qemu-e2k/hw/net/sunhme.c

983 lines
28 KiB
C

/*
* QEMU Sun Happy Meal Ethernet emulation
*
* Copyright (c) 2017 Mark Cave-Ayland
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/pci/pci.h"
#include "hw/qdev-properties.h"
#include "migration/vmstate.h"
#include "hw/net/mii.h"
#include "net/net.h"
#include "qemu/module.h"
#include "net/checksum.h"
#include "net/eth.h"
#include "sysemu/sysemu.h"
#include "trace.h"
#define HME_REG_SIZE 0x8000
#define HME_SEB_REG_SIZE 0x2000
#define HME_SEBI_RESET 0x0
#define HME_SEB_RESET_ETX 0x1
#define HME_SEB_RESET_ERX 0x2
#define HME_SEBI_STAT 0x100
#define HME_SEBI_STAT_LINUXBUG 0x108
#define HME_SEB_STAT_RXTOHOST 0x10000
#define HME_SEB_STAT_NORXD 0x20000
#define HME_SEB_STAT_MIFIRQ 0x800000
#define HME_SEB_STAT_HOSTTOTX 0x1000000
#define HME_SEB_STAT_TXALL 0x2000000
#define HME_SEBI_IMASK 0x104
#define HME_SEBI_IMASK_LINUXBUG 0x10c
#define HME_ETX_REG_SIZE 0x2000
#define HME_ETXI_PENDING 0x0
#define HME_ETXI_RING 0x8
#define HME_ETXI_RING_ADDR 0xffffff00
#define HME_ETXI_RING_OFFSET 0xff
#define HME_ETXI_RSIZE 0x2c
#define HME_ERX_REG_SIZE 0x2000
#define HME_ERXI_CFG 0x0
#define HME_ERX_CFG_RINGSIZE 0x600
#define HME_ERX_CFG_RINGSIZE_SHIFT 9
#define HME_ERX_CFG_BYTEOFFSET 0x38
#define HME_ERX_CFG_BYTEOFFSET_SHIFT 3
#define HME_ERX_CFG_CSUMSTART 0x7f0000
#define HME_ERX_CFG_CSUMSHIFT 16
#define HME_ERXI_RING 0x4
#define HME_ERXI_RING_ADDR 0xffffff00
#define HME_ERXI_RING_OFFSET 0xff
#define HME_MAC_REG_SIZE 0x1000
#define HME_MACI_TXCFG 0x20c
#define HME_MAC_TXCFG_ENABLE 0x1
#define HME_MACI_RXCFG 0x30c
#define HME_MAC_RXCFG_ENABLE 0x1
#define HME_MAC_RXCFG_PMISC 0x40
#define HME_MAC_RXCFG_HENABLE 0x800
#define HME_MACI_MACADDR2 0x318
#define HME_MACI_MACADDR1 0x31c
#define HME_MACI_MACADDR0 0x320
#define HME_MACI_HASHTAB3 0x340
#define HME_MACI_HASHTAB2 0x344
#define HME_MACI_HASHTAB1 0x348
#define HME_MACI_HASHTAB0 0x34c
#define HME_MIF_REG_SIZE 0x20
#define HME_MIFI_FO 0xc
#define HME_MIF_FO_ST 0xc0000000
#define HME_MIF_FO_ST_SHIFT 30
#define HME_MIF_FO_OPC 0x30000000
#define HME_MIF_FO_OPC_SHIFT 28
#define HME_MIF_FO_PHYAD 0x0f800000
#define HME_MIF_FO_PHYAD_SHIFT 23
#define HME_MIF_FO_REGAD 0x007c0000
#define HME_MIF_FO_REGAD_SHIFT 18
#define HME_MIF_FO_TAMSB 0x20000
#define HME_MIF_FO_TALSB 0x10000
#define HME_MIF_FO_DATA 0xffff
#define HME_MIFI_CFG 0x10
#define HME_MIF_CFG_MDI0 0x100
#define HME_MIF_CFG_MDI1 0x200
#define HME_MIFI_IMASK 0x14
#define HME_MIFI_STAT 0x18
/* Wired HME PHY addresses */
#define HME_PHYAD_INTERNAL 1
#define HME_PHYAD_EXTERNAL 0
#define MII_COMMAND_START 0x1
#define MII_COMMAND_READ 0x2
#define MII_COMMAND_WRITE 0x1
#define TYPE_SUNHME "sunhme"
#define SUNHME(obj) OBJECT_CHECK(SunHMEState, (obj), TYPE_SUNHME)
/* Maximum size of buffer */
#define HME_FIFO_SIZE 0x800
/* Size of TX/RX descriptor */
#define HME_DESC_SIZE 0x8
#define HME_XD_OWN 0x80000000
#define HME_XD_OFL 0x40000000
#define HME_XD_SOP 0x40000000
#define HME_XD_EOP 0x20000000
#define HME_XD_RXLENMSK 0x3fff0000
#define HME_XD_RXLENSHIFT 16
#define HME_XD_RXCKSUM 0xffff
#define HME_XD_TXLENMSK 0x00001fff
#define HME_XD_TXCKSUM 0x10000000
#define HME_XD_TXCSSTUFF 0xff00000
#define HME_XD_TXCSSTUFFSHIFT 20
#define HME_XD_TXCSSTART 0xfc000
#define HME_XD_TXCSSTARTSHIFT 14
#define HME_MII_REGS_SIZE 0x20
typedef struct SunHMEState {
/*< private >*/
PCIDevice parent_obj;
NICState *nic;
NICConf conf;
MemoryRegion hme;
MemoryRegion sebreg;
MemoryRegion etxreg;
MemoryRegion erxreg;
MemoryRegion macreg;
MemoryRegion mifreg;
uint32_t sebregs[HME_SEB_REG_SIZE >> 2];
uint32_t etxregs[HME_ETX_REG_SIZE >> 2];
uint32_t erxregs[HME_ERX_REG_SIZE >> 2];
uint32_t macregs[HME_MAC_REG_SIZE >> 2];
uint32_t mifregs[HME_MIF_REG_SIZE >> 2];
uint16_t miiregs[HME_MII_REGS_SIZE];
} SunHMEState;
static Property sunhme_properties[] = {
DEFINE_NIC_PROPERTIES(SunHMEState, conf),
DEFINE_PROP_END_OF_LIST(),
};
static void sunhme_reset_tx(SunHMEState *s)
{
/* Indicate TX reset complete */
s->sebregs[HME_SEBI_RESET] &= ~HME_SEB_RESET_ETX;
}
static void sunhme_reset_rx(SunHMEState *s)
{
/* Indicate RX reset complete */
s->sebregs[HME_SEBI_RESET] &= ~HME_SEB_RESET_ERX;
}
static void sunhme_update_irq(SunHMEState *s)
{
PCIDevice *d = PCI_DEVICE(s);
int level;
/* MIF interrupt mask (16-bit) */
uint32_t mifmask = ~(s->mifregs[HME_MIFI_IMASK >> 2]) & 0xffff;
uint32_t mif = s->mifregs[HME_MIFI_STAT >> 2] & mifmask;
/* Main SEB interrupt mask (include MIF status from above) */
uint32_t sebmask = ~(s->sebregs[HME_SEBI_IMASK >> 2]) &
~HME_SEB_STAT_MIFIRQ;
uint32_t seb = s->sebregs[HME_SEBI_STAT >> 2] & sebmask;
if (mif) {
seb |= HME_SEB_STAT_MIFIRQ;
}
level = (seb ? 1 : 0);
trace_sunhme_update_irq(mifmask, mif, sebmask, seb, level);
pci_set_irq(d, level);
}
static void sunhme_seb_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
SunHMEState *s = SUNHME(opaque);
trace_sunhme_seb_write(addr, val);
/* Handly buggy Linux drivers before 4.13 which have
the wrong offsets for HME_SEBI_STAT and HME_SEBI_IMASK */
switch (addr) {
case HME_SEBI_STAT_LINUXBUG:
addr = HME_SEBI_STAT;
break;
case HME_SEBI_IMASK_LINUXBUG:
addr = HME_SEBI_IMASK;
break;
default:
break;
}
switch (addr) {
case HME_SEBI_RESET:
if (val & HME_SEB_RESET_ETX) {
sunhme_reset_tx(s);
}
if (val & HME_SEB_RESET_ERX) {
sunhme_reset_rx(s);
}
val = s->sebregs[HME_SEBI_RESET >> 2];
break;
}
s->sebregs[addr >> 2] = val;
}
static uint64_t sunhme_seb_read(void *opaque, hwaddr addr,
unsigned size)
{
SunHMEState *s = SUNHME(opaque);
uint64_t val;
/* Handly buggy Linux drivers before 4.13 which have
the wrong offsets for HME_SEBI_STAT and HME_SEBI_IMASK */
switch (addr) {
case HME_SEBI_STAT_LINUXBUG:
addr = HME_SEBI_STAT;
break;
case HME_SEBI_IMASK_LINUXBUG:
addr = HME_SEBI_IMASK;
break;
default:
break;
}
val = s->sebregs[addr >> 2];
switch (addr) {
case HME_SEBI_STAT:
/* Autoclear status (except MIF) */
s->sebregs[HME_SEBI_STAT >> 2] &= HME_SEB_STAT_MIFIRQ;
sunhme_update_irq(s);
break;
}
trace_sunhme_seb_read(addr, val);
return val;
}
static const MemoryRegionOps sunhme_seb_ops = {
.read = sunhme_seb_read,
.write = sunhme_seb_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static void sunhme_transmit(SunHMEState *s);
static void sunhme_etx_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
SunHMEState *s = SUNHME(opaque);
trace_sunhme_etx_write(addr, val);
switch (addr) {
case HME_ETXI_PENDING:
if (val) {
sunhme_transmit(s);
}
break;
}
s->etxregs[addr >> 2] = val;
}
static uint64_t sunhme_etx_read(void *opaque, hwaddr addr,
unsigned size)
{
SunHMEState *s = SUNHME(opaque);
uint64_t val;
val = s->etxregs[addr >> 2];
trace_sunhme_etx_read(addr, val);
return val;
}
static const MemoryRegionOps sunhme_etx_ops = {
.read = sunhme_etx_read,
.write = sunhme_etx_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static void sunhme_erx_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
SunHMEState *s = SUNHME(opaque);
trace_sunhme_erx_write(addr, val);
s->erxregs[addr >> 2] = val;
}
static uint64_t sunhme_erx_read(void *opaque, hwaddr addr,
unsigned size)
{
SunHMEState *s = SUNHME(opaque);
uint64_t val;
val = s->erxregs[addr >> 2];
trace_sunhme_erx_read(addr, val);
return val;
}
static const MemoryRegionOps sunhme_erx_ops = {
.read = sunhme_erx_read,
.write = sunhme_erx_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static void sunhme_mac_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
SunHMEState *s = SUNHME(opaque);
uint64_t oldval = s->macregs[addr >> 2];
trace_sunhme_mac_write(addr, val);
s->macregs[addr >> 2] = val;
switch (addr) {
case HME_MACI_RXCFG:
if (!(oldval & HME_MAC_RXCFG_ENABLE) &&
(val & HME_MAC_RXCFG_ENABLE)) {
qemu_flush_queued_packets(qemu_get_queue(s->nic));
}
break;
}
}
static uint64_t sunhme_mac_read(void *opaque, hwaddr addr,
unsigned size)
{
SunHMEState *s = SUNHME(opaque);
uint64_t val;
val = s->macregs[addr >> 2];
trace_sunhme_mac_read(addr, val);
return val;
}
static const MemoryRegionOps sunhme_mac_ops = {
.read = sunhme_mac_read,
.write = sunhme_mac_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static void sunhme_mii_write(SunHMEState *s, uint8_t reg, uint16_t data)
{
trace_sunhme_mii_write(reg, data);
switch (reg) {
case MII_BMCR:
if (data & MII_BMCR_RESET) {
/* Autoclear reset bit, enable auto negotiation */
data &= ~MII_BMCR_RESET;
data |= MII_BMCR_AUTOEN;
}
if (data & MII_BMCR_ANRESTART) {
/* Autoclear auto negotiation restart */
data &= ~MII_BMCR_ANRESTART;
/* Indicate negotiation complete */
s->miiregs[MII_BMSR] |= MII_BMSR_AN_COMP;
if (!qemu_get_queue(s->nic)->link_down) {
s->miiregs[MII_ANLPAR] |= MII_ANLPAR_TXFD;
s->miiregs[MII_BMSR] |= MII_BMSR_LINK_ST;
}
}
break;
}
s->miiregs[reg] = data;
}
static uint16_t sunhme_mii_read(SunHMEState *s, uint8_t reg)
{
uint16_t data = s->miiregs[reg];
trace_sunhme_mii_read(reg, data);
return data;
}
static void sunhme_mif_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
SunHMEState *s = SUNHME(opaque);
uint8_t cmd, reg;
uint16_t data;
trace_sunhme_mif_write(addr, val);
switch (addr) {
case HME_MIFI_CFG:
/* Mask the read-only bits */
val &= ~(HME_MIF_CFG_MDI0 | HME_MIF_CFG_MDI1);
val |= s->mifregs[HME_MIFI_CFG >> 2] &
(HME_MIF_CFG_MDI0 | HME_MIF_CFG_MDI1);
break;
case HME_MIFI_FO:
/* Detect start of MII command */
if ((val & HME_MIF_FO_ST) >> HME_MIF_FO_ST_SHIFT
!= MII_COMMAND_START) {
val |= HME_MIF_FO_TALSB;
break;
}
/* Internal phy only */
if ((val & HME_MIF_FO_PHYAD) >> HME_MIF_FO_PHYAD_SHIFT
!= HME_PHYAD_INTERNAL) {
val |= HME_MIF_FO_TALSB;
break;
}
cmd = (val & HME_MIF_FO_OPC) >> HME_MIF_FO_OPC_SHIFT;
reg = (val & HME_MIF_FO_REGAD) >> HME_MIF_FO_REGAD_SHIFT;
data = (val & HME_MIF_FO_DATA);
switch (cmd) {
case MII_COMMAND_WRITE:
sunhme_mii_write(s, reg, data);
break;
case MII_COMMAND_READ:
val &= ~HME_MIF_FO_DATA;
val |= sunhme_mii_read(s, reg);
break;
}
val |= HME_MIF_FO_TALSB;
break;
}
s->mifregs[addr >> 2] = val;
}
static uint64_t sunhme_mif_read(void *opaque, hwaddr addr,
unsigned size)
{
SunHMEState *s = SUNHME(opaque);
uint64_t val;
val = s->mifregs[addr >> 2];
switch (addr) {
case HME_MIFI_STAT:
/* Autoclear MIF interrupt status */
s->mifregs[HME_MIFI_STAT >> 2] = 0;
sunhme_update_irq(s);
break;
}
trace_sunhme_mif_read(addr, val);
return val;
}
static const MemoryRegionOps sunhme_mif_ops = {
.read = sunhme_mif_read,
.write = sunhme_mif_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static void sunhme_transmit_frame(SunHMEState *s, uint8_t *buf, int size)
{
qemu_send_packet(qemu_get_queue(s->nic), buf, size);
}
static inline int sunhme_get_tx_ring_count(SunHMEState *s)
{
return (s->etxregs[HME_ETXI_RSIZE >> 2] + 1) << 4;
}
static inline int sunhme_get_tx_ring_nr(SunHMEState *s)
{
return s->etxregs[HME_ETXI_RING >> 2] & HME_ETXI_RING_OFFSET;
}
static inline void sunhme_set_tx_ring_nr(SunHMEState *s, int i)
{
uint32_t ring = s->etxregs[HME_ETXI_RING >> 2] & ~HME_ETXI_RING_OFFSET;
ring |= i & HME_ETXI_RING_OFFSET;
s->etxregs[HME_ETXI_RING >> 2] = ring;
}
static void sunhme_transmit(SunHMEState *s)
{
PCIDevice *d = PCI_DEVICE(s);
dma_addr_t tb, addr;
uint32_t intstatus, status, buffer, sum = 0;
int cr, nr, len, xmit_pos, csum_offset = 0, csum_stuff_offset = 0;
uint16_t csum = 0;
uint8_t xmit_buffer[HME_FIFO_SIZE];
tb = s->etxregs[HME_ETXI_RING >> 2] & HME_ETXI_RING_ADDR;
nr = sunhme_get_tx_ring_count(s);
cr = sunhme_get_tx_ring_nr(s);
pci_dma_read(d, tb + cr * HME_DESC_SIZE, &status, 4);
pci_dma_read(d, tb + cr * HME_DESC_SIZE + 4, &buffer, 4);
xmit_pos = 0;
while (status & HME_XD_OWN) {
trace_sunhme_tx_desc(buffer, status, cr, nr);
/* Copy data into transmit buffer */
addr = buffer;
len = status & HME_XD_TXLENMSK;
if (xmit_pos + len > HME_FIFO_SIZE) {
len = HME_FIFO_SIZE - xmit_pos;
}
pci_dma_read(d, addr, &xmit_buffer[xmit_pos], len);
xmit_pos += len;
/* Detect start of packet for TX checksum */
if (status & HME_XD_SOP) {
sum = 0;
csum_offset = (status & HME_XD_TXCSSTART) >> HME_XD_TXCSSTARTSHIFT;
csum_stuff_offset = (status & HME_XD_TXCSSTUFF) >>
HME_XD_TXCSSTUFFSHIFT;
}
if (status & HME_XD_TXCKSUM) {
/* Only start calculation from csum_offset */
if (xmit_pos - len <= csum_offset && xmit_pos > csum_offset) {
sum += net_checksum_add(xmit_pos - csum_offset,
xmit_buffer + csum_offset);
trace_sunhme_tx_xsum_add(csum_offset, xmit_pos - csum_offset);
} else {
sum += net_checksum_add(len, xmit_buffer + xmit_pos - len);
trace_sunhme_tx_xsum_add(xmit_pos - len, len);
}
}
/* Detect end of packet for TX checksum */
if (status & HME_XD_EOP) {
/* Stuff the checksum if required */
if (status & HME_XD_TXCKSUM) {
csum = net_checksum_finish(sum);
stw_be_p(xmit_buffer + csum_stuff_offset, csum);
trace_sunhme_tx_xsum_stuff(csum, csum_stuff_offset);
}
if (s->macregs[HME_MACI_TXCFG >> 2] & HME_MAC_TXCFG_ENABLE) {
sunhme_transmit_frame(s, xmit_buffer, xmit_pos);
trace_sunhme_tx_done(xmit_pos);
}
}
/* Update status */
status &= ~HME_XD_OWN;
pci_dma_write(d, tb + cr * HME_DESC_SIZE, &status, 4);
/* Move onto next descriptor */
cr++;
if (cr >= nr) {
cr = 0;
}
sunhme_set_tx_ring_nr(s, cr);
pci_dma_read(d, tb + cr * HME_DESC_SIZE, &status, 4);
pci_dma_read(d, tb + cr * HME_DESC_SIZE + 4, &buffer, 4);
/* Indicate TX complete */
intstatus = s->sebregs[HME_SEBI_STAT >> 2];
intstatus |= HME_SEB_STAT_HOSTTOTX;
s->sebregs[HME_SEBI_STAT >> 2] = intstatus;
/* Autoclear TX pending */
s->etxregs[HME_ETXI_PENDING >> 2] = 0;
sunhme_update_irq(s);
}
/* TX FIFO now clear */
intstatus = s->sebregs[HME_SEBI_STAT >> 2];
intstatus |= HME_SEB_STAT_TXALL;
s->sebregs[HME_SEBI_STAT >> 2] = intstatus;
sunhme_update_irq(s);
}
static bool sunhme_can_receive(NetClientState *nc)
{
SunHMEState *s = qemu_get_nic_opaque(nc);
return !!(s->macregs[HME_MACI_RXCFG >> 2] & HME_MAC_RXCFG_ENABLE);
}
static void sunhme_link_status_changed(NetClientState *nc)
{
SunHMEState *s = qemu_get_nic_opaque(nc);
if (nc->link_down) {
s->miiregs[MII_ANLPAR] &= ~MII_ANLPAR_TXFD;
s->miiregs[MII_BMSR] &= ~MII_BMSR_LINK_ST;
} else {
s->miiregs[MII_ANLPAR] |= MII_ANLPAR_TXFD;
s->miiregs[MII_BMSR] |= MII_BMSR_LINK_ST;
}
/* Exact bits unknown */
s->mifregs[HME_MIFI_STAT >> 2] = 0xffff;
sunhme_update_irq(s);
}
static inline int sunhme_get_rx_ring_count(SunHMEState *s)
{
uint32_t rings = (s->erxregs[HME_ERXI_CFG >> 2] & HME_ERX_CFG_RINGSIZE)
>> HME_ERX_CFG_RINGSIZE_SHIFT;
switch (rings) {
case 0:
return 32;
case 1:
return 64;
case 2:
return 128;
case 3:
return 256;
}
return 0;
}
static inline int sunhme_get_rx_ring_nr(SunHMEState *s)
{
return s->erxregs[HME_ERXI_RING >> 2] & HME_ERXI_RING_OFFSET;
}
static inline void sunhme_set_rx_ring_nr(SunHMEState *s, int i)
{
uint32_t ring = s->erxregs[HME_ERXI_RING >> 2] & ~HME_ERXI_RING_OFFSET;
ring |= i & HME_ERXI_RING_OFFSET;
s->erxregs[HME_ERXI_RING >> 2] = ring;
}
#define MIN_BUF_SIZE 60
static ssize_t sunhme_receive(NetClientState *nc, const uint8_t *buf,
size_t size)
{
SunHMEState *s = qemu_get_nic_opaque(nc);
PCIDevice *d = PCI_DEVICE(s);
dma_addr_t rb, addr;
uint32_t intstatus, status, buffer, buffersize, sum;
uint16_t csum;
uint8_t buf1[60];
int nr, cr, len, rxoffset, csum_offset;
trace_sunhme_rx_incoming(size);
/* Do nothing if MAC RX disabled */
if (!(s->macregs[HME_MACI_RXCFG >> 2] & HME_MAC_RXCFG_ENABLE)) {
return 0;
}
trace_sunhme_rx_filter_destmac(buf[0], buf[1], buf[2],
buf[3], buf[4], buf[5]);
/* Check destination MAC address */
if (!(s->macregs[HME_MACI_RXCFG >> 2] & HME_MAC_RXCFG_PMISC)) {
/* Try and match local MAC address */
if (((s->macregs[HME_MACI_MACADDR0 >> 2] & 0xff00) >> 8) == buf[0] &&
(s->macregs[HME_MACI_MACADDR0 >> 2] & 0xff) == buf[1] &&
((s->macregs[HME_MACI_MACADDR1 >> 2] & 0xff00) >> 8) == buf[2] &&
(s->macregs[HME_MACI_MACADDR1 >> 2] & 0xff) == buf[3] &&
((s->macregs[HME_MACI_MACADDR2 >> 2] & 0xff00) >> 8) == buf[4] &&
(s->macregs[HME_MACI_MACADDR2 >> 2] & 0xff) == buf[5]) {
/* Matched local MAC address */
trace_sunhme_rx_filter_local_match();
} else if (buf[0] == 0xff && buf[1] == 0xff && buf[2] == 0xff &&
buf[3] == 0xff && buf[4] == 0xff && buf[5] == 0xff) {
/* Matched broadcast address */
trace_sunhme_rx_filter_bcast_match();
} else if (s->macregs[HME_MACI_RXCFG >> 2] & HME_MAC_RXCFG_HENABLE) {
/* Didn't match local address, check hash filter */
int mcast_idx = net_crc32_le(buf, ETH_ALEN) >> 26;
if (!(s->macregs[(HME_MACI_HASHTAB0 >> 2) - (mcast_idx >> 4)] &
(1 << (mcast_idx & 0xf)))) {
/* Didn't match hash filter */
trace_sunhme_rx_filter_hash_nomatch();
trace_sunhme_rx_filter_reject();
return -1;
} else {
trace_sunhme_rx_filter_hash_match();
}
} else {
/* Not for us */
trace_sunhme_rx_filter_reject();
return -1;
}
} else {
trace_sunhme_rx_filter_promisc_match();
}
trace_sunhme_rx_filter_accept();
/* If too small buffer, then expand it */
if (size < MIN_BUF_SIZE) {
memcpy(buf1, buf, size);
memset(buf1 + size, 0, MIN_BUF_SIZE - size);
buf = buf1;
size = MIN_BUF_SIZE;
}
rb = s->erxregs[HME_ERXI_RING >> 2] & HME_ERXI_RING_ADDR;
nr = sunhme_get_rx_ring_count(s);
cr = sunhme_get_rx_ring_nr(s);
pci_dma_read(d, rb + cr * HME_DESC_SIZE, &status, 4);
pci_dma_read(d, rb + cr * HME_DESC_SIZE + 4, &buffer, 4);
/* If we don't own the current descriptor then indicate overflow error */
if (!(status & HME_XD_OWN)) {
s->sebregs[HME_SEBI_STAT >> 2] |= HME_SEB_STAT_NORXD;
sunhme_update_irq(s);
trace_sunhme_rx_norxd();
return -1;
}
rxoffset = (s->erxregs[HME_ERXI_CFG >> 2] & HME_ERX_CFG_BYTEOFFSET) >>
HME_ERX_CFG_BYTEOFFSET_SHIFT;
addr = buffer + rxoffset;
buffersize = (status & HME_XD_RXLENMSK) >> HME_XD_RXLENSHIFT;
/* Detect receive overflow */
len = size;
if (size > buffersize) {
status |= HME_XD_OFL;
len = buffersize;
}
pci_dma_write(d, addr, buf, len);
trace_sunhme_rx_desc(buffer, rxoffset, status, len, cr, nr);
/* Calculate the receive checksum */
csum_offset = (s->erxregs[HME_ERXI_CFG >> 2] & HME_ERX_CFG_CSUMSTART) >>
HME_ERX_CFG_CSUMSHIFT << 1;
sum = 0;
sum += net_checksum_add(len - csum_offset, (uint8_t *)buf + csum_offset);
csum = net_checksum_finish(sum);
trace_sunhme_rx_xsum_calc(csum);
/* Update status */
status &= ~HME_XD_OWN;
status &= ~HME_XD_RXLENMSK;
status |= len << HME_XD_RXLENSHIFT;
status &= ~HME_XD_RXCKSUM;
status |= csum;
pci_dma_write(d, rb + cr * HME_DESC_SIZE, &status, 4);
cr++;
if (cr >= nr) {
cr = 0;
}
sunhme_set_rx_ring_nr(s, cr);
/* Indicate RX complete */
intstatus = s->sebregs[HME_SEBI_STAT >> 2];
intstatus |= HME_SEB_STAT_RXTOHOST;
s->sebregs[HME_SEBI_STAT >> 2] = intstatus;
sunhme_update_irq(s);
return len;
}
static NetClientInfo net_sunhme_info = {
.type = NET_CLIENT_DRIVER_NIC,
.size = sizeof(NICState),
.can_receive = sunhme_can_receive,
.receive = sunhme_receive,
.link_status_changed = sunhme_link_status_changed,
};
static void sunhme_realize(PCIDevice *pci_dev, Error **errp)
{
SunHMEState *s = SUNHME(pci_dev);
DeviceState *d = DEVICE(pci_dev);
uint8_t *pci_conf;
pci_conf = pci_dev->config;
pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
memory_region_init(&s->hme, OBJECT(pci_dev), "sunhme", HME_REG_SIZE);
pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->hme);
memory_region_init_io(&s->sebreg, OBJECT(pci_dev), &sunhme_seb_ops, s,
"sunhme.seb", HME_SEB_REG_SIZE);
memory_region_add_subregion(&s->hme, 0, &s->sebreg);
memory_region_init_io(&s->etxreg, OBJECT(pci_dev), &sunhme_etx_ops, s,
"sunhme.etx", HME_ETX_REG_SIZE);
memory_region_add_subregion(&s->hme, 0x2000, &s->etxreg);
memory_region_init_io(&s->erxreg, OBJECT(pci_dev), &sunhme_erx_ops, s,
"sunhme.erx", HME_ERX_REG_SIZE);
memory_region_add_subregion(&s->hme, 0x4000, &s->erxreg);
memory_region_init_io(&s->macreg, OBJECT(pci_dev), &sunhme_mac_ops, s,
"sunhme.mac", HME_MAC_REG_SIZE);
memory_region_add_subregion(&s->hme, 0x6000, &s->macreg);
memory_region_init_io(&s->mifreg, OBJECT(pci_dev), &sunhme_mif_ops, s,
"sunhme.mif", HME_MIF_REG_SIZE);
memory_region_add_subregion(&s->hme, 0x7000, &s->mifreg);
qemu_macaddr_default_if_unset(&s->conf.macaddr);
s->nic = qemu_new_nic(&net_sunhme_info, &s->conf,
object_get_typename(OBJECT(d)), d->id, s);
qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
}
static void sunhme_instance_init(Object *obj)
{
SunHMEState *s = SUNHME(obj);
device_add_bootindex_property(obj, &s->conf.bootindex,
"bootindex", "/ethernet-phy@0",
DEVICE(obj), NULL);
}
static void sunhme_reset(DeviceState *ds)
{
SunHMEState *s = SUNHME(ds);
/* Configure internal transceiver */
s->mifregs[HME_MIFI_CFG >> 2] |= HME_MIF_CFG_MDI0;
/* Advetise auto, 100Mbps FD */
s->miiregs[MII_ANAR] = MII_ANAR_TXFD;
s->miiregs[MII_BMSR] = MII_BMSR_AUTONEG | MII_BMSR_100TX_FD |
MII_BMSR_AN_COMP;
if (!qemu_get_queue(s->nic)->link_down) {
s->miiregs[MII_ANLPAR] |= MII_ANLPAR_TXFD;
s->miiregs[MII_BMSR] |= MII_BMSR_LINK_ST;
}
/* Set manufacturer */
s->miiregs[MII_PHYID1] = DP83840_PHYID1;
s->miiregs[MII_PHYID2] = DP83840_PHYID2;
/* Configure default interrupt mask */
s->mifregs[HME_MIFI_IMASK >> 2] = 0xffff;
s->sebregs[HME_SEBI_IMASK >> 2] = 0xff7fffff;
}
static const VMStateDescription vmstate_hme = {
.name = "sunhme",
.version_id = 0,
.minimum_version_id = 0,
.fields = (VMStateField[]) {
VMSTATE_PCI_DEVICE(parent_obj, SunHMEState),
VMSTATE_MACADDR(conf.macaddr, SunHMEState),
VMSTATE_UINT32_ARRAY(sebregs, SunHMEState, (HME_SEB_REG_SIZE >> 2)),
VMSTATE_UINT32_ARRAY(etxregs, SunHMEState, (HME_ETX_REG_SIZE >> 2)),
VMSTATE_UINT32_ARRAY(erxregs, SunHMEState, (HME_ERX_REG_SIZE >> 2)),
VMSTATE_UINT32_ARRAY(macregs, SunHMEState, (HME_MAC_REG_SIZE >> 2)),
VMSTATE_UINT32_ARRAY(mifregs, SunHMEState, (HME_MIF_REG_SIZE >> 2)),
VMSTATE_UINT16_ARRAY(miiregs, SunHMEState, HME_MII_REGS_SIZE),
VMSTATE_END_OF_LIST()
}
};
static void sunhme_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->realize = sunhme_realize;
k->vendor_id = PCI_VENDOR_ID_SUN;
k->device_id = PCI_DEVICE_ID_SUN_HME;
k->class_id = PCI_CLASS_NETWORK_ETHERNET;
dc->vmsd = &vmstate_hme;
dc->reset = sunhme_reset;
device_class_set_props(dc, sunhme_properties);
set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
}
static const TypeInfo sunhme_info = {
.name = TYPE_SUNHME,
.parent = TYPE_PCI_DEVICE,
.class_init = sunhme_class_init,
.instance_size = sizeof(SunHMEState),
.instance_init = sunhme_instance_init,
.interfaces = (InterfaceInfo[]) {
{ INTERFACE_CONVENTIONAL_PCI_DEVICE },
{ }
}
};
static void sunhme_register_types(void)
{
type_register_static(&sunhme_info);
}
type_init(sunhme_register_types)