62dd1048c0
The dtrace systemtap trace backend for QEMU is very powerful but it is also somewhat unfriendly to users who aren't familiar with systemtap, or who don't need its power right now. stap -e "....some strange script...." The 'log' backend for QEMU by comparison is very crude but incredibly easy to use: $ qemu -d trace:qio* ...some args... 23266@1547735759.137292:qio_channel_socket_new Socket new ioc=0x563a8a39d400 23266@1547735759.137305:qio_task_new Task new task=0x563a891d0570 source=0x563a8a39d400 func=0x563a86f1e6c0 opaque=0x563a89078000 23266@1547735759.137326:qio_task_thread_start Task thread start task=0x563a891d0570 worker=0x563a86f1ce50 opaque=0x563a891d9d90 23273@1547735759.137491:qio_task_thread_run Task thread run task=0x563a891d0570 23273@1547735759.137503:qio_channel_socket_connect_sync Socket connect sync ioc=0x563a8a39d400 addr=0x563a891d9d90 23273@1547735759.138108:qio_channel_socket_connect_fail Socket connect fail ioc=0x563a8a39d400 This commit introduces a way to do simple printf style logging of probe points using systemtap. In particular it creates another set of tapsets, one per emulator: /usr/share/systemtap/tapset/qemu-*-log.stp These pre-define probe functions which simply call printf() on their arguments. The printf() format string is taken from the normal trace-events files, with a little munging to the format specifiers to cope with systemtap's more restrictive syntax. With this you can now do $ stap -e 'probe qemu.system.x86_64.log.qio*{}' 22806@1547735341399856820 qio_channel_socket_new Socket new ioc=0x56135d1d7c00 22806@1547735341399862570 qio_task_new Task new task=0x56135cd66eb0 source=0x56135d1d7c00 func=0x56135af746c0 opaque=0x56135bf06400 22806@1547735341399865943 qio_task_thread_start Task thread start task=0x56135cd66eb0 worker=0x56135af72e50 opaque=0x56135c071d70 22806@1547735341399976816 qio_task_thread_run Task thread run task=0x56135cd66eb0 We go one step further though and introduce a 'qemu-trace-stap' tool to make this even easier $ qemu-trace-stap run qemu-system-x86_64 'qio*' 22806@1547735341399856820 qio_channel_socket_new Socket new ioc=0x56135d1d7c00 22806@1547735341399862570 qio_task_new Task new task=0x56135cd66eb0 source=0x56135d1d7c00 func=0x56135af746c0 opaque=0x56135bf06400 22806@1547735341399865943 qio_task_thread_start Task thread start task=0x56135cd66eb0 worker=0x56135af72e50 opaque=0x56135c071d70 22806@1547735341399976816 qio_task_thread_run Task thread run task=0x56135cd66eb0 This tool is clever in that it will automatically change the SYSTEMTAP_TAPSET env variable to point to the directory containing the right set of probes for the QEMU binary path you give it. This is useful if you have QEMU installed in /usr but are trying to test and trace a binary in /home/berrange/usr/qemu-git. In that case you'd do $ qemu-trace-stap run /home/berrange/usr/qemu-git/bin/qemu-system-x86_64 'qio*' And it'll make sure /home/berrange/usr/qemu-git/share/systemtap/tapset is used for the trace session The 'qemu-trace-stap' script takes a verbose arg so you can understand what it is running $ qemu-trace-stap run /home/berrange/usr/qemu-git/bin/qemu-system-x86_64 'qio*' Using tapset dir '/home/berrange/usr/qemu-git/share/systemtap/tapset' for binary '/home/berrange/usr/qemu-git/bin/qemu-system-x86_64' Compiling script 'probe qemu.system.x86_64.log.qio* {}' Running script, <Ctrl>-c to quit ...trace output... It can enable multiple probes at once $ qemu-trace-stap run qemu-system-x86_64 'qio*' 'qcrypto*' 'buffer*' By default it monitors all existing running processes and all future launched proceses. This can be restricted to a specific PID using the --pid arg $ qemu-trace-stap run --pid 2532 qemu-system-x86_64 'qio*' Finally if you can't remember what probes are valid it can tell you $ qemu-trace-stap list qemu-system-x86_64 ahci_check_irq ahci_cmd_done ahci_dma_prepare_buf ahci_dma_prepare_buf_fail ahci_dma_rw_buf ahci_irq_lower ...snip... Or list just those matching a prefix pattern $ qemu-trace-stap list -v qemu-system-x86_64 'qio*' Using tapset dir '/home/berrange/usr/qemu-git/share/systemtap/tapset' for binary '/home/berrange/usr/qemu-git/bin/qemu-system-x86_64' Listing probes with name 'qemu.system.x86_64.log.qio*' qio_channel_command_abort qio_channel_command_new_pid qio_channel_command_new_spawn qio_channel_command_wait qio_channel_file_new_fd ...snip... Reviewed-by: Eric Blake <eblake@redhat.com> Signed-off-by: Daniel P. Berrangé <berrange@redhat.com> Message-id: 20190123120016.4538-5-berrange@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
451 lines
16 KiB
Plaintext
451 lines
16 KiB
Plaintext
= Tracing =
|
|
|
|
== Introduction ==
|
|
|
|
This document describes the tracing infrastructure in QEMU and how to use it
|
|
for debugging, profiling, and observing execution.
|
|
|
|
== Quickstart ==
|
|
|
|
1. Build with the 'simple' trace backend:
|
|
|
|
./configure --enable-trace-backends=simple
|
|
make
|
|
|
|
2. Create a file with the events you want to trace:
|
|
|
|
echo memory_region_ops_read >/tmp/events
|
|
|
|
3. Run the virtual machine to produce a trace file:
|
|
|
|
qemu --trace events=/tmp/events ... # your normal QEMU invocation
|
|
|
|
4. Pretty-print the binary trace file:
|
|
|
|
./scripts/simpletrace.py trace-events-all trace-* # Override * with QEMU <pid>
|
|
|
|
== Trace events ==
|
|
|
|
=== Sub-directory setup ===
|
|
|
|
Each directory in the source tree can declare a set of static trace events
|
|
in a local "trace-events" file. All directories which contain "trace-events"
|
|
files must be listed in the "trace-events-subdirs" make variable in the top
|
|
level Makefile.objs. During build, the "trace-events" file in each listed
|
|
subdirectory will be processed by the "tracetool" script to generate code for
|
|
the trace events.
|
|
|
|
The individual "trace-events" files are merged into a "trace-events-all" file,
|
|
which is also installed into "/usr/share/qemu" with the name "trace-events".
|
|
This merged file is to be used by the "simpletrace.py" script to later analyse
|
|
traces in the simpletrace data format.
|
|
|
|
In the sub-directory the following files will be automatically generated
|
|
|
|
- trace.c - the trace event state declarations
|
|
- trace.h - the trace event enums and probe functions
|
|
- trace-dtrace.h - DTrace event probe specification
|
|
- trace-dtrace.dtrace - DTrace event probe helper declaration
|
|
- trace-dtrace.o - binary DTrace provider (generated by dtrace)
|
|
- trace-ust.h - UST event probe helper declarations
|
|
|
|
Source files in the sub-directory should #include the local 'trace.h' file,
|
|
without any sub-directory path prefix. eg io/channel-buffer.c would do
|
|
|
|
#include "trace.h"
|
|
|
|
To access the 'io/trace.h' file. While it is possible to include a trace.h
|
|
file from outside a source files' own sub-directory, this is discouraged in
|
|
general. It is strongly preferred that all events be declared directly in
|
|
the sub-directory that uses them. The only exception is where there are some
|
|
shared trace events defined in the top level directory trace-events file.
|
|
The top level directory generates trace files with a filename prefix of
|
|
"trace-root" instead of just "trace". This is to avoid ambiguity between
|
|
a trace.h in the current directory, vs the top level directory.
|
|
|
|
=== Using trace events ===
|
|
|
|
Trace events are invoked directly from source code like this:
|
|
|
|
#include "trace.h" /* needed for trace event prototype */
|
|
|
|
void *qemu_vmalloc(size_t size)
|
|
{
|
|
void *ptr;
|
|
size_t align = QEMU_VMALLOC_ALIGN;
|
|
|
|
if (size < align) {
|
|
align = getpagesize();
|
|
}
|
|
ptr = qemu_memalign(align, size);
|
|
trace_qemu_vmalloc(size, ptr);
|
|
return ptr;
|
|
}
|
|
|
|
=== Declaring trace events ===
|
|
|
|
The "tracetool" script produces the trace.h header file which is included by
|
|
every source file that uses trace events. Since many source files include
|
|
trace.h, it uses a minimum of types and other header files included to keep the
|
|
namespace clean and compile times and dependencies down.
|
|
|
|
Trace events should use types as follows:
|
|
|
|
* Use stdint.h types for fixed-size types. Most offsets and guest memory
|
|
addresses are best represented with uint32_t or uint64_t. Use fixed-size
|
|
types over primitive types whose size may change depending on the host
|
|
(32-bit versus 64-bit) so trace events don't truncate values or break
|
|
the build.
|
|
|
|
* Use void * for pointers to structs or for arrays. The trace.h header
|
|
cannot include all user-defined struct declarations and it is therefore
|
|
necessary to use void * for pointers to structs.
|
|
|
|
* For everything else, use primitive scalar types (char, int, long) with the
|
|
appropriate signedness.
|
|
|
|
* Avoid floating point types (float and double) because SystemTap does not
|
|
support them. In most cases it is possible to round to an integer type
|
|
instead. This may require scaling the value first by multiplying it by 1000
|
|
or the like when digits after the decimal point need to be preserved.
|
|
|
|
Format strings should reflect the types defined in the trace event. Take
|
|
special care to use PRId64 and PRIu64 for int64_t and uint64_t types,
|
|
respectively. This ensures portability between 32- and 64-bit platforms.
|
|
|
|
Each event declaration will start with the event name, then its arguments,
|
|
finally a format string for pretty-printing. For example:
|
|
|
|
qemu_vmalloc(size_t size, void *ptr) "size %zu ptr %p"
|
|
qemu_vfree(void *ptr) "ptr %p"
|
|
|
|
|
|
=== Hints for adding new trace events ===
|
|
|
|
1. Trace state changes in the code. Interesting points in the code usually
|
|
involve a state change like starting, stopping, allocating, freeing. State
|
|
changes are good trace events because they can be used to understand the
|
|
execution of the system.
|
|
|
|
2. Trace guest operations. Guest I/O accesses like reading device registers
|
|
are good trace events because they can be used to understand guest
|
|
interactions.
|
|
|
|
3. Use correlator fields so the context of an individual line of trace output
|
|
can be understood. For example, trace the pointer returned by malloc and
|
|
used as an argument to free. This way mallocs and frees can be matched up.
|
|
Trace events with no context are not very useful.
|
|
|
|
4. Name trace events after their function. If there are multiple trace events
|
|
in one function, append a unique distinguisher at the end of the name.
|
|
|
|
== Generic interface and monitor commands ==
|
|
|
|
You can programmatically query and control the state of trace events through a
|
|
backend-agnostic interface provided by the header "trace/control.h".
|
|
|
|
Note that some of the backends do not provide an implementation for some parts
|
|
of this interface, in which case QEMU will just print a warning (please refer to
|
|
header "trace/control.h" to see which routines are backend-dependent).
|
|
|
|
The state of events can also be queried and modified through monitor commands:
|
|
|
|
* info trace-events
|
|
View available trace events and their state. State 1 means enabled, state 0
|
|
means disabled.
|
|
|
|
* trace-event NAME on|off
|
|
Enable/disable a given trace event or a group of events (using wildcards).
|
|
|
|
The "--trace events=<file>" command line argument can be used to enable the
|
|
events listed in <file> from the very beginning of the program. This file must
|
|
contain one event name per line.
|
|
|
|
If a line in the "--trace events=<file>" file begins with a '-', the trace event
|
|
will be disabled instead of enabled. This is useful when a wildcard was used
|
|
to enable an entire family of events but one noisy event needs to be disabled.
|
|
|
|
Wildcard matching is supported in both the monitor command "trace-event" and the
|
|
events list file. That means you can enable/disable the events having a common
|
|
prefix in a batch. For example, virtio-blk trace events could be enabled using
|
|
the following monitor command:
|
|
|
|
trace-event virtio_blk_* on
|
|
|
|
== Trace backends ==
|
|
|
|
The "tracetool" script automates tedious trace event code generation and also
|
|
keeps the trace event declarations independent of the trace backend. The trace
|
|
events are not tightly coupled to a specific trace backend, such as LTTng or
|
|
SystemTap. Support for trace backends can be added by extending the "tracetool"
|
|
script.
|
|
|
|
The trace backends are chosen at configure time:
|
|
|
|
./configure --enable-trace-backends=simple
|
|
|
|
For a list of supported trace backends, try ./configure --help or see below.
|
|
If multiple backends are enabled, the trace is sent to them all.
|
|
|
|
If no backends are explicitly selected, configure will default to the
|
|
"log" backend.
|
|
|
|
The following subsections describe the supported trace backends.
|
|
|
|
=== Nop ===
|
|
|
|
The "nop" backend generates empty trace event functions so that the compiler
|
|
can optimize out trace events completely. This imposes no performance
|
|
penalty.
|
|
|
|
Note that regardless of the selected trace backend, events with the "disable"
|
|
property will be generated with the "nop" backend.
|
|
|
|
=== Log ===
|
|
|
|
The "log" backend sends trace events directly to standard error. This
|
|
effectively turns trace events into debug printfs.
|
|
|
|
This is the simplest backend and can be used together with existing code that
|
|
uses DPRINTF().
|
|
|
|
=== Simpletrace ===
|
|
|
|
The "simple" backend supports common use cases and comes as part of the QEMU
|
|
source tree. It may not be as powerful as platform-specific or third-party
|
|
trace backends but it is portable. This is the recommended trace backend
|
|
unless you have specific needs for more advanced backends.
|
|
|
|
=== Ftrace ===
|
|
|
|
The "ftrace" backend writes trace data to ftrace marker. This effectively
|
|
sends trace events to ftrace ring buffer, and you can compare qemu trace
|
|
data and kernel(especially kvm.ko when using KVM) trace data.
|
|
|
|
if you use KVM, enable kvm events in ftrace:
|
|
|
|
# echo 1 > /sys/kernel/debug/tracing/events/kvm/enable
|
|
|
|
After running qemu by root user, you can get the trace:
|
|
|
|
# cat /sys/kernel/debug/tracing/trace
|
|
|
|
Restriction: "ftrace" backend is restricted to Linux only.
|
|
|
|
=== Syslog ===
|
|
|
|
The "syslog" backend sends trace events using the POSIX syslog API. The log
|
|
is opened specifying the LOG_DAEMON facility and LOG_PID option (so events
|
|
are tagged with the pid of the particular QEMU process that generated
|
|
them). All events are logged at LOG_INFO level.
|
|
|
|
NOTE: syslog may squash duplicate consecutive trace events and apply rate
|
|
limiting.
|
|
|
|
Restriction: "syslog" backend is restricted to POSIX compliant OS.
|
|
|
|
==== Monitor commands ====
|
|
|
|
* trace-file on|off|flush|set <path>
|
|
Enable/disable/flush the trace file or set the trace file name.
|
|
|
|
==== Analyzing trace files ====
|
|
|
|
The "simple" backend produces binary trace files that can be formatted with the
|
|
simpletrace.py script. The script takes the "trace-events-all" file and the
|
|
binary trace:
|
|
|
|
./scripts/simpletrace.py trace-events-all trace-12345
|
|
|
|
You must ensure that the same "trace-events-all" file was used to build QEMU,
|
|
otherwise trace event declarations may have changed and output will not be
|
|
consistent.
|
|
|
|
=== LTTng Userspace Tracer ===
|
|
|
|
The "ust" backend uses the LTTng Userspace Tracer library. There are no
|
|
monitor commands built into QEMU, instead UST utilities should be used to list,
|
|
enable/disable, and dump traces.
|
|
|
|
Package lttng-tools is required for userspace tracing. You must ensure that the
|
|
current user belongs to the "tracing" group, or manually launch the
|
|
lttng-sessiond daemon for the current user prior to running any instance of
|
|
QEMU.
|
|
|
|
While running an instrumented QEMU, LTTng should be able to list all available
|
|
events:
|
|
|
|
lttng list -u
|
|
|
|
Create tracing session:
|
|
|
|
lttng create mysession
|
|
|
|
Enable events:
|
|
|
|
lttng enable-event qemu:g_malloc -u
|
|
|
|
Where the events can either be a comma-separated list of events, or "-a" to
|
|
enable all tracepoint events. Start and stop tracing as needed:
|
|
|
|
lttng start
|
|
lttng stop
|
|
|
|
View the trace:
|
|
|
|
lttng view
|
|
|
|
Destroy tracing session:
|
|
|
|
lttng destroy
|
|
|
|
Babeltrace can be used at any later time to view the trace:
|
|
|
|
babeltrace $HOME/lttng-traces/mysession-<date>-<time>
|
|
|
|
=== SystemTap ===
|
|
|
|
The "dtrace" backend uses DTrace sdt probes but has only been tested with
|
|
SystemTap. When SystemTap support is detected a .stp file with wrapper probes
|
|
is generated to make use in scripts more convenient. This step can also be
|
|
performed manually after a build in order to change the binary name in the .stp
|
|
probes:
|
|
|
|
scripts/tracetool.py --backends=dtrace --format=stap \
|
|
--binary path/to/qemu-binary \
|
|
--target-type system \
|
|
--target-name x86_64 \
|
|
<trace-events-all >qemu.stp
|
|
|
|
To facilitate simple usage of systemtap where there merely needs to be printf
|
|
logging of certain probes, a helper script "qemu-trace-stap" is provided.
|
|
Consult its manual page for guidance on its usage.
|
|
|
|
== Trace event properties ==
|
|
|
|
Each event in the "trace-events-all" file can be prefixed with a space-separated
|
|
list of zero or more of the following event properties.
|
|
|
|
=== "disable" ===
|
|
|
|
If a specific trace event is going to be invoked a huge number of times, this
|
|
might have a noticeable performance impact even when the event is
|
|
programmatically disabled.
|
|
|
|
In this case you should declare such event with the "disable" property. This
|
|
will effectively disable the event at compile time (by using the "nop" backend),
|
|
thus having no performance impact at all on regular builds (i.e., unless you
|
|
edit the "trace-events-all" file).
|
|
|
|
In addition, there might be cases where relatively complex computations must be
|
|
performed to generate values that are only used as arguments for a trace
|
|
function. In these cases you can use the macro 'TRACE_${EVENT_NAME}_ENABLED' to
|
|
guard such computations and avoid its compilation when the event is disabled:
|
|
|
|
#include "trace.h" /* needed for trace event prototype */
|
|
|
|
void *qemu_vmalloc(size_t size)
|
|
{
|
|
void *ptr;
|
|
size_t align = QEMU_VMALLOC_ALIGN;
|
|
|
|
if (size < align) {
|
|
align = getpagesize();
|
|
}
|
|
ptr = qemu_memalign(align, size);
|
|
if (TRACE_QEMU_VMALLOC_ENABLED) { /* preprocessor macro */
|
|
void *complex;
|
|
/* some complex computations to produce the 'complex' value */
|
|
trace_qemu_vmalloc(size, ptr, complex);
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
You can check both if the event has been disabled and is dynamically enabled at
|
|
the same time using the 'trace_event_get_state_backends' routine (see header
|
|
"trace/control.h" for more information).
|
|
|
|
=== "tcg" ===
|
|
|
|
Guest code generated by TCG can be traced by defining an event with the "tcg"
|
|
event property. Internally, this property generates two events:
|
|
"<eventname>_trans" to trace the event at translation time, and
|
|
"<eventname>_exec" to trace the event at execution time.
|
|
|
|
Instead of using these two events, you should instead use the function
|
|
"trace_<eventname>_tcg" during translation (TCG code generation). This function
|
|
will automatically call "trace_<eventname>_trans", and will generate the
|
|
necessary TCG code to call "trace_<eventname>_exec" during guest code execution.
|
|
|
|
Events with the "tcg" property can be declared in the "trace-events" file with a
|
|
mix of native and TCG types, and "trace_<eventname>_tcg" will gracefully forward
|
|
them to the "<eventname>_trans" and "<eventname>_exec" events. Since TCG values
|
|
are not known at translation time, these are ignored by the "<eventname>_trans"
|
|
event. Because of this, the entry in the "trace-events" file needs two printing
|
|
formats (separated by a comma):
|
|
|
|
tcg foo(uint8_t a1, TCGv_i32 a2) "a1=%d", "a1=%d a2=%d"
|
|
|
|
For example:
|
|
|
|
#include "trace-tcg.h"
|
|
|
|
void some_disassembly_func (...)
|
|
{
|
|
uint8_t a1 = ...;
|
|
TCGv_i32 a2 = ...;
|
|
trace_foo_tcg(a1, a2);
|
|
}
|
|
|
|
This will immediately call:
|
|
|
|
void trace_foo_trans(uint8_t a1);
|
|
|
|
and will generate the TCG code to call:
|
|
|
|
void trace_foo(uint8_t a1, uint32_t a2);
|
|
|
|
=== "vcpu" ===
|
|
|
|
Identifies events that trace vCPU-specific information. It implicitly adds a
|
|
"CPUState*" argument, and extends the tracing print format to show the vCPU
|
|
information. If used together with the "tcg" property, it adds a second
|
|
"TCGv_env" argument that must point to the per-target global TCG register that
|
|
points to the vCPU when guest code is executed (usually the "cpu_env" variable).
|
|
|
|
The "tcg" and "vcpu" properties are currently only honored in the root
|
|
./trace-events file.
|
|
|
|
The following example events:
|
|
|
|
foo(uint32_t a) "a=%x"
|
|
vcpu bar(uint32_t a) "a=%x"
|
|
tcg vcpu baz(uint32_t a) "a=%x", "a=%x"
|
|
|
|
Can be used as:
|
|
|
|
#include "trace-tcg.h"
|
|
|
|
CPUArchState *env;
|
|
TCGv_ptr cpu_env;
|
|
|
|
void some_disassembly_func(...)
|
|
{
|
|
/* trace emitted at this point */
|
|
trace_foo(0xd1);
|
|
/* trace emitted at this point */
|
|
trace_bar(ENV_GET_CPU(env), 0xd2);
|
|
/* trace emitted at this point (env) and when guest code is executed (cpu_env) */
|
|
trace_baz_tcg(ENV_GET_CPU(env), cpu_env, 0xd3);
|
|
}
|
|
|
|
If the translating vCPU has address 0xc1 and code is later executed by vCPU
|
|
0xc2, this would be an example output:
|
|
|
|
// at guest code translation
|
|
foo a=0xd1
|
|
bar cpu=0xc1 a=0xd2
|
|
baz_trans cpu=0xc1 a=0xd3
|
|
// at guest code execution
|
|
baz_exec cpu=0xc2 a=0xd3
|