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
|
|
/* Lazy stacking disabled, save registers now */
|
|
int i;
|
|
bool cpacr_pass = v7m_cpacr_pass(env, env->v7m.secure,
|
|
arm_current_el(env) != 0);
|
|
|
|
if (stacked_ok && !cpacr_pass) {
|
|
/*
|
|
* Take UsageFault if CPACR forbids access. The pseudocode
|
|
* here does a full CheckCPEnabled() but we know the NSACR
|
|
* check can never fail as we have already handled that.
|
|
*/
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...UsageFault with CFSR.NOCP because "
|
|
"CPACR.CP10 prevents stacking FP regs\n");
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
|
|
env->v7m.secure);
|
|
env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
|
|
stacked_ok = false;
|
|
}
|
|
|
|
for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
|
|
uint64_t dn = *aa32_vfp_dreg(env, i / 2);
|
|
uint32_t faddr = frameptr + 0x20 + 4 * i;
|
|
uint32_t slo = extract64(dn, 0, 32);
|
|
uint32_t shi = extract64(dn, 32, 32);
|
|
|
|
if (i >= 16) {
|
|
faddr += 8; /* skip the slot for the FPSCR and VPR */
|
|
}
|
|
stacked_ok = stacked_ok &&
|
|
v7m_stack_write(cpu, faddr, slo,
|
|
mmu_idx, STACK_NORMAL) &&
|
|
v7m_stack_write(cpu, faddr + 4, shi,
|
|
mmu_idx, STACK_NORMAL);
|
|
}
|
|
stacked_ok = stacked_ok &&
|
|
v7m_stack_write(cpu, frameptr + 0x60,
|
|
vfp_get_fpscr(env), mmu_idx, STACK_NORMAL);
|
|
if (cpu_isar_feature(aa32_mve, cpu)) {
|
|
stacked_ok = stacked_ok &&
|
|
v7m_stack_write(cpu, frameptr + 0x64,
|
|
env->v7m.vpr, mmu_idx, STACK_NORMAL);
|
|
}
|
|
if (cpacr_pass) {
|
|
for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
|
|
*aa32_vfp_dreg(env, i / 2) = 0;
|
|
}
|
|
vfp_set_fpscr(env, 0);
|
|
if (cpu_isar_feature(aa32_mve, cpu)) {
|
|
env->v7m.vpr = 0;
|
|
}
|
|
}
|
|
} else {
|
|
/* Lazy stacking enabled, save necessary info to stack later */
|
|
v7m_update_fpccr(env, frameptr + 0x20, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we broke a stack limit then SP was already updated earlier;
|
|
* otherwise we update SP regardless of whether any of the stack
|
|
* accesses failed or we took some other kind of fault.
|
|
*/
|
|
if (!limitviol) {
|
|
env->regs[13] = frameptr;
|
|
}
|
|
|
|
return !stacked_ok;
|
|
}
|
|
|
|
static void do_v7m_exception_exit(ARMCPU *cpu)
|
|
{
|
|
CPUARMState *env = &cpu->env;
|
|
uint32_t excret;
|
|
uint32_t xpsr, xpsr_mask;
|
|
bool ufault = false;
|
|
bool sfault = false;
|
|
bool return_to_sp_process;
|
|
bool return_to_handler;
|
|
bool rettobase = false;
|
|
bool exc_secure = false;
|
|
bool return_to_secure;
|
|
bool ftype;
|
|
bool restore_s16_s31 = false;
|
|
|
|
/*
|
|
* If we're not in Handler mode then jumps to magic exception-exit
|
|
* addresses don't have magic behaviour. However for the v8M
|
|
* security extensions the magic secure-function-return has to
|
|
* work in thread mode too, so to avoid doing an extra check in
|
|
* the generated code we allow exception-exit magic to also cause the
|
|
* internal exception and bring us here in thread mode. Correct code
|
|
* will never try to do this (the following insn fetch will always
|
|
* fault) so we the overhead of having taken an unnecessary exception
|
|
* doesn't matter.
|
|
*/
|
|
if (!arm_v7m_is_handler_mode(env)) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* In the spec pseudocode ExceptionReturn() is called directly
|
|
* from BXWritePC() and gets the full target PC value including
|
|
* bit zero. In QEMU's implementation we treat it as a normal
|
|
* jump-to-register (which is then caught later on), and so split
|
|
* the target value up between env->regs[15] and env->thumb in
|
|
* gen_bx(). Reconstitute it.
|
|
*/
|
|
excret = env->regs[15];
|
|
if (env->thumb) {
|
|
excret |= 1;
|
|
}
|
|
|
|
qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
|
|
" previous exception %d\n",
|
|
excret, env->v7m.exception);
|
|
|
|
if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
|
|
"exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
|
|
excret);
|
|
}
|
|
|
|
ftype = excret & R_V7M_EXCRET_FTYPE_MASK;
|
|
|
|
if (!ftype && !cpu_isar_feature(aa32_vfp_simd, cpu)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero FTYPE in exception "
|
|
"exit PC value 0x%" PRIx32 " is UNPREDICTABLE "
|
|
"if FPU not present\n",
|
|
excret);
|
|
ftype = true;
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
|
|
/*
|
|
* EXC_RETURN.ES validation check (R_SMFL). We must do this before
|
|
* we pick which FAULTMASK to clear.
|
|
*/
|
|
if (!env->v7m.secure &&
|
|
((excret & R_V7M_EXCRET_ES_MASK) ||
|
|
!(excret & R_V7M_EXCRET_DCRS_MASK))) {
|
|
sfault = 1;
|
|
/* For all other purposes, treat ES as 0 (R_HXSR) */
|
|
excret &= ~R_V7M_EXCRET_ES_MASK;
|
|
}
|
|
exc_secure = excret & R_V7M_EXCRET_ES_MASK;
|
|
}
|
|
|
|
if (env->v7m.exception != ARMV7M_EXCP_NMI) {
|
|
/*
|
|
* Auto-clear FAULTMASK on return from other than NMI.
|
|
* If the security extension is implemented then this only
|
|
* happens if the raw execution priority is >= 0; the
|
|
* value of the ES bit in the exception return value indicates
|
|
* which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
|
|
if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
|
|
env->v7m.faultmask[exc_secure] = 0;
|
|
}
|
|
} else {
|
|
env->v7m.faultmask[M_REG_NS] = 0;
|
|
}
|
|
}
|
|
|
|
switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
|
|
exc_secure)) {
|
|
case -1:
|
|
/* attempt to exit an exception that isn't active */
|
|
ufault = true;
|
|
break;
|
|
case 0:
|
|
/* still an irq active now */
|
|
break;
|
|
case 1:
|
|
/*
|
|
* We returned to base exception level, no nesting.
|
|
* (In the pseudocode this is written using "NestedActivation != 1"
|
|
* where we have 'rettobase == false'.)
|
|
*/
|
|
rettobase = true;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
|
|
return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
|
|
return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
|
|
(excret & R_V7M_EXCRET_S_MASK);
|
|
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
|
|
/*
|
|
* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
|
|
* we choose to take the UsageFault.
|
|
*/
|
|
if ((excret & R_V7M_EXCRET_S_MASK) ||
|
|
(excret & R_V7M_EXCRET_ES_MASK) ||
|
|
!(excret & R_V7M_EXCRET_DCRS_MASK)) {
|
|
ufault = true;
|
|
}
|
|
}
|
|
if (excret & R_V7M_EXCRET_RES0_MASK) {
|
|
ufault = true;
|
|
}
|
|
} else {
|
|
/* For v7M we only recognize certain combinations of the low bits */
|
|
switch (excret & 0xf) {
|
|
case 1: /* Return to Handler */
|
|
break;
|
|
case 13: /* Return to Thread using Process stack */
|
|
case 9: /* Return to Thread using Main stack */
|
|
/*
|
|
* We only need to check NONBASETHRDENA for v7M, because in
|
|
* v8M this bit does not exist (it is RES1).
|
|
*/
|
|
if (!rettobase &&
|
|
!(env->v7m.ccr[env->v7m.secure] &
|
|
R_V7M_CCR_NONBASETHRDENA_MASK)) {
|
|
ufault = true;
|
|
}
|
|
break;
|
|
default:
|
|
ufault = true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
|
|
* Handler mode (and will be until we write the new XPSR.Interrupt
|
|
* field) this does not switch around the current stack pointer.
|
|
* We must do this before we do any kind of tailchaining, including
|
|
* for the derived exceptions on integrity check failures, or we will
|
|
* give the guest an incorrect EXCRET.SPSEL value on exception entry.
|
|
*/
|
|
write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
|
|
|
|
/*
|
|
* Clear scratch FP values left in caller saved registers; this
|
|
* must happen before any kind of tail chaining.
|
|
*/
|
|
if ((env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_CLRONRET_MASK) &&
|
|
(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
|
|
if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
|
|
env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
|
|
qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
|
|
"stackframe: error during lazy state deactivation\n");
|
|
v7m_exception_taken(cpu, excret, true, false);
|
|
return;
|
|
} else {
|
|
if (arm_feature(env, ARM_FEATURE_V8_1M)) {
|
|
/* v8.1M adds this NOCP check */
|
|
bool nsacr_pass = exc_secure ||
|
|
extract32(env->v7m.nsacr, 10, 1);
|
|
bool cpacr_pass = v7m_cpacr_pass(env, exc_secure, true);
|
|
if (!nsacr_pass) {
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, true);
|
|
env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
|
|
qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
|
|
"stackframe: NSACR prevents clearing FPU registers\n");
|
|
v7m_exception_taken(cpu, excret, true, false);
|
|
return;
|
|
} else if (!cpacr_pass) {
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
|
|
exc_secure);
|
|
env->v7m.cfsr[exc_secure] |= R_V7M_CFSR_NOCP_MASK;
|
|
qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
|
|
"stackframe: CPACR prevents clearing FPU registers\n");
|
|
v7m_exception_taken(cpu, excret, true, false);
|
|
return;
|
|
}
|
|
}
|
|
/* Clear s0..s15, FPSCR and VPR */
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i += 2) {
|
|
*aa32_vfp_dreg(env, i / 2) = 0;
|
|
}
|
|
vfp_set_fpscr(env, 0);
|
|
if (cpu_isar_feature(aa32_mve, cpu)) {
|
|
env->v7m.vpr = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (sfault) {
|
|
env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
|
|
qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
|
|
"stackframe: failed EXC_RETURN.ES validity check\n");
|
|
v7m_exception_taken(cpu, excret, true, false);
|
|
return;
|
|
}
|
|
|
|
if (ufault) {
|
|
/*
|
|
* Bad exception return: instead of popping the exception
|
|
* stack, directly take a usage fault on the current stack.
|
|
*/
|
|
env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
|
|
qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
|
|
"stackframe: failed exception return integrity check\n");
|
|
v7m_exception_taken(cpu, excret, true, false);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Tailchaining: if there is currently a pending exception that
|
|
* is high enough priority to preempt execution at the level we're
|
|
* about to return to, then just directly take that exception now,
|
|
* avoiding an unstack-and-then-stack. Note that now we have
|
|
* deactivated the previous exception by calling armv7m_nvic_complete_irq()
|
|
* our current execution priority is already the execution priority we are
|
|
* returning to -- none of the state we would unstack or set based on
|
|
* the EXCRET value affects it.
|
|
*/
|
|
if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
|
|
qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
|
|
v7m_exception_taken(cpu, excret, true, false);
|
|
return;
|
|
}
|
|
|
|
switch_v7m_security_state(env, return_to_secure);
|
|
|
|
{
|
|
/*
|
|
* The stack pointer we should be reading the exception frame from
|
|
* depends on bits in the magic exception return type value (and
|
|
* for v8M isn't necessarily the stack pointer we will eventually
|
|
* end up resuming execution with). Get a pointer to the location
|
|
* in the CPU state struct where the SP we need is currently being
|
|
* stored; we will use and modify it in place.
|
|
* We use this limited C variable scope so we don't accidentally
|
|
* use 'frame_sp_p' after we do something that makes it invalid.
|
|
*/
|
|
bool spsel = env->v7m.control[return_to_secure] & R_V7M_CONTROL_SPSEL_MASK;
|
|
uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
|
|
return_to_secure,
|
|
!return_to_handler,
|
|
spsel);
|
|
uint32_t frameptr = *frame_sp_p;
|
|
bool pop_ok = true;
|
|
ARMMMUIdx mmu_idx;
|
|
bool return_to_priv = return_to_handler ||
|
|
!(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
|
|
|
|
mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
|
|
return_to_priv);
|
|
|
|
if (!QEMU_IS_ALIGNED(frameptr, 8) &&
|
|
arm_feature(env, ARM_FEATURE_V8)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"M profile exception return with non-8-aligned SP "
|
|
"for destination state is UNPREDICTABLE\n");
|
|
}
|
|
|
|
/* Do we need to pop callee-saved registers? */
|
|
if (return_to_secure &&
|
|
((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
|
|
(excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
|
|
uint32_t actual_sig;
|
|
|
|
pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
|
|
|
|
if (pop_ok && v7m_integrity_sig(env, excret) != actual_sig) {
|
|
/* Take a SecureFault on the current stack */
|
|
env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
|
|
qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
|
|
"stackframe: failed exception return integrity "
|
|
"signature check\n");
|
|
v7m_exception_taken(cpu, excret, true, false);
|
|
return;
|
|
}
|
|
|
|
pop_ok = pop_ok &&
|
|
v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
|
|
v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
|
|
v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
|
|
v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
|
|
v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
|
|
v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
|
|
v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
|
|
v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
|
|
|
|
frameptr += 0x28;
|
|
}
|
|
|
|
/* Pop registers */
|
|
pop_ok = pop_ok &&
|
|
v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
|
|
v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
|
|
v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
|
|
v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
|
|
v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
|
|
v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
|
|
v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
|
|
v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
|
|
|
|
if (!pop_ok) {
|
|
/*
|
|
* v7m_stack_read() pended a fault, so take it (as a tail
|
|
* chained exception on the same stack frame)
|
|
*/
|
|
qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
|
|
v7m_exception_taken(cpu, excret, true, false);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Returning from an exception with a PC with bit 0 set is defined
|
|
* behaviour on v8M (bit 0 is ignored), but for v7M it was specified
|
|
* to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
|
|
* the lsbit, and there are several RTOSes out there which incorrectly
|
|
* assume the r15 in the stack frame should be a Thumb-style "lsbit
|
|
* indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
|
|
* complain about the badly behaved guest.
|
|
*/
|
|
if (env->regs[15] & 1) {
|
|
env->regs[15] &= ~1U;
|
|
if (!arm_feature(env, ARM_FEATURE_V8)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"M profile return from interrupt with misaligned "
|
|
"PC is UNPREDICTABLE on v7M\n");
|
|
}
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
/*
|
|
* For v8M we have to check whether the xPSR exception field
|
|
* matches the EXCRET value for return to handler/thread
|
|
* before we commit to changing the SP and xPSR.
|
|
*/
|
|
bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
|
|
if (return_to_handler != will_be_handler) {
|
|
/*
|
|
* Take an INVPC UsageFault on the current stack.
|
|
* By this point we will have switched to the security state
|
|
* for the background state, so this UsageFault will target
|
|
* that state.
|
|
*/
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
|
|
env->v7m.secure);
|
|
env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
|
|
qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
|
|
"stackframe: failed exception return integrity "
|
|
"check\n");
|
|
v7m_exception_taken(cpu, excret, true, false);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (!ftype) {
|
|
/* FP present and we need to handle it */
|
|
if (!return_to_secure &&
|
|
(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK)) {
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
|
|
env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...taking SecureFault on existing stackframe: "
|
|
"Secure LSPACT set but exception return is "
|
|
"not to secure state\n");
|
|
v7m_exception_taken(cpu, excret, true, false);
|
|
return;
|
|
}
|
|
|
|
restore_s16_s31 = return_to_secure &&
|
|
(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
|
|
|
|
if (env->v7m.fpccr[return_to_secure] & R_V7M_FPCCR_LSPACT_MASK) {
|
|
/* State in FPU is still valid, just clear LSPACT */
|
|
env->v7m.fpccr[return_to_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
|
|
} else {
|
|
int i;
|
|
uint32_t fpscr;
|
|
bool cpacr_pass, nsacr_pass;
|
|
|
|
cpacr_pass = v7m_cpacr_pass(env, return_to_secure,
|
|
return_to_priv);
|
|
nsacr_pass = return_to_secure ||
|
|
extract32(env->v7m.nsacr, 10, 1);
|
|
|
|
if (!cpacr_pass) {
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
|
|
return_to_secure);
|
|
env->v7m.cfsr[return_to_secure] |= R_V7M_CFSR_NOCP_MASK;
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...taking UsageFault on existing "
|
|
"stackframe: CPACR.CP10 prevents unstacking "
|
|
"FP regs\n");
|
|
v7m_exception_taken(cpu, excret, true, false);
|
|
return;
|
|
} else if (!nsacr_pass) {
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, true);
|
|
env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_INVPC_MASK;
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...taking Secure UsageFault on existing "
|
|
"stackframe: NSACR.CP10 prevents unstacking "
|
|
"FP regs\n");
|
|
v7m_exception_taken(cpu, excret, true, false);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
|
|
uint32_t slo, shi;
|
|
uint64_t dn;
|
|
uint32_t faddr = frameptr + 0x20 + 4 * i;
|
|
|
|
if (i >= 16) {
|
|
faddr += 8; /* Skip the slot for the FPSCR and VPR */
|
|
}
|
|
|
|
pop_ok = pop_ok &&
|
|
v7m_stack_read(cpu, &slo, faddr, mmu_idx) &&
|
|
v7m_stack_read(cpu, &shi, faddr + 4, mmu_idx);
|
|
|
|
if (!pop_ok) {
|
|
break;
|
|
}
|
|
|
|
dn = (uint64_t)shi << 32 | slo;
|
|
*aa32_vfp_dreg(env, i / 2) = dn;
|
|
}
|
|
pop_ok = pop_ok &&
|
|
v7m_stack_read(cpu, &fpscr, frameptr + 0x60, mmu_idx);
|
|
if (pop_ok) {
|
|
vfp_set_fpscr(env, fpscr);
|
|
}
|
|
if (cpu_isar_feature(aa32_mve, cpu)) {
|
|
pop_ok = pop_ok &&
|
|
v7m_stack_read(cpu, &env->v7m.vpr,
|
|
frameptr + 0x64, mmu_idx);
|
|
}
|
|
if (!pop_ok) {
|
|
/*
|
|
* These regs are 0 if security extension present;
|
|
* otherwise merely UNKNOWN. We zero always.
|
|
*/
|
|
for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
|
|
*aa32_vfp_dreg(env, i / 2) = 0;
|
|
}
|
|
vfp_set_fpscr(env, 0);
|
|
if (cpu_isar_feature(aa32_mve, cpu)) {
|
|
env->v7m.vpr = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
|
|
V7M_CONTROL, FPCA, !ftype);
|
|
|
|
/* Commit to consuming the stack frame */
|
|
frameptr += 0x20;
|
|
if (!ftype) {
|
|
frameptr += 0x48;
|
|
if (restore_s16_s31) {
|
|
frameptr += 0x40;
|
|
}
|
|
}
|
|
/*
|
|
* Undo stack alignment (the SPREALIGN bit indicates that the original
|
|
* pre-exception SP was not 8-aligned and we added a padding word to
|
|
* align it, so we undo this by ORing in the bit that increases it
|
|
* from the current 8-aligned value to the 8-unaligned value. (Adding 4
|
|
* would work too but a logical OR is how the pseudocode specifies it.)
|
|
*/
|
|
if (xpsr & XPSR_SPREALIGN) {
|
|
frameptr |= 4;
|
|
}
|
|
*frame_sp_p = frameptr;
|
|
}
|
|
|
|
xpsr_mask = ~(XPSR_SPREALIGN | XPSR_SFPA);
|
|
if (!arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
|
|
xpsr_mask &= ~XPSR_GE;
|
|
}
|
|
/* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
|
|
xpsr_write(env, xpsr, xpsr_mask);
|
|
|
|
if (env->v7m.secure) {
|
|
bool sfpa = xpsr & XPSR_SFPA;
|
|
|
|
env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
|
|
V7M_CONTROL, SFPA, sfpa);
|
|
}
|
|
|
|
/*
|
|
* The restored xPSR exception field will be zero if we're
|
|
* resuming in Thread mode. If that doesn't match what the
|
|
* exception return excret specified then this is a UsageFault.
|
|
* v7M requires we make this check here; v8M did it earlier.
|
|
*/
|
|
if (return_to_handler != arm_v7m_is_handler_mode(env)) {
|
|
/*
|
|
* Take an INVPC UsageFault by pushing the stack again;
|
|
* we know we're v7M so this is never a Secure UsageFault.
|
|
*/
|
|
bool ignore_stackfaults;
|
|
|
|
assert(!arm_feature(env, ARM_FEATURE_V8));
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
|
|
env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
|
|
ignore_stackfaults = v7m_push_stack(cpu);
|
|
qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
|
|
"failed exception return integrity check\n");
|
|
v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
|
|
return;
|
|
}
|
|
|
|
/* Otherwise, we have a successful exception exit. */
|
|
arm_clear_exclusive(env);
|
|
arm_rebuild_hflags(env);
|
|
qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
|
|
}
|
|
|
|
static bool do_v7m_function_return(ARMCPU *cpu)
|
|
{
|
|
/*
|
|
* v8M security extensions magic function return.
|
|
* We may either:
|
|
* (1) throw an exception (longjump)
|
|
* (2) return true if we successfully handled the function return
|
|
* (3) return false if we failed a consistency check and have
|
|
* pended a UsageFault that needs to be taken now
|
|
*
|
|
* At this point the magic return value is split between env->regs[15]
|
|
* and env->thumb. We don't bother to reconstitute it because we don't
|
|
* need it (all values are handled the same way).
|
|
*/
|
|
CPUARMState *env = &cpu->env;
|
|
uint32_t newpc, newpsr, newpsr_exc;
|
|
|
|
qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
|
|
|
|
{
|
|
bool threadmode, spsel;
|
|
MemOpIdx oi;
|
|
ARMMMUIdx mmu_idx;
|
|
uint32_t *frame_sp_p;
|
|
uint32_t frameptr;
|
|
|
|
/* Pull the return address and IPSR from the Secure stack */
|
|
threadmode = !arm_v7m_is_handler_mode(env);
|
|
spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
|
|
|
|
frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
|
|
frameptr = *frame_sp_p;
|
|
|
|
/*
|
|
* These loads may throw an exception (for MPU faults). We want to
|
|
* do them as secure, so work out what MMU index that is.
|
|
*/
|
|
mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
|
|
oi = make_memop_idx(MO_LEUL, arm_to_core_mmu_idx(mmu_idx));
|
|
newpc = cpu_ldl_le_mmu(env, frameptr, oi, 0);
|
|
newpsr = cpu_ldl_le_mmu(env, frameptr + 4, oi, 0);
|
|
|
|
/* Consistency checks on new IPSR */
|
|
newpsr_exc = newpsr & XPSR_EXCP;
|
|
if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
|
|
(env->v7m.exception == 1 && newpsr_exc != 0))) {
|
|
/* Pend the fault and tell our caller to take it */
|
|
env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
|
|
env->v7m.secure);
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...taking INVPC UsageFault: "
|
|
"IPSR consistency check failed\n");
|
|
return false;
|
|
}
|
|
|
|
*frame_sp_p = frameptr + 8;
|
|
}
|
|
|
|
/* This invalidates frame_sp_p */
|
|
switch_v7m_security_state(env, true);
|
|
env->v7m.exception = newpsr_exc;
|
|
env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
|
|
if (newpsr & XPSR_SFPA) {
|
|
env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
|
|
}
|
|
xpsr_write(env, 0, XPSR_IT);
|
|
env->thumb = newpc & 1;
|
|
env->regs[15] = newpc & ~1;
|
|
arm_rebuild_hflags(env);
|
|
|
|
qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
|
|
return true;
|
|
}
|
|
|
|
static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
|
|
uint32_t addr, uint16_t *insn)
|
|
{
|
|
/*
|
|
* Load a 16-bit portion of a v7M instruction, returning true on success,
|
|
* or false on failure (in which case we will have pended the appropriate
|
|
* exception).
|
|
* We need to do the instruction fetch's MPU and SAU checks
|
|
* like this because there is no MMU index that would allow
|
|
* doing the load with a single function call. Instead we must
|
|
* first check that the security attributes permit the load
|
|
* and that they don't mismatch on the two halves of the instruction,
|
|
* and then we do the load as a secure load (ie using the security
|
|
* attributes of the address, not the CPU, as architecturally required).
|
|
*/
|
|
CPUState *cs = CPU(cpu);
|
|
CPUARMState *env = &cpu->env;
|
|
V8M_SAttributes sattrs = {};
|
|
MemTxAttrs attrs = {};
|
|
ARMMMUFaultInfo fi = {};
|
|
ARMCacheAttrs cacheattrs = {};
|
|
MemTxResult txres;
|
|
target_ulong page_size;
|
|
hwaddr physaddr;
|
|
int prot;
|
|
|
|
v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
|
|
if (!sattrs.nsc || sattrs.ns) {
|
|
/*
|
|
* This must be the second half of the insn, and it straddles a
|
|
* region boundary with the second half not being S&NSC.
|
|
*/
|
|
env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...really SecureFault with SFSR.INVEP\n");
|
|
return false;
|
|
}
|
|
if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, &physaddr,
|
|
&attrs, &prot, &page_size, &fi, &cacheattrs)) {
|
|
/* the MPU lookup failed */
|
|
env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
|
|
qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
|
|
return false;
|
|
}
|
|
*insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
|
|
attrs, &txres);
|
|
if (txres != MEMTX_OK) {
|
|
env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
|
|
qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool v7m_read_sg_stack_word(ARMCPU *cpu, ARMMMUIdx mmu_idx,
|
|
uint32_t addr, uint32_t *spdata)
|
|
{
|
|
/*
|
|
* Read a word of data from the stack for the SG instruction,
|
|
* writing the value into *spdata. If the load succeeds, return
|
|
* true; otherwise pend an appropriate exception and return false.
|
|
* (We can't use data load helpers here that throw an exception
|
|
* because of the context we're called in, which is halfway through
|
|
* arm_v7m_cpu_do_interrupt().)
|
|
*/
|
|
CPUState *cs = CPU(cpu);
|
|
CPUARMState *env = &cpu->env;
|
|
MemTxAttrs attrs = {};
|
|
MemTxResult txres;
|
|
target_ulong page_size;
|
|
hwaddr physaddr;
|
|
int prot;
|
|
ARMMMUFaultInfo fi = {};
|
|
ARMCacheAttrs cacheattrs = {};
|
|
uint32_t value;
|
|
|
|
if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
|
|
&attrs, &prot, &page_size, &fi, &cacheattrs)) {
|
|
/* MPU/SAU lookup failed */
|
|
if (fi.type == ARMFault_QEMU_SFault) {
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...SecureFault during stack word read\n");
|
|
env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
|
|
env->v7m.sfar = addr;
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
|
|
} else {
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...MemManageFault during stack word read\n");
|
|
env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_DACCVIOL_MASK |
|
|
R_V7M_CFSR_MMARVALID_MASK;
|
|
env->v7m.mmfar[M_REG_S] = addr;
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, false);
|
|
}
|
|
return false;
|
|
}
|
|
value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
|
|
attrs, &txres);
|
|
if (txres != MEMTX_OK) {
|
|
/* BusFault trying to read the data */
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...BusFault during stack word read\n");
|
|
env->v7m.cfsr[M_REG_NS] |=
|
|
(R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
|
|
env->v7m.bfar = addr;
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
|
|
return false;
|
|
}
|
|
|
|
*spdata = value;
|
|
return true;
|
|
}
|
|
|
|
static bool v7m_handle_execute_nsc(ARMCPU *cpu)
|
|
{
|
|
/*
|
|
* Check whether this attempt to execute code in a Secure & NS-Callable
|
|
* memory region is for an SG instruction; if so, then emulate the
|
|
* effect of the SG instruction and return true. Otherwise pend
|
|
* the correct kind of exception and return false.
|
|
*/
|
|
CPUARMState *env = &cpu->env;
|
|
ARMMMUIdx mmu_idx;
|
|
uint16_t insn;
|
|
|
|
/*
|
|
* We should never get here unless get_phys_addr_pmsav8() caused
|
|
* an exception for NS executing in S&NSC memory.
|
|
*/
|
|
assert(!env->v7m.secure);
|
|
assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
|
|
|
|
/* We want to do the MPU lookup as secure; work out what mmu_idx that is */
|
|
mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
|
|
|
|
if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
|
|
return false;
|
|
}
|
|
|
|
if (!env->thumb) {
|
|
goto gen_invep;
|
|
}
|
|
|
|
if (insn != 0xe97f) {
|
|
/*
|
|
* Not an SG instruction first half (we choose the IMPDEF
|
|
* early-SG-check option).
|
|
*/
|
|
goto gen_invep;
|
|
}
|
|
|
|
if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
|
|
return false;
|
|
}
|
|
|
|
if (insn != 0xe97f) {
|
|
/*
|
|
* Not an SG instruction second half (yes, both halves of the SG
|
|
* insn have the same hex value)
|
|
*/
|
|
goto gen_invep;
|
|
}
|
|
|
|
/*
|
|
* OK, we have confirmed that we really have an SG instruction.
|
|
* We know we're NS in S memory so don't need to repeat those checks.
|
|
*/
|
|
qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
|
|
", executing it\n", env->regs[15]);
|
|
|
|
if (cpu_isar_feature(aa32_m_sec_state, cpu) &&
|
|
!arm_v7m_is_handler_mode(env)) {
|
|
/*
|
|
* v8.1M exception stack frame integrity check. Note that we
|
|
* must perform the memory access even if CCR_S.TRD is zero
|
|
* and we aren't going to check what the data loaded is.
|
|
*/
|
|
uint32_t spdata, sp;
|
|
|
|
/*
|
|
* We know we are currently NS, so the S stack pointers must be
|
|
* in other_ss_{psp,msp}, not in regs[13]/other_sp.
|
|
*/
|
|
sp = v7m_using_psp(env) ? env->v7m.other_ss_psp : env->v7m.other_ss_msp;
|
|
if (!v7m_read_sg_stack_word(cpu, mmu_idx, sp, &spdata)) {
|
|
/* Stack access failed and an exception has been pended */
|
|
return false;
|
|
}
|
|
|
|
if (env->v7m.ccr[M_REG_S] & R_V7M_CCR_TRD_MASK) {
|
|
if (((spdata & ~1) == 0xfefa125a) ||
|
|
!(env->v7m.control[M_REG_S] & 1)) {
|
|
goto gen_invep;
|
|
}
|
|
}
|
|
}
|
|
|
|
env->regs[14] &= ~1;
|
|
env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
|
|
switch_v7m_security_state(env, true);
|
|
xpsr_write(env, 0, XPSR_IT);
|
|
env->regs[15] += 4;
|
|
arm_rebuild_hflags(env);
|
|
return true;
|
|
|
|
gen_invep:
|
|
env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...really SecureFault with SFSR.INVEP\n");
|
|
return false;
|
|
}
|
|
|
|
void arm_v7m_cpu_do_interrupt(CPUState *cs)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
uint32_t lr;
|
|
bool ignore_stackfaults;
|
|
|
|
arm_log_exception(cs);
|
|
|
|
/*
|
|
* For exceptions we just mark as pending on the NVIC, and let that
|
|
* handle it.
|
|
*/
|
|
switch (cs->exception_index) {
|
|
case EXCP_UDEF:
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
|
|
env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
|
|
break;
|
|
case EXCP_NOCP:
|
|
{
|
|
/*
|
|
* NOCP might be directed to something other than the current
|
|
* security state if this fault is because of NSACR; we indicate
|
|
* the target security state using exception.target_el.
|
|
*/
|
|
int target_secstate;
|
|
|
|
if (env->exception.target_el == 3) {
|
|
target_secstate = M_REG_S;
|
|
} else {
|
|
target_secstate = env->v7m.secure;
|
|
}
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, target_secstate);
|
|
env->v7m.cfsr[target_secstate] |= R_V7M_CFSR_NOCP_MASK;
|
|
break;
|
|
}
|
|
case EXCP_INVSTATE:
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
|
|
env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
|
|
break;
|
|
case EXCP_STKOF:
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
|
|
env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
|
|
break;
|
|
case EXCP_LSERR:
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
|
|
env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
|
|
break;
|
|
case EXCP_UNALIGNED:
|
|
/* Unaligned faults reported by M-profile aware code */
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
|
|
env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNALIGNED_MASK;
|
|
break;
|
|
case EXCP_DIVBYZERO:
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
|
|
env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_DIVBYZERO_MASK;
|
|
break;
|
|
case EXCP_SWI:
|
|
/* The PC already points to the next instruction. */
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
|
|
break;
|
|
case EXCP_PREFETCH_ABORT:
|
|
case EXCP_DATA_ABORT:
|
|
/*
|
|
* Note that for M profile we don't have a guest facing FSR, but
|
|
* the env->exception.fsr will be populated by the code that
|
|
* raises the fault, in the A profile short-descriptor format.
|
|
*/
|
|
switch (env->exception.fsr & 0xf) {
|
|
case M_FAKE_FSR_NSC_EXEC:
|
|
/*
|
|
* Exception generated when we try to execute code at an address
|
|
* which is marked as Secure & Non-Secure Callable and the CPU
|
|
* is in the Non-Secure state. The only instruction which can
|
|
* be executed like this is SG (and that only if both halves of
|
|
* the SG instruction have the same security attributes.)
|
|
* Everything else must generate an INVEP SecureFault, so we
|
|
* emulate the SG instruction here.
|
|
*/
|
|
if (v7m_handle_execute_nsc(cpu)) {
|
|
return;
|
|
}
|
|
break;
|
|
case M_FAKE_FSR_SFAULT:
|
|
/*
|
|
* Various flavours of SecureFault for attempts to execute or
|
|
* access data in the wrong security state.
|
|
*/
|
|
switch (cs->exception_index) {
|
|
case EXCP_PREFETCH_ABORT:
|
|
if (env->v7m.secure) {
|
|
env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...really SecureFault with SFSR.INVTRAN\n");
|
|
} else {
|
|
env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...really SecureFault with SFSR.INVEP\n");
|
|
}
|
|
break;
|
|
case EXCP_DATA_ABORT:
|
|
/* This must be an NS access to S memory */
|
|
env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...really SecureFault with SFSR.AUVIOL\n");
|
|
break;
|
|
}
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
|
|
break;
|
|
case 0x8: /* External Abort */
|
|
switch (cs->exception_index) {
|
|
case EXCP_PREFETCH_ABORT:
|
|
env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
|
|
qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
|
|
break;
|
|
case EXCP_DATA_ABORT:
|
|
env->v7m.cfsr[M_REG_NS] |=
|
|
(R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
|
|
env->v7m.bfar = env->exception.vaddress;
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...with CFSR.PRECISERR and BFAR 0x%x\n",
|
|
env->v7m.bfar);
|
|
break;
|
|
}
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
|
|
break;
|
|
case 0x1: /* Alignment fault reported by generic code */
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...really UsageFault with UFSR.UNALIGNED\n");
|
|
env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNALIGNED_MASK;
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
|
|
env->v7m.secure);
|
|
break;
|
|
default:
|
|
/*
|
|
* All other FSR values are either MPU faults or "can't happen
|
|
* for M profile" cases.
|
|
*/
|
|
switch (cs->exception_index) {
|
|
case EXCP_PREFETCH_ABORT:
|
|
env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
|
|
qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
|
|
break;
|
|
case EXCP_DATA_ABORT:
|
|
env->v7m.cfsr[env->v7m.secure] |=
|
|
(R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
|
|
env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...with CFSR.DACCVIOL and MMFAR 0x%x\n",
|
|
env->v7m.mmfar[env->v7m.secure]);
|
|
break;
|
|
}
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
|
|
env->v7m.secure);
|
|
break;
|
|
}
|
|
break;
|
|
case EXCP_SEMIHOST:
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...handling as semihosting call 0x%x\n",
|
|
env->regs[0]);
|
|
#ifdef CONFIG_TCG
|
|
env->regs[0] = do_common_semihosting(cs);
|
|
#else
|
|
g_assert_not_reached();
|
|
#endif
|
|
env->regs[15] += env->thumb ? 2 : 4;
|
|
return;
|
|
case EXCP_BKPT:
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
|
|
break;
|
|
case EXCP_IRQ:
|
|
break;
|
|
case EXCP_EXCEPTION_EXIT:
|
|
if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
|
|
/* Must be v8M security extension function return */
|
|
assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
|
|
assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
|
|
if (do_v7m_function_return(cpu)) {
|
|
return;
|
|
}
|
|
} else {
|
|
do_v7m_exception_exit(cpu);
|
|
return;
|
|
}
|
|
break;
|
|
case EXCP_LAZYFP:
|
|
/*
|
|
* We already pended the specific exception in the NVIC in the
|
|
* v7m_preserve_fp_state() helper function.
|
|
*/
|
|
break;
|
|
default:
|
|
cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
|
|
return; /* Never happens. Keep compiler happy. */
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
lr = R_V7M_EXCRET_RES1_MASK |
|
|
R_V7M_EXCRET_DCRS_MASK;
|
|
/*
|
|
* The S bit indicates whether we should return to Secure
|
|
* or NonSecure (ie our current state).
|
|
* The ES bit indicates whether we're taking this exception
|
|
* to Secure or NonSecure (ie our target state). We set it
|
|
* later, in v7m_exception_taken().
|
|
* The SPSEL bit is also set in v7m_exception_taken() for v8M.
|
|
* This corresponds to the ARM ARM pseudocode for v8M setting
|
|
* some LR bits in PushStack() and some in ExceptionTaken();
|
|
* the distinction matters for the tailchain cases where we
|
|
* can take an exception without pushing the stack.
|
|
*/
|
|
if (env->v7m.secure) {
|
|
lr |= R_V7M_EXCRET_S_MASK;
|
|
}
|
|
} else {
|
|
lr = R_V7M_EXCRET_RES1_MASK |
|
|
R_V7M_EXCRET_S_MASK |
|
|
R_V7M_EXCRET_DCRS_MASK |
|
|
R_V7M_EXCRET_ES_MASK;
|
|
if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
|
|
lr |= R_V7M_EXCRET_SPSEL_MASK;
|
|
}
|
|
}
|
|
if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
|
|
lr |= R_V7M_EXCRET_FTYPE_MASK;
|
|
}
|
|
if (!arm_v7m_is_handler_mode(env)) {
|
|
lr |= R_V7M_EXCRET_MODE_MASK;
|
|
}
|
|
|
|
ignore_stackfaults = v7m_push_stack(cpu);
|
|
v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
|
|
}
|
|
|
|
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
|
|
{
|
|
unsigned el = arm_current_el(env);
|
|
|
|
/* First handle registers which unprivileged can read */
|
|
switch (reg) {
|
|
case 0 ... 7: /* xPSR sub-fields */
|
|
return v7m_mrs_xpsr(env, reg, el);
|
|
case 20: /* CONTROL */
|
|
return v7m_mrs_control(env, env->v7m.secure);
|
|
case 0x94: /* CONTROL_NS */
|
|
/*
|
|
* We have to handle this here because unprivileged Secure code
|
|
* can read the NS CONTROL register.
|
|
*/
|
|
if (!env->v7m.secure) {
|
|
return 0;
|
|
}
|
|
return env->v7m.control[M_REG_NS] |
|
|
(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK);
|
|
}
|
|
|
|
if (el == 0) {
|
|
return 0; /* unprivileged reads others as zero */
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
|
|
switch (reg) {
|
|
case 0x88: /* MSP_NS */
|
|
if (!env->v7m.secure) {
|
|
return 0;
|
|
}
|
|
return env->v7m.other_ss_msp;
|
|
case 0x89: /* PSP_NS */
|
|
if (!env->v7m.secure) {
|
|
return 0;
|
|
}
|
|
return env->v7m.other_ss_psp;
|
|
case 0x8a: /* MSPLIM_NS */
|
|
if (!env->v7m.secure) {
|
|
return 0;
|
|
}
|
|
return env->v7m.msplim[M_REG_NS];
|
|
case 0x8b: /* PSPLIM_NS */
|
|
if (!env->v7m.secure) {
|
|
return 0;
|
|
}
|
|
return env->v7m.psplim[M_REG_NS];
|
|
case 0x90: /* PRIMASK_NS */
|
|
if (!env->v7m.secure) {
|
|
return 0;
|
|
}
|
|
return env->v7m.primask[M_REG_NS];
|
|
case 0x91: /* BASEPRI_NS */
|
|
if (!env->v7m.secure) {
|
|
return 0;
|
|
}
|
|
return env->v7m.basepri[M_REG_NS];
|
|
case 0x93: /* FAULTMASK_NS */
|
|
if (!env->v7m.secure) {
|
|
return 0;
|
|
}
|
|
return env->v7m.faultmask[M_REG_NS];
|
|
case 0x98: /* SP_NS */
|
|
{
|
|
/*
|
|
* This gives the non-secure SP selected based on whether we're
|
|
* currently in handler mode or not, using the NS CONTROL.SPSEL.
|
|
*/
|
|
bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
|
|
|
|
if (!env->v7m.secure) {
|
|
return 0;
|
|
}
|
|
if (!arm_v7m_is_handler_mode(env) && spsel) {
|
|
return env->v7m.other_ss_psp;
|
|
} else {
|
|
return env->v7m.other_ss_msp;
|
|
}
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (reg) {
|
|
case 8: /* MSP */
|
|
return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
|
|
case 9: /* PSP */
|
|
return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
|
|
case 10: /* MSPLIM */
|
|
if (!arm_feature(env, ARM_FEATURE_V8)) {
|
|
goto bad_reg;
|
|
}
|
|
return env->v7m.msplim[env->v7m.secure];
|
|
case 11: /* PSPLIM */
|
|
if (!arm_feature(env, ARM_FEATURE_V8)) {
|
|
goto bad_reg;
|
|
}
|
|
return env->v7m.psplim[env->v7m.secure];
|
|
case 16: /* PRIMASK */
|
|
return env->v7m.primask[env->v7m.secure];
|
|
case 17: /* BASEPRI */
|
|
case 18: /* BASEPRI_MAX */
|
|
return env->v7m.basepri[env->v7m.secure];
|
|
case 19: /* FAULTMASK */
|
|
return env->v7m.faultmask[env->v7m.secure];
|
|
default:
|
|
bad_reg:
|
|
qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
|
|
" register %d\n", reg);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
|
|
{
|
|
/*
|
|
* We're passed bits [11..0] of the instruction; extract
|
|
* SYSm and the mask bits.
|
|
* Invalid combinations of SYSm and mask are UNPREDICTABLE;
|
|
* we choose to treat them as if the mask bits were valid.
|
|
* NB that the pseudocode 'mask' variable is bits [11..10],
|
|
* whereas ours is [11..8].
|
|
*/
|
|
uint32_t mask = extract32(maskreg, 8, 4);
|
|
uint32_t reg = extract32(maskreg, 0, 8);
|
|
int cur_el = arm_current_el(env);
|
|
|
|
if (cur_el == 0 && reg > 7 && reg != 20) {
|
|
/*
|
|
* only xPSR sub-fields and CONTROL.SFPA may be written by
|
|
* unprivileged code
|
|
*/
|
|
return;
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
|
|
switch (reg) {
|
|
case 0x88: /* MSP_NS */
|
|
if (!env->v7m.secure) {
|
|
return;
|
|
}
|
|
env->v7m.other_ss_msp = val & ~3;
|
|
return;
|
|
case 0x89: /* PSP_NS */
|
|
if (!env->v7m.secure) {
|
|
return;
|
|
}
|
|
env->v7m.other_ss_psp = val & ~3;
|
|
return;
|
|
case 0x8a: /* MSPLIM_NS */
|
|
if (!env->v7m.secure) {
|
|
return;
|
|
}
|
|
env->v7m.msplim[M_REG_NS] = val & ~7;
|
|
return;
|
|
case 0x8b: /* PSPLIM_NS */
|
|
if (!env->v7m.secure) {
|
|
return;
|
|
}
|
|
env->v7m.psplim[M_REG_NS] = val & ~7;
|
|
return;
|
|
case 0x90: /* PRIMASK_NS */
|
|
if (!env->v7m.secure) {
|
|
return;
|
|
}
|
|
env->v7m.primask[M_REG_NS] = val & 1;
|
|
return;
|
|
case 0x91: /* BASEPRI_NS */
|
|
if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
|
|
return;
|
|
}
|
|
env->v7m.basepri[M_REG_NS] = val & 0xff;
|
|
return;
|
|
case 0x93: /* FAULTMASK_NS */
|
|
if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
|
|
return;
|
|
}
|
|
env->v7m.faultmask[M_REG_NS] = val & 1;
|
|
return;
|
|
case 0x94: /* CONTROL_NS */
|
|
if (!env->v7m.secure) {
|
|
return;
|
|
}
|
|
write_v7m_control_spsel_for_secstate(env,
|
|
val & R_V7M_CONTROL_SPSEL_MASK,
|
|
M_REG_NS);
|
|
if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
|
|
env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
|
|
env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
|
|
}
|
|
/*
|
|
* SFPA is RAZ/WI from NS. FPCA is RO if NSACR.CP10 == 0,
|
|
* RES0 if the FPU is not present, and is stored in the S bank
|
|
*/
|
|
if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env)) &&
|
|
extract32(env->v7m.nsacr, 10, 1)) {
|
|
env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
|
|
env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
|
|
}
|
|
return;
|
|
case 0x98: /* SP_NS */
|
|
{
|
|
/*
|
|
* This gives the non-secure SP selected based on whether we're
|
|
* currently in handler mode or not, using the NS CONTROL.SPSEL.
|
|
*/
|
|
bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
|
|
bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
|
|
uint32_t limit;
|
|
|
|
if (!env->v7m.secure) {
|
|
return;
|
|
}
|
|
|
|
limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
|
|
|
|
val &= ~0x3;
|
|
|
|
if (val < limit) {
|
|
raise_exception_ra(env, EXCP_STKOF, 0, 1, GETPC());
|
|
}
|
|
|
|
if (is_psp) {
|
|
env->v7m.other_ss_psp = val;
|
|
} else {
|
|
env->v7m.other_ss_msp = val;
|
|
}
|
|
return;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (reg) {
|
|
case 0 ... 7: /* xPSR sub-fields */
|
|
v7m_msr_xpsr(env, mask, reg, val);
|
|
break;
|
|
case 8: /* MSP */
|
|
if (v7m_using_psp(env)) {
|
|
env->v7m.other_sp = val & ~3;
|
|
} else {
|
|
env->regs[13] = val & ~3;
|
|
}
|
|
break;
|
|
case 9: /* PSP */
|
|
if (v7m_using_psp(env)) {
|
|
env->regs[13] = val & ~3;
|
|
} else {
|
|
env->v7m.other_sp = val & ~3;
|
|
}
|
|
break;
|
|
case 10: /* MSPLIM */
|
|
if (!arm_feature(env, ARM_FEATURE_V8)) {
|
|
goto bad_reg;
|
|
}
|
|
env->v7m.msplim[env->v7m.secure] = val & ~7;
|
|
break;
|
|
case 11: /* PSPLIM */
|
|
if (!arm_feature(env, ARM_FEATURE_V8)) {
|
|
goto bad_reg;
|
|
}
|
|
env->v7m.psplim[env->v7m.secure] = val & ~7;
|
|
break;
|
|
case 16: /* PRIMASK */
|
|
env->v7m.primask[env->v7m.secure] = val & 1;
|
|
break;
|
|
case 17: /* BASEPRI */
|
|
if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
|
|
goto bad_reg;
|
|
}
|
|
env->v7m.basepri[env->v7m.secure] = val & 0xff;
|
|
break;
|
|
case 18: /* BASEPRI_MAX */
|
|
if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
|
|
goto bad_reg;
|
|
}
|
|
val &= 0xff;
|
|
if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
|
|
|| env->v7m.basepri[env->v7m.secure] == 0)) {
|
|
env->v7m.basepri[env->v7m.secure] = val;
|
|
}
|
|
break;
|
|
case 19: /* FAULTMASK */
|
|
if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
|
|
goto bad_reg;
|
|
}
|
|
env->v7m.faultmask[env->v7m.secure] = val & 1;
|
|
break;
|
|
case 20: /* CONTROL */
|
|
/*
|
|
* Writing to the SPSEL bit only has an effect if we are in
|
|
* thread mode; other bits can be updated by any privileged code.
|
|
* write_v7m_control_spsel() deals with updating the SPSEL bit in
|
|
* env->v7m.control, so we only need update the others.
|
|
* For v7M, we must just ignore explicit writes to SPSEL in handler
|
|
* mode; for v8M the write is permitted but will have no effect.
|
|
* All these bits are writes-ignored from non-privileged code,
|
|
* except for SFPA.
|
|
*/
|
|
if (cur_el > 0 && (arm_feature(env, ARM_FEATURE_V8) ||
|
|
!arm_v7m_is_handler_mode(env))) {
|
|
write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
|
|
}
|
|
if (cur_el > 0 && arm_feature(env, ARM_FEATURE_M_MAIN)) {
|
|
env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
|
|
env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
|
|
}
|
|
if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
|
|
/*
|
|
* SFPA is RAZ/WI from NS or if no FPU.
|
|
* FPCA is RO if NSACR.CP10 == 0, RES0 if the FPU is not present.
|
|
* Both are stored in the S bank.
|
|
*/
|
|
if (env->v7m.secure) {
|
|
env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
|
|
env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_SFPA_MASK;
|
|
}
|
|
if (cur_el > 0 &&
|
|
(env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_SECURITY) ||
|
|
extract32(env->v7m.nsacr, 10, 1))) {
|
|
env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
|
|
env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
bad_reg:
|
|
qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
|
|
" register %d\n", reg);
|
|
return;
|
|
}
|
|
}
|
|
|
|
uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
|
|
{
|
|
/* Implement the TT instruction. op is bits [7:6] of the insn. */
|
|
bool forceunpriv = op & 1;
|
|
bool alt = op & 2;
|
|
V8M_SAttributes sattrs = {};
|
|
uint32_t tt_resp;
|
|
bool r, rw, nsr, nsrw, mrvalid;
|
|
int prot;
|
|
ARMMMUFaultInfo fi = {};
|
|
MemTxAttrs attrs = {};
|
|
hwaddr phys_addr;
|
|
ARMMMUIdx mmu_idx;
|
|
uint32_t mregion;
|
|
bool targetpriv;
|
|
bool targetsec = env->v7m.secure;
|
|
bool is_subpage;
|
|
|
|
/*
|
|
* Work out what the security state and privilege level we're
|
|
* interested in is...
|
|
*/
|
|
if (alt) {
|
|
targetsec = !targetsec;
|
|
}
|
|
|
|
if (forceunpriv) {
|
|
targetpriv = false;
|
|
} else {
|
|
targetpriv = arm_v7m_is_handler_mode(env) ||
|
|
!(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
|
|
}
|
|
|
|
/* ...and then figure out which MMU index this is */
|
|
mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
|
|
|
|
/*
|
|
* We know that the MPU and SAU don't care about the access type
|
|
* for our purposes beyond that we don't want to claim to be
|
|
* an insn fetch, so we arbitrarily call this a read.
|
|
*/
|
|
|
|
/*
|
|
* MPU region info only available for privileged or if
|
|
* inspecting the other MPU state.
|
|
*/
|
|
if (arm_current_el(env) != 0 || alt) {
|
|
/* We can ignore the return value as prot is always set */
|
|
pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
|
|
&phys_addr, &attrs, &prot, &is_subpage,
|
|
&fi, &mregion);
|
|
if (mregion == -1) {
|
|
mrvalid = false;
|
|
mregion = 0;
|
|
} else {
|
|
mrvalid = true;
|
|
}
|
|
r = prot & PAGE_READ;
|
|
rw = prot & PAGE_WRITE;
|
|
} else {
|
|
r = false;
|
|
rw = false;
|
|
mrvalid = false;
|
|
mregion = 0;
|
|
}
|
|
|
|
if (env->v7m.secure) {
|
|
v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
|
|
nsr = sattrs.ns && r;
|
|
nsrw = sattrs.ns && rw;
|
|
} else {
|
|
sattrs.ns = true;
|
|
nsr = false;
|
|
nsrw = false;
|
|
}
|
|
|
|
tt_resp = (sattrs.iregion << 24) |
|
|
(sattrs.irvalid << 23) |
|
|
((!sattrs.ns) << 22) |
|
|
(nsrw << 21) |
|
|
(nsr << 20) |
|
|
(rw << 19) |
|
|
(r << 18) |
|
|
(sattrs.srvalid << 17) |
|
|
(mrvalid << 16) |
|
|
(sattrs.sregion << 8) |
|
|
mregion;
|
|
|
|
return tt_resp;
|
|
}
|
|
|
|
#endif /* !CONFIG_USER_ONLY */
|
|
|
|
ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
|
|
bool secstate, bool priv, bool negpri)
|
|
{
|
|
ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
|
|
|
|
if (priv) {
|
|
mmu_idx |= ARM_MMU_IDX_M_PRIV;
|
|
}
|
|
|
|
if (negpri) {
|
|
mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
|
|
}
|
|
|
|
if (secstate) {
|
|
mmu_idx |= ARM_MMU_IDX_M_S;
|
|
}
|
|
|
|
return mmu_idx;
|
|
}
|
|
|
|
ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
|
|
bool secstate, bool priv)
|
|
{
|
|
bool negpri = armv7m_nvic_neg_prio_requested(env->nvic, secstate);
|
|
|
|
return arm_v7m_mmu_idx_all(env, secstate, priv, negpri);
|
|
}
|
|
|
|
/* Return the MMU index for a v7M CPU in the specified security state */
|
|
ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
|
|
{
|
|
bool priv = arm_v7m_is_handler_mode(env) ||
|
|
!(env->v7m.control[secstate] & 1);
|
|
|
|
return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
|
|
}
|