qemu-e2k/hw/usb/host-linux.c

2024 lines
57 KiB
C

/*
* Linux host USB redirector
*
* Copyright (c) 2005 Fabrice Bellard
*
* Copyright (c) 2008 Max Krasnyansky
* Support for host device auto connect & disconnect
* Major rewrite to support fully async operation
*
* Copyright 2008 TJ <linux@tjworld.net>
* Added flexible support for /dev/bus/usb /sys/bus/usb/devices in addition
* to the legacy /proc/bus/usb USB device discovery and handling
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu-common.h"
#include "qemu/timer.h"
#include "monitor/monitor.h"
#include "sysemu/sysemu.h"
#include "trace.h"
#include <dirent.h>
#include <sys/ioctl.h>
#include <linux/usbdevice_fs.h>
#include <linux/version.h>
#include "hw/usb.h"
#include "hw/usb/desc.h"
/* We redefine it to avoid version problems */
struct usb_ctrltransfer {
uint8_t bRequestType;
uint8_t bRequest;
uint16_t wValue;
uint16_t wIndex;
uint16_t wLength;
uint32_t timeout;
void *data;
};
typedef int USBScanFunc(void *opaque, int bus_num, int addr, const char *port,
int class_id, int vendor_id, int product_id,
const char *product_name, int speed);
//#define DEBUG
#ifdef DEBUG
#define DPRINTF printf
#else
#define DPRINTF(...)
#endif
#define PRODUCT_NAME_SZ 32
#define MAX_PORTLEN 16
/* endpoint association data */
#define ISO_FRAME_DESC_PER_URB 32
/* devio.c limits single requests to 16k */
#define MAX_USBFS_BUFFER_SIZE 16384
typedef struct AsyncURB AsyncURB;
struct endp_data {
uint8_t halted;
uint8_t iso_started;
AsyncURB *iso_urb;
int iso_urb_idx;
int iso_buffer_used;
int inflight;
};
struct USBAutoFilter {
uint32_t bus_num;
uint32_t addr;
char *port;
uint32_t vendor_id;
uint32_t product_id;
};
enum USBHostDeviceOptions {
USB_HOST_OPT_PIPELINE,
};
typedef struct USBHostDevice {
USBDevice dev;
int fd;
int hub_fd;
int hub_port;
uint8_t descr[8192];
int descr_len;
int closing;
uint32_t iso_urb_count;
uint32_t options;
Notifier exit;
QEMUBH *bh;
struct endp_data ep_in[USB_MAX_ENDPOINTS];
struct endp_data ep_out[USB_MAX_ENDPOINTS];
QLIST_HEAD(, AsyncURB) aurbs;
/* Host side address */
int bus_num;
int addr;
char port[MAX_PORTLEN];
struct USBAutoFilter match;
int32_t bootindex;
int seen, errcount;
QTAILQ_ENTRY(USBHostDevice) next;
} USBHostDevice;
static QTAILQ_HEAD(, USBHostDevice) hostdevs = QTAILQ_HEAD_INITIALIZER(hostdevs);
static int usb_host_close(USBHostDevice *dev);
static int parse_filter(const char *spec, struct USBAutoFilter *f);
static void usb_host_auto_check(void *unused);
static int usb_host_read_file(char *line, size_t line_size,
const char *device_file, const char *device_name);
static void usb_linux_update_endp_table(USBHostDevice *s);
static int usb_host_usbfs_type(USBHostDevice *s, USBPacket *p)
{
static const int usbfs[] = {
[USB_ENDPOINT_XFER_CONTROL] = USBDEVFS_URB_TYPE_CONTROL,
[USB_ENDPOINT_XFER_ISOC] = USBDEVFS_URB_TYPE_ISO,
[USB_ENDPOINT_XFER_BULK] = USBDEVFS_URB_TYPE_BULK,
[USB_ENDPOINT_XFER_INT] = USBDEVFS_URB_TYPE_INTERRUPT,
};
uint8_t type = p->ep->type;
assert(type < ARRAY_SIZE(usbfs));
return usbfs[type];
}
static int usb_host_do_reset(USBHostDevice *dev)
{
struct timeval s, e;
uint32_t usecs;
int ret;
gettimeofday(&s, NULL);
ret = ioctl(dev->fd, USBDEVFS_RESET);
gettimeofday(&e, NULL);
usecs = (e.tv_sec - s.tv_sec) * 1000000;
usecs += e.tv_usec - s.tv_usec;
if (usecs > 1000000) {
/* more than a second, something is fishy, broken usb device? */
fprintf(stderr, "husb: device %d:%d reset took %d.%06d seconds\n",
dev->bus_num, dev->addr, usecs / 1000000, usecs % 1000000);
}
return ret;
}
static struct endp_data *get_endp(USBHostDevice *s, int pid, int ep)
{
struct endp_data *eps = pid == USB_TOKEN_IN ? s->ep_in : s->ep_out;
assert(pid == USB_TOKEN_IN || pid == USB_TOKEN_OUT);
assert(ep > 0 && ep <= USB_MAX_ENDPOINTS);
return eps + ep - 1;
}
static int is_isoc(USBHostDevice *s, int pid, int ep)
{
return usb_ep_get_type(&s->dev, pid, ep) == USB_ENDPOINT_XFER_ISOC;
}
static int is_valid(USBHostDevice *s, int pid, int ep)
{
return usb_ep_get_type(&s->dev, pid, ep) != USB_ENDPOINT_XFER_INVALID;
}
static int is_halted(USBHostDevice *s, int pid, int ep)
{
return get_endp(s, pid, ep)->halted;
}
static void clear_halt(USBHostDevice *s, int pid, int ep)
{
trace_usb_host_ep_clear_halt(s->bus_num, s->addr, ep);
get_endp(s, pid, ep)->halted = 0;
}
static void set_halt(USBHostDevice *s, int pid, int ep)
{
if (ep != 0) {
trace_usb_host_ep_set_halt(s->bus_num, s->addr, ep);
get_endp(s, pid, ep)->halted = 1;
}
}
static int is_iso_started(USBHostDevice *s, int pid, int ep)
{
return get_endp(s, pid, ep)->iso_started;
}
static void clear_iso_started(USBHostDevice *s, int pid, int ep)
{
trace_usb_host_iso_stop(s->bus_num, s->addr, ep);
get_endp(s, pid, ep)->iso_started = 0;
}
static void set_iso_started(USBHostDevice *s, int pid, int ep)
{
struct endp_data *e = get_endp(s, pid, ep);
trace_usb_host_iso_start(s->bus_num, s->addr, ep);
if (!e->iso_started) {
e->iso_started = 1;
e->inflight = 0;
}
}
static int change_iso_inflight(USBHostDevice *s, int pid, int ep, int value)
{
struct endp_data *e = get_endp(s, pid, ep);
e->inflight += value;
return e->inflight;
}
static void set_iso_urb(USBHostDevice *s, int pid, int ep, AsyncURB *iso_urb)
{
get_endp(s, pid, ep)->iso_urb = iso_urb;
}
static AsyncURB *get_iso_urb(USBHostDevice *s, int pid, int ep)
{
return get_endp(s, pid, ep)->iso_urb;
}
static void set_iso_urb_idx(USBHostDevice *s, int pid, int ep, int i)
{
get_endp(s, pid, ep)->iso_urb_idx = i;
}
static int get_iso_urb_idx(USBHostDevice *s, int pid, int ep)
{
return get_endp(s, pid, ep)->iso_urb_idx;
}
static void set_iso_buffer_used(USBHostDevice *s, int pid, int ep, int i)
{
get_endp(s, pid, ep)->iso_buffer_used = i;
}
static int get_iso_buffer_used(USBHostDevice *s, int pid, int ep)
{
return get_endp(s, pid, ep)->iso_buffer_used;
}
/*
* Async URB state.
* We always allocate iso packet descriptors even for bulk transfers
* to simplify allocation and casts.
*/
struct AsyncURB
{
struct usbdevfs_urb urb;
struct usbdevfs_iso_packet_desc isocpd[ISO_FRAME_DESC_PER_URB];
USBHostDevice *hdev;
QLIST_ENTRY(AsyncURB) next;
/* For regular async urbs */
USBPacket *packet;
int more; /* large transfer, more urbs follow */
/* For buffered iso handling */
int iso_frame_idx; /* -1 means in flight */
};
static AsyncURB *async_alloc(USBHostDevice *s)
{
AsyncURB *aurb = g_malloc0(sizeof(AsyncURB));
aurb->hdev = s;
QLIST_INSERT_HEAD(&s->aurbs, aurb, next);
return aurb;
}
static void async_free(AsyncURB *aurb)
{
QLIST_REMOVE(aurb, next);
g_free(aurb);
}
static void do_disconnect(USBHostDevice *s)
{
usb_host_close(s);
usb_host_auto_check(NULL);
}
static void async_complete(void *opaque)
{
USBHostDevice *s = opaque;
AsyncURB *aurb;
int urbs = 0;
while (1) {
USBPacket *p;
int r = ioctl(s->fd, USBDEVFS_REAPURBNDELAY, &aurb);
if (r < 0) {
if (errno == EAGAIN) {
if (urbs > 2) {
/* indicates possible latency issues */
trace_usb_host_iso_many_urbs(s->bus_num, s->addr, urbs);
}
return;
}
if (errno == ENODEV) {
if (!s->closing) {
trace_usb_host_disconnect(s->bus_num, s->addr);
do_disconnect(s);
}
return;
}
perror("USBDEVFS_REAPURBNDELAY");
return;
}
DPRINTF("husb: async completed. aurb %p status %d alen %d\n",
aurb, aurb->urb.status, aurb->urb.actual_length);
/* If this is a buffered iso urb mark it as complete and don't do
anything else (it is handled further in usb_host_handle_iso_data) */
if (aurb->iso_frame_idx == -1) {
int inflight;
int pid = (aurb->urb.endpoint & USB_DIR_IN) ?
USB_TOKEN_IN : USB_TOKEN_OUT;
int ep = aurb->urb.endpoint & 0xf;
if (aurb->urb.status == -EPIPE) {
set_halt(s, pid, ep);
}
aurb->iso_frame_idx = 0;
urbs++;
inflight = change_iso_inflight(s, pid, ep, -1);
if (inflight == 0 && is_iso_started(s, pid, ep)) {
/* can be latency issues, or simply end of stream */
trace_usb_host_iso_out_of_bufs(s->bus_num, s->addr, ep);
}
continue;
}
p = aurb->packet;
trace_usb_host_urb_complete(s->bus_num, s->addr, aurb, aurb->urb.status,
aurb->urb.actual_length, aurb->more);
if (p) {
switch (aurb->urb.status) {
case 0:
p->actual_length += aurb->urb.actual_length;
if (!aurb->more) {
/* Clear previous ASYNC status */
p->status = USB_RET_SUCCESS;
}
break;
case -EPIPE:
set_halt(s, p->pid, p->ep->nr);
p->status = USB_RET_STALL;
break;
case -EOVERFLOW:
p->status = USB_RET_BABBLE;
break;
default:
p->status = USB_RET_IOERROR;
break;
}
if (aurb->urb.type == USBDEVFS_URB_TYPE_CONTROL) {
trace_usb_host_req_complete(s->bus_num, s->addr, p,
p->status, aurb->urb.actual_length);
usb_generic_async_ctrl_complete(&s->dev, p);
} else if (!aurb->more) {
trace_usb_host_req_complete(s->bus_num, s->addr, p,
p->status, aurb->urb.actual_length);
usb_packet_complete(&s->dev, p);
}
}
async_free(aurb);
}
}
static void usb_host_async_cancel(USBDevice *dev, USBPacket *p)
{
USBHostDevice *s = DO_UPCAST(USBHostDevice, dev, dev);
AsyncURB *aurb;
trace_usb_host_req_canceled(s->bus_num, s->addr, p);
QLIST_FOREACH(aurb, &s->aurbs, next) {
if (p != aurb->packet) {
continue;
}
trace_usb_host_urb_canceled(s->bus_num, s->addr, aurb);
/* Mark it as dead (see async_complete above) */
aurb->packet = NULL;
int r = ioctl(s->fd, USBDEVFS_DISCARDURB, aurb);
if (r < 0) {
DPRINTF("husb: async. discard urb failed errno %d\n", errno);
}
}
}
static int usb_host_open_device(int bus, int addr)
{
const char *usbfs = NULL;
char filename[32];
struct stat st;
int fd, rc;
rc = stat("/dev/bus/usb", &st);
if (rc == 0 && S_ISDIR(st.st_mode)) {
/* udev-created device nodes available */
usbfs = "/dev/bus/usb";
} else {
/* fallback: usbfs mounted below /proc */
usbfs = "/proc/bus/usb";
}
snprintf(filename, sizeof(filename), "%s/%03d/%03d",
usbfs, bus, addr);
fd = open(filename, O_RDWR | O_NONBLOCK);
if (fd < 0) {
fprintf(stderr, "husb: open %s: %s\n", filename, strerror(errno));
}
return fd;
}
static int usb_host_claim_port(USBHostDevice *s)
{
#ifdef USBDEVFS_CLAIM_PORT
char *h, hub_name[64], line[1024];
int hub_addr, ret;
snprintf(hub_name, sizeof(hub_name), "%d-%s",
s->match.bus_num, s->match.port);
/* try strip off last ".$portnr" to get hub */
h = strrchr(hub_name, '.');
if (h != NULL) {
s->hub_port = atoi(h+1);
*h = '\0';
} else {
/* no dot in there -> it is the root hub */
snprintf(hub_name, sizeof(hub_name), "usb%d",
s->match.bus_num);
s->hub_port = atoi(s->match.port);
}
if (!usb_host_read_file(line, sizeof(line), "devnum",
hub_name)) {
return -1;
}
if (sscanf(line, "%d", &hub_addr) != 1) {
return -1;
}
s->hub_fd = usb_host_open_device(s->match.bus_num, hub_addr);
if (s->hub_fd < 0) {
return -1;
}
ret = ioctl(s->hub_fd, USBDEVFS_CLAIM_PORT, &s->hub_port);
if (ret < 0) {
close(s->hub_fd);
s->hub_fd = -1;
return -1;
}
trace_usb_host_claim_port(s->match.bus_num, hub_addr, s->hub_port);
return 0;
#else
return -1;
#endif
}
static void usb_host_release_port(USBHostDevice *s)
{
if (s->hub_fd == -1) {
return;
}
#ifdef USBDEVFS_RELEASE_PORT
ioctl(s->hub_fd, USBDEVFS_RELEASE_PORT, &s->hub_port);
#endif
close(s->hub_fd);
s->hub_fd = -1;
}
static int usb_host_disconnect_ifaces(USBHostDevice *dev, int nb_interfaces)
{
/* earlier Linux 2.4 do not support that */
#ifdef USBDEVFS_DISCONNECT
struct usbdevfs_ioctl ctrl;
int ret, interface;
for (interface = 0; interface < nb_interfaces; interface++) {
ctrl.ioctl_code = USBDEVFS_DISCONNECT;
ctrl.ifno = interface;
ctrl.data = 0;
ret = ioctl(dev->fd, USBDEVFS_IOCTL, &ctrl);
if (ret < 0 && errno != ENODATA) {
perror("USBDEVFS_DISCONNECT");
return -1;
}
}
#endif
return 0;
}
static int usb_linux_get_num_interfaces(USBHostDevice *s)
{
char device_name[64], line[1024];
int num_interfaces = 0;
sprintf(device_name, "%d-%s", s->bus_num, s->port);
if (!usb_host_read_file(line, sizeof(line), "bNumInterfaces",
device_name)) {
return -1;
}
if (sscanf(line, "%d", &num_interfaces) != 1) {
return -1;
}
return num_interfaces;
}
static int usb_host_claim_interfaces(USBHostDevice *dev, int configuration)
{
const char *op = NULL;
int dev_descr_len, config_descr_len;
int interface, nb_interfaces;
int ret, i;
for (i = 0; i < USB_MAX_INTERFACES; i++) {
dev->dev.altsetting[i] = 0;
}
if (configuration == 0) { /* address state - ignore */
dev->dev.ninterfaces = 0;
dev->dev.configuration = 0;
return 1;
}
DPRINTF("husb: claiming interfaces. config %d\n", configuration);
i = 0;
dev_descr_len = dev->descr[0];
if (dev_descr_len > dev->descr_len) {
fprintf(stderr, "husb: update iface failed. descr too short\n");
return 0;
}
i += dev_descr_len;
while (i < dev->descr_len) {
DPRINTF("husb: i is %d, descr_len is %d, dl %d, dt %d\n",
i, dev->descr_len,
dev->descr[i], dev->descr[i+1]);
if (dev->descr[i+1] != USB_DT_CONFIG) {
i += dev->descr[i];
continue;
}
config_descr_len = dev->descr[i];
DPRINTF("husb: config #%d need %d\n", dev->descr[i + 5], configuration);
if (configuration == dev->descr[i + 5]) {
configuration = dev->descr[i + 5];
break;
}
i += config_descr_len;
}
if (i >= dev->descr_len) {
fprintf(stderr,
"husb: update iface failed. no matching configuration\n");
return 0;
}
nb_interfaces = dev->descr[i + 4];
if (usb_host_disconnect_ifaces(dev, nb_interfaces) < 0) {
goto fail;
}
/* XXX: only grab if all interfaces are free */
for (interface = 0; interface < nb_interfaces; interface++) {
op = "USBDEVFS_CLAIMINTERFACE";
ret = ioctl(dev->fd, USBDEVFS_CLAIMINTERFACE, &interface);
if (ret < 0) {
goto fail;
}
}
trace_usb_host_claim_interfaces(dev->bus_num, dev->addr,
nb_interfaces, configuration);
dev->dev.ninterfaces = nb_interfaces;
dev->dev.configuration = configuration;
return 1;
fail:
if (errno == ENODEV) {
do_disconnect(dev);
}
perror(op);
return 0;
}
static int usb_host_release_interfaces(USBHostDevice *s)
{
int ret, i;
trace_usb_host_release_interfaces(s->bus_num, s->addr);
for (i = 0; i < s->dev.ninterfaces; i++) {
ret = ioctl(s->fd, USBDEVFS_RELEASEINTERFACE, &i);
if (ret < 0) {
perror("USBDEVFS_RELEASEINTERFACE");
return 0;
}
}
return 1;
}
static void usb_host_handle_reset(USBDevice *dev)
{
USBHostDevice *s = DO_UPCAST(USBHostDevice, dev, dev);
trace_usb_host_reset(s->bus_num, s->addr);
usb_host_do_reset(s);;
usb_host_claim_interfaces(s, 0);
usb_linux_update_endp_table(s);
}
static void usb_host_handle_destroy(USBDevice *dev)
{
USBHostDevice *s = (USBHostDevice *)dev;
usb_host_release_port(s);
usb_host_close(s);
QTAILQ_REMOVE(&hostdevs, s, next);
qemu_remove_exit_notifier(&s->exit);
}
/* iso data is special, we need to keep enough urbs in flight to make sure
that the controller never runs out of them, otherwise the device will
likely suffer a buffer underrun / overrun. */
static AsyncURB *usb_host_alloc_iso(USBHostDevice *s, int pid, uint8_t ep)
{
AsyncURB *aurb;
int i, j, len = usb_ep_get_max_packet_size(&s->dev, pid, ep);
aurb = g_malloc0(s->iso_urb_count * sizeof(*aurb));
for (i = 0; i < s->iso_urb_count; i++) {
aurb[i].urb.endpoint = ep;
aurb[i].urb.buffer_length = ISO_FRAME_DESC_PER_URB * len;
aurb[i].urb.buffer = g_malloc(aurb[i].urb.buffer_length);
aurb[i].urb.type = USBDEVFS_URB_TYPE_ISO;
aurb[i].urb.flags = USBDEVFS_URB_ISO_ASAP;
aurb[i].urb.number_of_packets = ISO_FRAME_DESC_PER_URB;
for (j = 0 ; j < ISO_FRAME_DESC_PER_URB; j++)
aurb[i].urb.iso_frame_desc[j].length = len;
if (pid == USB_TOKEN_IN) {
aurb[i].urb.endpoint |= 0x80;
/* Mark as fully consumed (idle) */
aurb[i].iso_frame_idx = ISO_FRAME_DESC_PER_URB;
}
}
set_iso_urb(s, pid, ep, aurb);
return aurb;
}
static void usb_host_stop_n_free_iso(USBHostDevice *s, int pid, uint8_t ep)
{
AsyncURB *aurb;
int i, ret, killed = 0, free = 1;
aurb = get_iso_urb(s, pid, ep);
if (!aurb) {
return;
}
for (i = 0; i < s->iso_urb_count; i++) {
/* in flight? */
if (aurb[i].iso_frame_idx == -1) {
ret = ioctl(s->fd, USBDEVFS_DISCARDURB, &aurb[i]);
if (ret < 0) {
perror("USBDEVFS_DISCARDURB");
free = 0;
continue;
}
killed++;
}
}
/* Make sure any urbs we've killed are reaped before we free them */
if (killed) {
async_complete(s);
}
for (i = 0; i < s->iso_urb_count; i++) {
g_free(aurb[i].urb.buffer);
}
if (free)
g_free(aurb);
else
printf("husb: leaking iso urbs because of discard failure\n");
set_iso_urb(s, pid, ep, NULL);
set_iso_urb_idx(s, pid, ep, 0);
clear_iso_started(s, pid, ep);
}
static void urb_status_to_usb_ret(int status, USBPacket *p)
{
switch (status) {
case -EPIPE:
p->status = USB_RET_STALL;
break;
case -EOVERFLOW:
p->status = USB_RET_BABBLE;
break;
default:
p->status = USB_RET_IOERROR;
}
}
static void usb_host_handle_iso_data(USBHostDevice *s, USBPacket *p, int in)
{
AsyncURB *aurb;
int i, j, max_packet_size, offset, len;
uint8_t *buf;
max_packet_size = p->ep->max_packet_size;
if (max_packet_size == 0) {
p->status = USB_RET_NAK;
return;
}
aurb = get_iso_urb(s, p->pid, p->ep->nr);
if (!aurb) {
aurb = usb_host_alloc_iso(s, p->pid, p->ep->nr);
}
i = get_iso_urb_idx(s, p->pid, p->ep->nr);
j = aurb[i].iso_frame_idx;
if (j >= 0 && j < ISO_FRAME_DESC_PER_URB) {
if (in) {
/* Check urb status */
if (aurb[i].urb.status) {
urb_status_to_usb_ret(aurb[i].urb.status, p);
/* Move to the next urb */
aurb[i].iso_frame_idx = ISO_FRAME_DESC_PER_URB - 1;
/* Check frame status */
} else if (aurb[i].urb.iso_frame_desc[j].status) {
urb_status_to_usb_ret(aurb[i].urb.iso_frame_desc[j].status, p);
/* Check the frame fits */
} else if (aurb[i].urb.iso_frame_desc[j].actual_length
> p->iov.size) {
printf("husb: received iso data is larger then packet\n");
p->status = USB_RET_BABBLE;
/* All good copy data over */
} else {
len = aurb[i].urb.iso_frame_desc[j].actual_length;
buf = aurb[i].urb.buffer +
j * aurb[i].urb.iso_frame_desc[0].length;
usb_packet_copy(p, buf, len);
}
} else {
len = p->iov.size;
offset = (j == 0) ? 0 : get_iso_buffer_used(s, p->pid, p->ep->nr);
/* Check the frame fits */
if (len > max_packet_size) {
printf("husb: send iso data is larger then max packet size\n");
p->status = USB_RET_NAK;
return;
}
/* All good copy data over */
usb_packet_copy(p, aurb[i].urb.buffer + offset, len);
aurb[i].urb.iso_frame_desc[j].length = len;
offset += len;
set_iso_buffer_used(s, p->pid, p->ep->nr, offset);
/* Start the stream once we have buffered enough data */
if (!is_iso_started(s, p->pid, p->ep->nr) && i == 1 && j == 8) {
set_iso_started(s, p->pid, p->ep->nr);
}
}
aurb[i].iso_frame_idx++;
if (aurb[i].iso_frame_idx == ISO_FRAME_DESC_PER_URB) {
i = (i + 1) % s->iso_urb_count;
set_iso_urb_idx(s, p->pid, p->ep->nr, i);
}
} else {
if (in) {
set_iso_started(s, p->pid, p->ep->nr);
} else {
DPRINTF("hubs: iso out error no free buffer, dropping packet\n");
}
}
if (is_iso_started(s, p->pid, p->ep->nr)) {
/* (Re)-submit all fully consumed / filled urbs */
for (i = 0; i < s->iso_urb_count; i++) {
if (aurb[i].iso_frame_idx == ISO_FRAME_DESC_PER_URB) {
if (ioctl(s->fd, USBDEVFS_SUBMITURB, &aurb[i]) < 0) {
perror("USBDEVFS_SUBMITURB");
if (!in || p->status == USB_RET_SUCCESS) {
switch(errno) {
case ETIMEDOUT:
p->status = USB_RET_NAK;
break;
case EPIPE:
default:
p->status = USB_RET_STALL;
}
}
break;
}
aurb[i].iso_frame_idx = -1;
change_iso_inflight(s, p->pid, p->ep->nr, 1);
}
}
}
}
static void usb_host_handle_data(USBDevice *dev, USBPacket *p)
{
USBHostDevice *s = DO_UPCAST(USBHostDevice, dev, dev);
struct usbdevfs_urb *urb;
AsyncURB *aurb;
int ret, rem, prem, v;
uint8_t *pbuf;
uint8_t ep;
trace_usb_host_req_data(s->bus_num, s->addr, p,
p->pid == USB_TOKEN_IN,
p->ep->nr, p->iov.size);
if (!is_valid(s, p->pid, p->ep->nr)) {
p->status = USB_RET_NAK;
trace_usb_host_req_complete(s->bus_num, s->addr, p,
p->status, p->actual_length);
return;
}
if (p->pid == USB_TOKEN_IN) {
ep = p->ep->nr | 0x80;
} else {
ep = p->ep->nr;
}
if (is_halted(s, p->pid, p->ep->nr)) {
unsigned int arg = ep;
ret = ioctl(s->fd, USBDEVFS_CLEAR_HALT, &arg);
if (ret < 0) {
perror("USBDEVFS_CLEAR_HALT");
p->status = USB_RET_NAK;
trace_usb_host_req_complete(s->bus_num, s->addr, p,
p->status, p->actual_length);
return;
}
clear_halt(s, p->pid, p->ep->nr);
}
if (is_isoc(s, p->pid, p->ep->nr)) {
usb_host_handle_iso_data(s, p, p->pid == USB_TOKEN_IN);
return;
}
v = 0;
prem = 0;
pbuf = NULL;
rem = p->iov.size;
do {
if (prem == 0 && rem > 0) {
assert(v < p->iov.niov);
prem = p->iov.iov[v].iov_len;
pbuf = p->iov.iov[v].iov_base;
assert(prem <= rem);
v++;
}
aurb = async_alloc(s);
aurb->packet = p;
urb = &aurb->urb;
urb->endpoint = ep;
urb->type = usb_host_usbfs_type(s, p);
urb->usercontext = s;
urb->buffer = pbuf;
urb->buffer_length = prem;
if (urb->buffer_length > MAX_USBFS_BUFFER_SIZE) {
urb->buffer_length = MAX_USBFS_BUFFER_SIZE;
}
pbuf += urb->buffer_length;
prem -= urb->buffer_length;
rem -= urb->buffer_length;
if (rem) {
aurb->more = 1;
}
trace_usb_host_urb_submit(s->bus_num, s->addr, aurb,
urb->buffer_length, aurb->more);
ret = ioctl(s->fd, USBDEVFS_SUBMITURB, urb);
DPRINTF("husb: data submit: ep 0x%x, len %u, more %d, packet %p, aurb %p\n",
urb->endpoint, urb->buffer_length, aurb->more, p, aurb);
if (ret < 0) {
perror("USBDEVFS_SUBMITURB");
async_free(aurb);
switch(errno) {
case ETIMEDOUT:
p->status = USB_RET_NAK;
trace_usb_host_req_complete(s->bus_num, s->addr, p,
p->status, p->actual_length);
break;
case EPIPE:
default:
p->status = USB_RET_STALL;
trace_usb_host_req_complete(s->bus_num, s->addr, p,
p->status, p->actual_length);
}
return;
}
} while (rem > 0);
p->status = USB_RET_ASYNC;
}
static int ctrl_error(void)
{
if (errno == ETIMEDOUT) {
return USB_RET_NAK;
} else {
return USB_RET_STALL;
}
}
static void usb_host_set_address(USBHostDevice *s, int addr)
{
trace_usb_host_set_address(s->bus_num, s->addr, addr);
s->dev.addr = addr;
}
static void usb_host_set_config(USBHostDevice *s, int config, USBPacket *p)
{
int ret, first = 1;
trace_usb_host_set_config(s->bus_num, s->addr, config);
usb_host_release_interfaces(s);
again:
ret = ioctl(s->fd, USBDEVFS_SETCONFIGURATION, &config);
DPRINTF("husb: ctrl set config %d ret %d errno %d\n", config, ret, errno);
if (ret < 0 && errno == EBUSY && first) {
/* happens if usb device is in use by host drivers */
int count = usb_linux_get_num_interfaces(s);
if (count > 0) {
DPRINTF("husb: busy -> disconnecting %d interfaces\n", count);
usb_host_disconnect_ifaces(s, count);
first = 0;
goto again;
}
}
if (ret < 0) {
p->status = ctrl_error();
return;
}
usb_host_claim_interfaces(s, config);
usb_linux_update_endp_table(s);
}
static void usb_host_set_interface(USBHostDevice *s, int iface, int alt,
USBPacket *p)
{
struct usbdevfs_setinterface si;
int i, ret;
trace_usb_host_set_interface(s->bus_num, s->addr, iface, alt);
for (i = 1; i <= USB_MAX_ENDPOINTS; i++) {
if (is_isoc(s, USB_TOKEN_IN, i)) {
usb_host_stop_n_free_iso(s, USB_TOKEN_IN, i);
}
if (is_isoc(s, USB_TOKEN_OUT, i)) {
usb_host_stop_n_free_iso(s, USB_TOKEN_OUT, i);
}
}
if (iface >= USB_MAX_INTERFACES) {
p->status = USB_RET_STALL;
return;
}
si.interface = iface;
si.altsetting = alt;
ret = ioctl(s->fd, USBDEVFS_SETINTERFACE, &si);
DPRINTF("husb: ctrl set iface %d altset %d ret %d errno %d\n",
iface, alt, ret, errno);
if (ret < 0) {
p->status = ctrl_error();
return;
}
s->dev.altsetting[iface] = alt;
usb_linux_update_endp_table(s);
}
static void usb_host_handle_control(USBDevice *dev, USBPacket *p,
int request, int value, int index, int length, uint8_t *data)
{
USBHostDevice *s = DO_UPCAST(USBHostDevice, dev, dev);
struct usbdevfs_urb *urb;
AsyncURB *aurb;
int ret;
/*
* Process certain standard device requests.
* These are infrequent and are processed synchronously.
*/
/* Note request is (bRequestType << 8) | bRequest */
trace_usb_host_req_control(s->bus_num, s->addr, p, request, value, index);
switch (request) {
case DeviceOutRequest | USB_REQ_SET_ADDRESS:
usb_host_set_address(s, value);
trace_usb_host_req_emulated(s->bus_num, s->addr, p, p->status);
return;
case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
usb_host_set_config(s, value & 0xff, p);
trace_usb_host_req_emulated(s->bus_num, s->addr, p, p->status);
return;
case InterfaceOutRequest | USB_REQ_SET_INTERFACE:
usb_host_set_interface(s, index, value, p);
trace_usb_host_req_emulated(s->bus_num, s->addr, p, p->status);
return;
case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
if (value == 0) { /* clear halt */
int pid = (index & USB_DIR_IN) ? USB_TOKEN_IN : USB_TOKEN_OUT;
ioctl(s->fd, USBDEVFS_CLEAR_HALT, &index);
clear_halt(s, pid, index & 0x0f);
trace_usb_host_req_emulated(s->bus_num, s->addr, p, 0);
return;
}
}
/* The rest are asynchronous */
if (length > sizeof(dev->data_buf)) {
fprintf(stderr, "husb: ctrl buffer too small (%d > %zu)\n",
length, sizeof(dev->data_buf));
p->status = USB_RET_STALL;
return;
}
aurb = async_alloc(s);
aurb->packet = p;
/*
* Setup ctrl transfer.
*
* s->ctrl is laid out such that data buffer immediately follows
* 'req' struct which is exactly what usbdevfs expects.
*/
urb = &aurb->urb;
urb->type = USBDEVFS_URB_TYPE_CONTROL;
urb->endpoint = p->ep->nr;
urb->buffer = &dev->setup_buf;
urb->buffer_length = length + 8;
urb->usercontext = s;
trace_usb_host_urb_submit(s->bus_num, s->addr, aurb,
urb->buffer_length, aurb->more);
ret = ioctl(s->fd, USBDEVFS_SUBMITURB, urb);
DPRINTF("husb: submit ctrl. len %u aurb %p\n", urb->buffer_length, aurb);
if (ret < 0) {
DPRINTF("husb: submit failed. errno %d\n", errno);
async_free(aurb);
switch(errno) {
case ETIMEDOUT:
p->status = USB_RET_NAK;
break;
case EPIPE:
default:
p->status = USB_RET_STALL;
break;
}
return;
}
p->status = USB_RET_ASYNC;
}
static void usb_linux_update_endp_table(USBHostDevice *s)
{
static const char *tname[] = {
[USB_ENDPOINT_XFER_CONTROL] = "control",
[USB_ENDPOINT_XFER_ISOC] = "isoc",
[USB_ENDPOINT_XFER_BULK] = "bulk",
[USB_ENDPOINT_XFER_INT] = "int",
};
uint8_t devep, type;
uint16_t mps, v, p;
int ep, pid;
unsigned int i, configuration = -1, interface = -1, altsetting = -1;
struct endp_data *epd;
USBDescriptor *d;
bool active = false;
usb_ep_reset(&s->dev);
for (i = 0;; i += d->bLength) {
if (i+2 >= s->descr_len) {
break;
}
d = (void *)(s->descr + i);
if (d->bLength < 2) {
trace_usb_host_parse_error(s->bus_num, s->addr,
"descriptor too short");
return;
}
if (i + d->bLength > s->descr_len) {
trace_usb_host_parse_error(s->bus_num, s->addr,
"descriptor too long");
return;
}
switch (d->bDescriptorType) {
case 0:
trace_usb_host_parse_error(s->bus_num, s->addr,
"invalid descriptor type");
return;
case USB_DT_DEVICE:
if (d->bLength < 0x12) {
trace_usb_host_parse_error(s->bus_num, s->addr,
"device descriptor too short");
return;
}
v = (d->u.device.idVendor_hi << 8) | d->u.device.idVendor_lo;
p = (d->u.device.idProduct_hi << 8) | d->u.device.idProduct_lo;
trace_usb_host_parse_device(s->bus_num, s->addr, v, p);
break;
case USB_DT_CONFIG:
if (d->bLength < 0x09) {
trace_usb_host_parse_error(s->bus_num, s->addr,
"config descriptor too short");
return;
}
configuration = d->u.config.bConfigurationValue;
active = (configuration == s->dev.configuration);
trace_usb_host_parse_config(s->bus_num, s->addr,
configuration, active);
break;
case USB_DT_INTERFACE:
if (d->bLength < 0x09) {
trace_usb_host_parse_error(s->bus_num, s->addr,
"interface descriptor too short");
return;
}
interface = d->u.interface.bInterfaceNumber;
altsetting = d->u.interface.bAlternateSetting;
active = (configuration == s->dev.configuration) &&
(altsetting == s->dev.altsetting[interface]);
trace_usb_host_parse_interface(s->bus_num, s->addr,
interface, altsetting, active);
break;
case USB_DT_ENDPOINT:
if (d->bLength < 0x07) {
trace_usb_host_parse_error(s->bus_num, s->addr,
"endpoint descriptor too short");
return;
}
devep = d->u.endpoint.bEndpointAddress;
pid = (devep & USB_DIR_IN) ? USB_TOKEN_IN : USB_TOKEN_OUT;
ep = devep & 0xf;
if (ep == 0) {
trace_usb_host_parse_error(s->bus_num, s->addr,
"invalid endpoint address");
return;
}
type = d->u.endpoint.bmAttributes & 0x3;
mps = d->u.endpoint.wMaxPacketSize_lo |
(d->u.endpoint.wMaxPacketSize_hi << 8);
trace_usb_host_parse_endpoint(s->bus_num, s->addr, ep,
(devep & USB_DIR_IN) ? "in" : "out",
tname[type], active);
if (active) {
usb_ep_set_max_packet_size(&s->dev, pid, ep, mps);
assert(usb_ep_get_type(&s->dev, pid, ep) ==
USB_ENDPOINT_XFER_INVALID);
usb_ep_set_type(&s->dev, pid, ep, type);
usb_ep_set_ifnum(&s->dev, pid, ep, interface);
if ((s->options & (1 << USB_HOST_OPT_PIPELINE)) &&
(type == USB_ENDPOINT_XFER_BULK) &&
(pid == USB_TOKEN_OUT)) {
usb_ep_set_pipeline(&s->dev, pid, ep, true);
}
epd = get_endp(s, pid, ep);
epd->halted = 0;
}
break;
default:
trace_usb_host_parse_unknown(s->bus_num, s->addr,
d->bLength, d->bDescriptorType);
break;
}
}
}
/*
* Check if we can safely redirect a usb2 device to a usb1 virtual controller,
* this function assumes this is safe, if:
* 1) There are no isoc endpoints
* 2) There are no interrupt endpoints with a max_packet_size > 64
* Note bulk endpoints with a max_packet_size > 64 in theory also are not
* usb1 compatible, but in practice this seems to work fine.
*/
static int usb_linux_full_speed_compat(USBHostDevice *dev)
{
int i, packet_size;
/*
* usb_linux_update_endp_table only registers info about ep in the current
* interface altsettings, so we need to parse the descriptors again.
*/
for (i = 0; (i + 5) < dev->descr_len; i += dev->descr[i]) {
if (dev->descr[i + 1] == USB_DT_ENDPOINT) {
switch (dev->descr[i + 3] & 0x3) {
case 0x00: /* CONTROL */
break;
case 0x01: /* ISO */
return 0;
case 0x02: /* BULK */
break;
case 0x03: /* INTERRUPT */
packet_size = dev->descr[i + 4] + (dev->descr[i + 5] << 8);
if (packet_size > 64)
return 0;
break;
}
}
}
return 1;
}
static int usb_host_open(USBHostDevice *dev, int bus_num,
int addr, const char *port,
const char *prod_name, int speed)
{
int fd = -1, ret;
trace_usb_host_open_started(bus_num, addr);
if (dev->fd != -1) {
goto fail;
}
fd = usb_host_open_device(bus_num, addr);
if (fd < 0) {
goto fail;
}
DPRINTF("husb: opened %s\n", buf);
dev->bus_num = bus_num;
dev->addr = addr;
pstrcpy(dev->port, sizeof(dev->port), port);
dev->fd = fd;
/* read the device description */
dev->descr_len = read(fd, dev->descr, sizeof(dev->descr));
if (dev->descr_len <= 0) {
perror("husb: reading device data failed");
goto fail;
}
#ifdef DEBUG
{
int x;
printf("=== begin dumping device descriptor data ===\n");
for (x = 0; x < dev->descr_len; x++) {
printf("%02x ", dev->descr[x]);
}
printf("\n=== end dumping device descriptor data ===\n");
}
#endif
/* start unconfigured -- we'll wait for the guest to set a configuration */
if (!usb_host_claim_interfaces(dev, 0)) {
goto fail;
}
usb_ep_init(&dev->dev);
usb_linux_update_endp_table(dev);
if (speed == -1) {
struct usbdevfs_connectinfo ci;
ret = ioctl(fd, USBDEVFS_CONNECTINFO, &ci);
if (ret < 0) {
perror("usb_host_device_open: USBDEVFS_CONNECTINFO");
goto fail;
}
if (ci.slow) {
speed = USB_SPEED_LOW;
} else {
speed = USB_SPEED_HIGH;
}
}
dev->dev.speed = speed;
dev->dev.speedmask = (1 << speed);
if (dev->dev.speed == USB_SPEED_HIGH && usb_linux_full_speed_compat(dev)) {
dev->dev.speedmask |= USB_SPEED_MASK_FULL;
}
trace_usb_host_open_success(bus_num, addr);
if (!prod_name || prod_name[0] == '\0') {
snprintf(dev->dev.product_desc, sizeof(dev->dev.product_desc),
"host:%d.%d", bus_num, addr);
} else {
pstrcpy(dev->dev.product_desc, sizeof(dev->dev.product_desc),
prod_name);
}
ret = usb_device_attach(&dev->dev);
if (ret) {
goto fail;
}
/* USB devio uses 'write' flag to check for async completions */
qemu_set_fd_handler(dev->fd, NULL, async_complete, dev);
return 0;
fail:
trace_usb_host_open_failure(bus_num, addr);
if (dev->fd != -1) {
close(dev->fd);
dev->fd = -1;
}
return -1;
}
static int usb_host_close(USBHostDevice *dev)
{
int i;
if (dev->fd == -1) {
return -1;
}
trace_usb_host_close(dev->bus_num, dev->addr);
qemu_set_fd_handler(dev->fd, NULL, NULL, NULL);
dev->closing = 1;
for (i = 1; i <= USB_MAX_ENDPOINTS; i++) {
if (is_isoc(dev, USB_TOKEN_IN, i)) {
usb_host_stop_n_free_iso(dev, USB_TOKEN_IN, i);
}
if (is_isoc(dev, USB_TOKEN_OUT, i)) {
usb_host_stop_n_free_iso(dev, USB_TOKEN_OUT, i);
}
}
async_complete(dev);
dev->closing = 0;
if (dev->dev.attached) {
usb_device_detach(&dev->dev);
}
usb_host_do_reset(dev);
close(dev->fd);
dev->fd = -1;
return 0;
}
static void usb_host_exit_notifier(struct Notifier *n, void *data)
{
USBHostDevice *s = container_of(n, USBHostDevice, exit);
usb_host_release_port(s);
if (s->fd != -1) {
usb_host_do_reset(s);;
}
}
/*
* This is *NOT* about restoring state. We have absolutely no idea
* what state the host device is in at the moment and whenever it is
* still present in the first place. Attemping to contine where we
* left off is impossible.
*
* What we are going to to to here is emulate a surprise removal of
* the usb device passed through, then kick host scan so the device
* will get re-attached (and re-initialized by the guest) in case it
* is still present.
*
* As the device removal will change the state of other devices (usb
* host controller, most likely interrupt controller too) we have to
* wait with it until *all* vmstate is loaded. Thus post_load just
* kicks a bottom half which then does the actual work.
*/
static void usb_host_post_load_bh(void *opaque)
{
USBHostDevice *dev = opaque;
if (dev->fd != -1) {
usb_host_close(dev);
}
if (dev->dev.attached) {
usb_device_detach(&dev->dev);
}
usb_host_auto_check(NULL);
}
static int usb_host_post_load(void *opaque, int version_id)
{
USBHostDevice *dev = opaque;
qemu_bh_schedule(dev->bh);
return 0;
}
static int usb_host_initfn(USBDevice *dev)
{
USBHostDevice *s = DO_UPCAST(USBHostDevice, dev, dev);
dev->flags |= (1 << USB_DEV_FLAG_IS_HOST);
dev->auto_attach = 0;
s->fd = -1;
s->hub_fd = -1;
QTAILQ_INSERT_TAIL(&hostdevs, s, next);
s->exit.notify = usb_host_exit_notifier;
qemu_add_exit_notifier(&s->exit);
s->bh = qemu_bh_new(usb_host_post_load_bh, s);
usb_host_auto_check(NULL);
if (s->match.bus_num != 0 && s->match.port != NULL) {
usb_host_claim_port(s);
}
add_boot_device_path(s->bootindex, &dev->qdev, NULL);
return 0;
}
static const VMStateDescription vmstate_usb_host = {
.name = "usb-host",
.version_id = 1,
.minimum_version_id = 1,
.post_load = usb_host_post_load,
.fields = (VMStateField[]) {
VMSTATE_USB_DEVICE(dev, USBHostDevice),
VMSTATE_END_OF_LIST()
}
};
static Property usb_host_dev_properties[] = {
DEFINE_PROP_UINT32("hostbus", USBHostDevice, match.bus_num, 0),
DEFINE_PROP_UINT32("hostaddr", USBHostDevice, match.addr, 0),
DEFINE_PROP_STRING("hostport", USBHostDevice, match.port),
DEFINE_PROP_HEX32("vendorid", USBHostDevice, match.vendor_id, 0),
DEFINE_PROP_HEX32("productid", USBHostDevice, match.product_id, 0),
DEFINE_PROP_UINT32("isobufs", USBHostDevice, iso_urb_count, 4),
DEFINE_PROP_INT32("bootindex", USBHostDevice, bootindex, -1),
DEFINE_PROP_BIT("pipeline", USBHostDevice, options,
USB_HOST_OPT_PIPELINE, true),
DEFINE_PROP_END_OF_LIST(),
};
static void usb_host_class_initfn(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
USBDeviceClass *uc = USB_DEVICE_CLASS(klass);
uc->init = usb_host_initfn;
uc->product_desc = "USB Host Device";
uc->cancel_packet = usb_host_async_cancel;
uc->handle_data = usb_host_handle_data;
uc->handle_control = usb_host_handle_control;
uc->handle_reset = usb_host_handle_reset;
uc->handle_destroy = usb_host_handle_destroy;
dc->vmsd = &vmstate_usb_host;
dc->props = usb_host_dev_properties;
}
static const TypeInfo usb_host_dev_info = {
.name = "usb-host",
.parent = TYPE_USB_DEVICE,
.instance_size = sizeof(USBHostDevice),
.class_init = usb_host_class_initfn,
};
static void usb_host_register_types(void)
{
type_register_static(&usb_host_dev_info);
usb_legacy_register("usb-host", "host", usb_host_device_open);
}
type_init(usb_host_register_types)
USBDevice *usb_host_device_open(USBBus *bus, const char *devname)
{
struct USBAutoFilter filter;
USBDevice *dev;
char *p;
dev = usb_create(bus, "usb-host");
if (strstr(devname, "auto:")) {
if (parse_filter(devname, &filter) < 0) {
goto fail;
}
} else {
if ((p = strchr(devname, '.'))) {
filter.bus_num = strtoul(devname, NULL, 0);
filter.addr = strtoul(p + 1, NULL, 0);
filter.vendor_id = 0;
filter.product_id = 0;
} else if ((p = strchr(devname, ':'))) {
filter.bus_num = 0;
filter.addr = 0;
filter.vendor_id = strtoul(devname, NULL, 16);
filter.product_id = strtoul(p + 1, NULL, 16);
} else {
goto fail;
}
}
qdev_prop_set_uint32(&dev->qdev, "hostbus", filter.bus_num);
qdev_prop_set_uint32(&dev->qdev, "hostaddr", filter.addr);
qdev_prop_set_uint32(&dev->qdev, "vendorid", filter.vendor_id);
qdev_prop_set_uint32(&dev->qdev, "productid", filter.product_id);
qdev_init_nofail(&dev->qdev);
return dev;
fail:
qdev_free(&dev->qdev);
return NULL;
}
int usb_host_device_close(const char *devname)
{
#if 0
char product_name[PRODUCT_NAME_SZ];
int bus_num, addr;
USBHostDevice *s;
if (strstr(devname, "auto:")) {
return usb_host_auto_del(devname);
}
if (usb_host_find_device(&bus_num, &addr, product_name,
sizeof(product_name), devname) < 0) {
return -1;
}
s = hostdev_find(bus_num, addr);
if (s) {
usb_device_delete_addr(s->bus_num, s->dev.addr);
return 0;
}
#endif
return -1;
}
/*
* Read sys file-system device file
*
* @line address of buffer to put file contents in
* @line_size size of line
* @device_file path to device file (printf format string)
* @device_name device being opened (inserted into device_file)
*
* @return 0 failed, 1 succeeded ('line' contains data)
*/
static int usb_host_read_file(char *line, size_t line_size,
const char *device_file, const char *device_name)
{
FILE *f;
int ret = 0;
char filename[PATH_MAX];
snprintf(filename, PATH_MAX, "/sys/bus/usb/devices/%s/%s", device_name,
device_file);
f = fopen(filename, "r");
if (f) {
ret = fgets(line, line_size, f) != NULL;
fclose(f);
}
return ret;
}
/*
* Use /sys/bus/usb/devices/ directory to determine host's USB
* devices.
*
* This code is based on Robert Schiele's original patches posted to
* the Novell bug-tracker https://bugzilla.novell.com/show_bug.cgi?id=241950
*/
static int usb_host_scan(void *opaque, USBScanFunc *func)
{
DIR *dir = NULL;
char line[1024];
int bus_num, addr, speed, class_id, product_id, vendor_id;
int ret = 0;
char port[MAX_PORTLEN];
char product_name[512];
struct dirent *de;
dir = opendir("/sys/bus/usb/devices");
if (!dir) {
perror("husb: opendir /sys/bus/usb/devices");
fprintf(stderr, "husb: please make sure sysfs is mounted at /sys\n");
goto the_end;
}
while ((de = readdir(dir))) {
if (de->d_name[0] != '.' && !strchr(de->d_name, ':')) {
if (sscanf(de->d_name, "%d-%7[0-9.]", &bus_num, port) < 2) {
continue;
}
if (!usb_host_read_file(line, sizeof(line), "devnum", de->d_name)) {
goto the_end;
}
if (sscanf(line, "%d", &addr) != 1) {
goto the_end;
}
if (!usb_host_read_file(line, sizeof(line), "bDeviceClass",
de->d_name)) {
goto the_end;
}
if (sscanf(line, "%x", &class_id) != 1) {
goto the_end;
}
if (!usb_host_read_file(line, sizeof(line), "idVendor",
de->d_name)) {
goto the_end;
}
if (sscanf(line, "%x", &vendor_id) != 1) {
goto the_end;
}
if (!usb_host_read_file(line, sizeof(line), "idProduct",
de->d_name)) {
goto the_end;
}
if (sscanf(line, "%x", &product_id) != 1) {
goto the_end;
}
if (!usb_host_read_file(line, sizeof(line), "product",
de->d_name)) {
*product_name = 0;
} else {
if (strlen(line) > 0) {
line[strlen(line) - 1] = '\0';
}
pstrcpy(product_name, sizeof(product_name), line);
}
if (!usb_host_read_file(line, sizeof(line), "speed", de->d_name)) {
goto the_end;
}
if (!strcmp(line, "5000\n")) {
speed = USB_SPEED_SUPER;
} else if (!strcmp(line, "480\n")) {
speed = USB_SPEED_HIGH;
} else if (!strcmp(line, "1.5\n")) {
speed = USB_SPEED_LOW;
} else {
speed = USB_SPEED_FULL;
}
ret = func(opaque, bus_num, addr, port, class_id, vendor_id,
product_id, product_name, speed);
if (ret) {
goto the_end;
}
}
}
the_end:
if (dir) {
closedir(dir);
}
return ret;
}
static QEMUTimer *usb_auto_timer;
static VMChangeStateEntry *usb_vmstate;
static int usb_host_auto_scan(void *opaque, int bus_num,
int addr, const char *port,
int class_id, int vendor_id, int product_id,
const char *product_name, int speed)
{
struct USBAutoFilter *f;
struct USBHostDevice *s;
/* Ignore hubs */
if (class_id == 9)
return 0;
QTAILQ_FOREACH(s, &hostdevs, next) {
f = &s->match;
if (f->bus_num > 0 && f->bus_num != bus_num) {
continue;
}
if (f->addr > 0 && f->addr != addr) {
continue;
}
if (f->port != NULL && strcmp(f->port, port) != 0) {
continue;
}
if (f->vendor_id > 0 && f->vendor_id != vendor_id) {
continue;
}
if (f->product_id > 0 && f->product_id != product_id) {
continue;
}
/* We got a match */
s->seen++;
if (s->errcount >= 3) {
return 0;
}
/* Already attached ? */
if (s->fd != -1) {
return 0;
}
DPRINTF("husb: auto open: bus_num %d addr %d\n", bus_num, addr);
if (usb_host_open(s, bus_num, addr, port, product_name, speed) < 0) {
s->errcount++;
}
break;
}
return 0;
}
static void usb_host_vm_state(void *unused, int running, RunState state)
{
if (running) {
usb_host_auto_check(unused);
}
}
static void usb_host_auto_check(void *unused)
{
struct USBHostDevice *s;
int unconnected = 0;
if (runstate_is_running()) {
usb_host_scan(NULL, usb_host_auto_scan);
QTAILQ_FOREACH(s, &hostdevs, next) {
if (s->fd == -1) {
unconnected++;
}
if (s->seen == 0) {
s->errcount = 0;
}
s->seen = 0;
}
if (unconnected == 0) {
/* nothing to watch */
if (usb_auto_timer) {
qemu_del_timer(usb_auto_timer);
trace_usb_host_auto_scan_disabled();
}
return;
}
}
if (!usb_vmstate) {
usb_vmstate = qemu_add_vm_change_state_handler(usb_host_vm_state, NULL);
}
if (!usb_auto_timer) {
usb_auto_timer = qemu_new_timer_ms(rt_clock, usb_host_auto_check, NULL);
if (!usb_auto_timer) {
return;
}
trace_usb_host_auto_scan_enabled();
}
qemu_mod_timer(usb_auto_timer, qemu_get_clock_ms(rt_clock) + 2000);
}
/*
* Autoconnect filter
* Format:
* auto:bus:dev[:vid:pid]
* auto:bus.dev[:vid:pid]
*
* bus - bus number (dec, * means any)
* dev - device number (dec, * means any)
* vid - vendor id (hex, * means any)
* pid - product id (hex, * means any)
*
* See 'lsusb' output.
*/
static int parse_filter(const char *spec, struct USBAutoFilter *f)
{
enum { BUS, DEV, VID, PID, DONE };
const char *p = spec;
int i;
f->bus_num = 0;
f->addr = 0;
f->vendor_id = 0;
f->product_id = 0;
for (i = BUS; i < DONE; i++) {
p = strpbrk(p, ":.");
if (!p) {
break;
}
p++;
if (*p == '*') {
continue;
}
switch(i) {
case BUS: f->bus_num = strtol(p, NULL, 10); break;
case DEV: f->addr = strtol(p, NULL, 10); break;
case VID: f->vendor_id = strtol(p, NULL, 16); break;
case PID: f->product_id = strtol(p, NULL, 16); break;
}
}
if (i < DEV) {
fprintf(stderr, "husb: invalid auto filter spec %s\n", spec);
return -1;
}
return 0;
}
/**********************/
/* USB host device info */
struct usb_class_info {
int class;
const char *class_name;
};
static const struct usb_class_info usb_class_info[] = {
{ USB_CLASS_AUDIO, "Audio"},
{ USB_CLASS_COMM, "Communication"},
{ USB_CLASS_HID, "HID"},
{ USB_CLASS_HUB, "Hub" },
{ USB_CLASS_PHYSICAL, "Physical" },
{ USB_CLASS_PRINTER, "Printer" },
{ USB_CLASS_MASS_STORAGE, "Storage" },
{ USB_CLASS_CDC_DATA, "Data" },
{ USB_CLASS_APP_SPEC, "Application Specific" },
{ USB_CLASS_VENDOR_SPEC, "Vendor Specific" },
{ USB_CLASS_STILL_IMAGE, "Still Image" },
{ USB_CLASS_CSCID, "Smart Card" },
{ USB_CLASS_CONTENT_SEC, "Content Security" },
{ -1, NULL }
};
static const char *usb_class_str(uint8_t class)
{
const struct usb_class_info *p;
for(p = usb_class_info; p->class != -1; p++) {
if (p->class == class) {
break;
}
}
return p->class_name;
}
static void usb_info_device(Monitor *mon, int bus_num,
int addr, const char *port,
int class_id, int vendor_id, int product_id,
const char *product_name,
int speed)
{
const char *class_str, *speed_str;
switch(speed) {
case USB_SPEED_LOW:
speed_str = "1.5";
break;
case USB_SPEED_FULL:
speed_str = "12";
break;
case USB_SPEED_HIGH:
speed_str = "480";
break;
case USB_SPEED_SUPER:
speed_str = "5000";
break;
default:
speed_str = "?";
break;
}
monitor_printf(mon, " Bus %d, Addr %d, Port %s, Speed %s Mb/s\n",
bus_num, addr, port, speed_str);
class_str = usb_class_str(class_id);
if (class_str) {
monitor_printf(mon, " %s:", class_str);
} else {
monitor_printf(mon, " Class %02x:", class_id);
}
monitor_printf(mon, " USB device %04x:%04x", vendor_id, product_id);
if (product_name[0] != '\0') {
monitor_printf(mon, ", %s", product_name);
}
monitor_printf(mon, "\n");
}
static int usb_host_info_device(void *opaque, int bus_num, int addr,
const char *path, int class_id,
int vendor_id, int product_id,
const char *product_name,
int speed)
{
Monitor *mon = opaque;
usb_info_device(mon, bus_num, addr, path, class_id, vendor_id, product_id,
product_name, speed);
return 0;
}
static void dec2str(int val, char *str, size_t size)
{
if (val == 0) {
snprintf(str, size, "*");
} else {
snprintf(str, size, "%d", val);
}
}
static void hex2str(int val, char *str, size_t size)
{
if (val == 0) {
snprintf(str, size, "*");
} else {
snprintf(str, size, "%04x", val);
}
}
void usb_host_info(Monitor *mon, const QDict *qdict)
{
struct USBAutoFilter *f;
struct USBHostDevice *s;
usb_host_scan(mon, usb_host_info_device);
if (QTAILQ_EMPTY(&hostdevs)) {
return;
}
monitor_printf(mon, " Auto filters:\n");
QTAILQ_FOREACH(s, &hostdevs, next) {
char bus[10], addr[10], vid[10], pid[10];
f = &s->match;
dec2str(f->bus_num, bus, sizeof(bus));
dec2str(f->addr, addr, sizeof(addr));
hex2str(f->vendor_id, vid, sizeof(vid));
hex2str(f->product_id, pid, sizeof(pid));
monitor_printf(mon, " Bus %s, Addr %s, Port %s, ID %s:%s\n",
bus, addr, f->port ? f->port : "*", vid, pid);
}
}