qemu-e2k/hw/arm/sbsa-ref.c
Peter Maydell d6dc926e6e hw/arm/boot: Drop nb_cpus field from arm_boot_info
We use the arm_boot_info::nb_cpus field in only one place, and that
place can easily get the number of CPUs locally rather than relying
on the board code to have set the field correctly.  (At least one
board, xlnx-versal-virt, does not set the field despite having more
than one CPU.)

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Niek Linnenbank <nieklinnenbank@gmail.com>
Tested-by: Cédric Le Goater <clg@kaod.org>
Tested-by: Niek Linnenbank <nieklinnenbank@gmail.com>
Message-id: 20220127154639.2090164-16-peter.maydell@linaro.org
2022-02-08 10:56:28 +00:00

867 lines
28 KiB
C

/*
* ARM SBSA Reference Platform emulation
*
* Copyright (c) 2018 Linaro Limited
* Written by Hongbo Zhang <hongbo.zhang@linaro.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/datadir.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "qemu/units.h"
#include "sysemu/device_tree.h"
#include "sysemu/numa.h"
#include "sysemu/runstate.h"
#include "sysemu/sysemu.h"
#include "exec/hwaddr.h"
#include "kvm_arm.h"
#include "hw/arm/boot.h"
#include "hw/block/flash.h"
#include "hw/boards.h"
#include "hw/ide/internal.h"
#include "hw/ide/ahci_internal.h"
#include "hw/intc/arm_gicv3_common.h"
#include "hw/loader.h"
#include "hw/pci-host/gpex.h"
#include "hw/qdev-properties.h"
#include "hw/usb.h"
#include "hw/char/pl011.h"
#include "hw/watchdog/sbsa_gwdt.h"
#include "net/net.h"
#include "qom/object.h"
#define RAMLIMIT_GB 8192
#define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
#define NUM_IRQS 256
#define NUM_SMMU_IRQS 4
#define NUM_SATA_PORTS 6
#define VIRTUAL_PMU_IRQ 7
#define ARCH_GIC_MAINT_IRQ 9
#define ARCH_TIMER_VIRT_IRQ 11
#define ARCH_TIMER_S_EL1_IRQ 13
#define ARCH_TIMER_NS_EL1_IRQ 14
#define ARCH_TIMER_NS_EL2_IRQ 10
enum {
SBSA_FLASH,
SBSA_MEM,
SBSA_CPUPERIPHS,
SBSA_GIC_DIST,
SBSA_GIC_REDIST,
SBSA_SECURE_EC,
SBSA_GWDT_WS0,
SBSA_GWDT_REFRESH,
SBSA_GWDT_CONTROL,
SBSA_SMMU,
SBSA_UART,
SBSA_RTC,
SBSA_PCIE,
SBSA_PCIE_MMIO,
SBSA_PCIE_MMIO_HIGH,
SBSA_PCIE_PIO,
SBSA_PCIE_ECAM,
SBSA_GPIO,
SBSA_SECURE_UART,
SBSA_SECURE_UART_MM,
SBSA_SECURE_MEM,
SBSA_AHCI,
SBSA_EHCI,
};
struct SBSAMachineState {
MachineState parent;
struct arm_boot_info bootinfo;
int smp_cpus;
void *fdt;
int fdt_size;
int psci_conduit;
DeviceState *gic;
PFlashCFI01 *flash[2];
};
#define TYPE_SBSA_MACHINE MACHINE_TYPE_NAME("sbsa-ref")
OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE)
static const MemMapEntry sbsa_ref_memmap[] = {
/* 512M boot ROM */
[SBSA_FLASH] = { 0, 0x20000000 },
/* 512M secure memory */
[SBSA_SECURE_MEM] = { 0x20000000, 0x20000000 },
/* Space reserved for CPU peripheral devices */
[SBSA_CPUPERIPHS] = { 0x40000000, 0x00040000 },
[SBSA_GIC_DIST] = { 0x40060000, 0x00010000 },
[SBSA_GIC_REDIST] = { 0x40080000, 0x04000000 },
[SBSA_SECURE_EC] = { 0x50000000, 0x00001000 },
[SBSA_GWDT_REFRESH] = { 0x50010000, 0x00001000 },
[SBSA_GWDT_CONTROL] = { 0x50011000, 0x00001000 },
[SBSA_UART] = { 0x60000000, 0x00001000 },
[SBSA_RTC] = { 0x60010000, 0x00001000 },
[SBSA_GPIO] = { 0x60020000, 0x00001000 },
[SBSA_SECURE_UART] = { 0x60030000, 0x00001000 },
[SBSA_SECURE_UART_MM] = { 0x60040000, 0x00001000 },
[SBSA_SMMU] = { 0x60050000, 0x00020000 },
/* Space here reserved for more SMMUs */
[SBSA_AHCI] = { 0x60100000, 0x00010000 },
[SBSA_EHCI] = { 0x60110000, 0x00010000 },
/* Space here reserved for other devices */
[SBSA_PCIE_PIO] = { 0x7fff0000, 0x00010000 },
/* 32-bit address PCIE MMIO space */
[SBSA_PCIE_MMIO] = { 0x80000000, 0x70000000 },
/* 256M PCIE ECAM space */
[SBSA_PCIE_ECAM] = { 0xf0000000, 0x10000000 },
/* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
[SBSA_PCIE_MMIO_HIGH] = { 0x100000000ULL, 0xFF00000000ULL },
[SBSA_MEM] = { 0x10000000000ULL, RAMLIMIT_BYTES },
};
static const int sbsa_ref_irqmap[] = {
[SBSA_UART] = 1,
[SBSA_RTC] = 2,
[SBSA_PCIE] = 3, /* ... to 6 */
[SBSA_GPIO] = 7,
[SBSA_SECURE_UART] = 8,
[SBSA_SECURE_UART_MM] = 9,
[SBSA_AHCI] = 10,
[SBSA_EHCI] = 11,
[SBSA_SMMU] = 12, /* ... to 15 */
[SBSA_GWDT_WS0] = 16,
};
static const char * const valid_cpus[] = {
ARM_CPU_TYPE_NAME("cortex-a57"),
ARM_CPU_TYPE_NAME("cortex-a72"),
ARM_CPU_TYPE_NAME("max"),
};
static bool cpu_type_valid(const char *cpu)
{
int i;
for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
if (strcmp(cpu, valid_cpus[i]) == 0) {
return true;
}
}
return false;
}
static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
{
uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
return arm_cpu_mp_affinity(idx, clustersz);
}
/*
* Firmware on this machine only uses ACPI table to load OS, these limited
* device tree nodes are just to let firmware know the info which varies from
* command line parameters, so it is not necessary to be fully compatible
* with the kernel CPU and NUMA binding rules.
*/
static void create_fdt(SBSAMachineState *sms)
{
void *fdt = create_device_tree(&sms->fdt_size);
const MachineState *ms = MACHINE(sms);
int nb_numa_nodes = ms->numa_state->num_nodes;
int cpu;
if (!fdt) {
error_report("create_device_tree() failed");
exit(1);
}
sms->fdt = fdt;
qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
if (ms->numa_state->have_numa_distance) {
int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
uint32_t *matrix = g_malloc0(size);
int idx, i, j;
for (i = 0; i < nb_numa_nodes; i++) {
for (j = 0; j < nb_numa_nodes; j++) {
idx = (i * nb_numa_nodes + j) * 3;
matrix[idx + 0] = cpu_to_be32(i);
matrix[idx + 1] = cpu_to_be32(j);
matrix[idx + 2] =
cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
}
}
qemu_fdt_add_subnode(fdt, "/distance-map");
qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
matrix, size);
g_free(matrix);
}
/*
* From Documentation/devicetree/bindings/arm/cpus.yaml
* On ARM v8 64-bit systems this property is required
* and matches the MPIDR_EL1 register affinity bits.
*
* * If cpus node's #address-cells property is set to 2
*
* The first reg cell bits [7:0] must be set to
* bits [39:32] of MPIDR_EL1.
*
* The second reg cell bits [23:0] must be set to
* bits [23:0] of MPIDR_EL1.
*/
qemu_fdt_add_subnode(sms->fdt, "/cpus");
qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2);
qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0);
for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
CPUState *cs = CPU(armcpu);
uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu);
qemu_fdt_add_subnode(sms->fdt, nodename);
qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr);
if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
}
g_free(nodename);
}
}
#define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
const char *name,
const char *alias_prop_name)
{
/*
* Create a single flash device. We use the same parameters as
* the flash devices on the Versatile Express board.
*/
DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
qdev_prop_set_uint8(dev, "width", 4);
qdev_prop_set_uint8(dev, "device-width", 2);
qdev_prop_set_bit(dev, "big-endian", false);
qdev_prop_set_uint16(dev, "id0", 0x89);
qdev_prop_set_uint16(dev, "id1", 0x18);
qdev_prop_set_uint16(dev, "id2", 0x00);
qdev_prop_set_uint16(dev, "id3", 0x00);
qdev_prop_set_string(dev, "name", name);
object_property_add_child(OBJECT(sms), name, OBJECT(dev));
object_property_add_alias(OBJECT(sms), alias_prop_name,
OBJECT(dev), "drive");
return PFLASH_CFI01(dev);
}
static void sbsa_flash_create(SBSAMachineState *sms)
{
sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
}
static void sbsa_flash_map1(PFlashCFI01 *flash,
hwaddr base, hwaddr size,
MemoryRegion *sysmem)
{
DeviceState *dev = DEVICE(flash);
assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE));
assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
memory_region_add_subregion(sysmem, base,
sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
0));
}
static void sbsa_flash_map(SBSAMachineState *sms,
MemoryRegion *sysmem,
MemoryRegion *secure_sysmem)
{
/*
* Map two flash devices to fill the SBSA_FLASH space in the memmap.
* sysmem is the system memory space. secure_sysmem is the secure view
* of the system, and the first flash device should be made visible only
* there. The second flash device is visible to both secure and nonsecure.
*/
hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
secure_sysmem);
sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
sysmem);
}
static bool sbsa_firmware_init(SBSAMachineState *sms,
MemoryRegion *sysmem,
MemoryRegion *secure_sysmem)
{
const char *bios_name;
int i;
BlockBackend *pflash_blk0;
/* Map legacy -drive if=pflash to machine properties */
for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
pflash_cfi01_legacy_drive(sms->flash[i],
drive_get(IF_PFLASH, 0, i));
}
sbsa_flash_map(sms, sysmem, secure_sysmem);
pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
bios_name = MACHINE(sms)->firmware;
if (bios_name) {
char *fname;
MemoryRegion *mr;
int image_size;
if (pflash_blk0) {
error_report("The contents of the first flash device may be "
"specified with -bios or with -drive if=pflash... "
"but you cannot use both options at once");
exit(1);
}
/* Fall back to -bios */
fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (!fname) {
error_report("Could not find ROM image '%s'", bios_name);
exit(1);
}
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
image_size = load_image_mr(fname, mr);
g_free(fname);
if (image_size < 0) {
error_report("Could not load ROM image '%s'", bios_name);
exit(1);
}
}
return pflash_blk0 || bios_name;
}
static void create_secure_ram(SBSAMachineState *sms,
MemoryRegion *secure_sysmem)
{
MemoryRegion *secram = g_new(MemoryRegion, 1);
hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
&error_fatal);
memory_region_add_subregion(secure_sysmem, base, secram);
}
static void create_gic(SBSAMachineState *sms)
{
unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
SysBusDevice *gicbusdev;
const char *gictype;
uint32_t redist0_capacity, redist0_count;
int i;
gictype = gicv3_class_name();
sms->gic = qdev_new(gictype);
qdev_prop_set_uint32(sms->gic, "revision", 3);
qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus);
/*
* Note that the num-irq property counts both internal and external
* interrupts; there are always 32 of the former (mandated by GIC spec).
*/
qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32);
qdev_prop_set_bit(sms->gic, "has-security-extensions", true);
redist0_capacity =
sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
redist0_count = MIN(smp_cpus, redist0_capacity);
qdev_prop_set_uint32(sms->gic, "len-redist-region-count", 1);
qdev_prop_set_uint32(sms->gic, "redist-region-count[0]", redist0_count);
gicbusdev = SYS_BUS_DEVICE(sms->gic);
sysbus_realize_and_unref(gicbusdev, &error_fatal);
sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
/*
* Wire the outputs from each CPU's generic timer and the GICv3
* maintenance interrupt signal to the appropriate GIC PPI inputs,
* and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
*/
for (i = 0; i < smp_cpus; i++) {
DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
int irq;
/*
* Mapping from the output timer irq lines from the CPU to the
* GIC PPI inputs used for this board.
*/
const int timer_irq[] = {
[GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
[GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
[GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
[GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
};
for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
qdev_connect_gpio_out(cpudev, irq,
qdev_get_gpio_in(sms->gic,
ppibase + timer_irq[irq]));
}
qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
qdev_get_gpio_in(sms->gic, ppibase
+ ARCH_GIC_MAINT_IRQ));
qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
qdev_get_gpio_in(sms->gic, ppibase
+ VIRTUAL_PMU_IRQ));
sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
sysbus_connect_irq(gicbusdev, i + smp_cpus,
qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
}
}
static void create_uart(const SBSAMachineState *sms, int uart,
MemoryRegion *mem, Chardev *chr)
{
hwaddr base = sbsa_ref_memmap[uart].base;
int irq = sbsa_ref_irqmap[uart];
DeviceState *dev = qdev_new(TYPE_PL011);
SysBusDevice *s = SYS_BUS_DEVICE(dev);
qdev_prop_set_chr(dev, "chardev", chr);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
memory_region_add_subregion(mem, base,
sysbus_mmio_get_region(s, 0));
sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
}
static void create_rtc(const SBSAMachineState *sms)
{
hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
int irq = sbsa_ref_irqmap[SBSA_RTC];
sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq));
}
static void create_wdt(const SBSAMachineState *sms)
{
hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base;
hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base;
DeviceState *dev = qdev_new(TYPE_WDT_SBSA);
SysBusDevice *s = SYS_BUS_DEVICE(dev);
int irq = sbsa_ref_irqmap[SBSA_GWDT_WS0];
sysbus_realize_and_unref(s, &error_fatal);
sysbus_mmio_map(s, 0, rbase);
sysbus_mmio_map(s, 1, cbase);
sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
}
static DeviceState *gpio_key_dev;
static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
{
/* use gpio Pin 3 for power button event */
qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
}
static Notifier sbsa_ref_powerdown_notifier = {
.notify = sbsa_ref_powerdown_req
};
static void create_gpio(const SBSAMachineState *sms)
{
DeviceState *pl061_dev;
hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
int irq = sbsa_ref_irqmap[SBSA_GPIO];
pl061_dev = sysbus_create_simple("pl061", base,
qdev_get_gpio_in(sms->gic, irq));
gpio_key_dev = sysbus_create_simple("gpio-key", -1,
qdev_get_gpio_in(pl061_dev, 3));
/* connect powerdown request */
qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
}
static void create_ahci(const SBSAMachineState *sms)
{
hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
int irq = sbsa_ref_irqmap[SBSA_AHCI];
DeviceState *dev;
DriveInfo *hd[NUM_SATA_PORTS];
SysbusAHCIState *sysahci;
AHCIState *ahci;
int i;
dev = qdev_new("sysbus-ahci");
qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
sysahci = SYSBUS_AHCI(dev);
ahci = &sysahci->ahci;
ide_drive_get(hd, ARRAY_SIZE(hd));
for (i = 0; i < ahci->ports; i++) {
if (hd[i] == NULL) {
continue;
}
ide_create_drive(&ahci->dev[i].port, 0, hd[i]);
}
}
static void create_ehci(const SBSAMachineState *sms)
{
hwaddr base = sbsa_ref_memmap[SBSA_EHCI].base;
int irq = sbsa_ref_irqmap[SBSA_EHCI];
sysbus_create_simple("platform-ehci-usb", base,
qdev_get_gpio_in(sms->gic, irq));
}
static void create_smmu(const SBSAMachineState *sms, PCIBus *bus)
{
hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
int irq = sbsa_ref_irqmap[SBSA_SMMU];
DeviceState *dev;
int i;
dev = qdev_new("arm-smmuv3");
object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
&error_abort);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
for (i = 0; i < NUM_SMMU_IRQS; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
qdev_get_gpio_in(sms->gic, irq + i));
}
}
static void create_pcie(SBSAMachineState *sms)
{
hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
int irq = sbsa_ref_irqmap[SBSA_PCIE];
MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
MemoryRegion *ecam_alias, *ecam_reg;
DeviceState *dev;
PCIHostState *pci;
int i;
dev = qdev_new(TYPE_GPEX_HOST);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
/* Map ECAM space */
ecam_alias = g_new0(MemoryRegion, 1);
ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
ecam_reg, 0, size_ecam);
memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
/* Map the MMIO space */
mmio_alias = g_new0(MemoryRegion, 1);
mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
mmio_reg, base_mmio, size_mmio);
memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
/* Map the MMIO_HIGH space */
mmio_alias_high = g_new0(MemoryRegion, 1);
memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
mmio_reg, base_mmio_high, size_mmio_high);
memory_region_add_subregion(get_system_memory(), base_mmio_high,
mmio_alias_high);
/* Map IO port space */
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
for (i = 0; i < GPEX_NUM_IRQS; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
qdev_get_gpio_in(sms->gic, irq + i));
gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
}
pci = PCI_HOST_BRIDGE(dev);
if (pci->bus) {
for (i = 0; i < nb_nics; i++) {
NICInfo *nd = &nd_table[i];
if (!nd->model) {
nd->model = g_strdup("e1000e");
}
pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
}
}
pci_create_simple(pci->bus, -1, "VGA");
create_smmu(sms, pci->bus);
}
static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
{
const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
bootinfo);
*fdt_size = board->fdt_size;
return board->fdt;
}
static void create_secure_ec(MemoryRegion *mem)
{
hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base;
DeviceState *dev = qdev_new("sbsa-ec");
SysBusDevice *s = SYS_BUS_DEVICE(dev);
memory_region_add_subregion(mem, base,
sysbus_mmio_get_region(s, 0));
}
static void sbsa_ref_init(MachineState *machine)
{
unsigned int smp_cpus = machine->smp.cpus;
unsigned int max_cpus = machine->smp.max_cpus;
SBSAMachineState *sms = SBSA_MACHINE(machine);
MachineClass *mc = MACHINE_GET_CLASS(machine);
MemoryRegion *sysmem = get_system_memory();
MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
bool firmware_loaded;
const CPUArchIdList *possible_cpus;
int n, sbsa_max_cpus;
if (!cpu_type_valid(machine->cpu_type)) {
error_report("sbsa-ref: CPU type %s not supported", machine->cpu_type);
exit(1);
}
if (kvm_enabled()) {
error_report("sbsa-ref: KVM is not supported for this machine");
exit(1);
}
/*
* The Secure view of the world is the same as the NonSecure,
* but with a few extra devices. Create it as a container region
* containing the system memory at low priority; any secure-only
* devices go in at higher priority and take precedence.
*/
memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
UINT64_MAX);
memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
/*
* This machine has EL3 enabled, external firmware should supply PSCI
* implementation, so the QEMU's internal PSCI is disabled.
*/
sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
if (max_cpus > sbsa_max_cpus) {
error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
"supported by machine 'sbsa-ref' (%d)",
max_cpus, sbsa_max_cpus);
exit(1);
}
sms->smp_cpus = smp_cpus;
if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
exit(1);
}
possible_cpus = mc->possible_cpu_arch_ids(machine);
for (n = 0; n < possible_cpus->len; n++) {
Object *cpuobj;
CPUState *cs;
if (n >= smp_cpus) {
break;
}
cpuobj = object_new(possible_cpus->cpus[n].type);
object_property_set_int(cpuobj, "mp-affinity",
possible_cpus->cpus[n].arch_id, NULL);
cs = CPU(cpuobj);
cs->cpu_index = n;
numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
&error_fatal);
if (object_property_find(cpuobj, "reset-cbar")) {
object_property_set_int(cpuobj, "reset-cbar",
sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
&error_abort);
}
object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
&error_abort);
object_property_set_link(cpuobj, "secure-memory",
OBJECT(secure_sysmem), &error_abort);
qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
object_unref(cpuobj);
}
memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base,
machine->ram);
create_fdt(sms);
create_secure_ram(sms, secure_sysmem);
create_gic(sms);
create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
/* Second secure UART for RAS and MM from EL0 */
create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
create_rtc(sms);
create_wdt(sms);
create_gpio(sms);
create_ahci(sms);
create_ehci(sms);
create_pcie(sms);
create_secure_ec(secure_sysmem);
sms->bootinfo.ram_size = machine->ram_size;
sms->bootinfo.board_id = -1;
sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
sms->bootinfo.get_dtb = sbsa_ref_dtb;
sms->bootinfo.firmware_loaded = firmware_loaded;
arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
}
static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
{
unsigned int max_cpus = ms->smp.max_cpus;
SBSAMachineState *sms = SBSA_MACHINE(ms);
int n;
if (ms->possible_cpus) {
assert(ms->possible_cpus->len == max_cpus);
return ms->possible_cpus;
}
ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
sizeof(CPUArchId) * max_cpus);
ms->possible_cpus->len = max_cpus;
for (n = 0; n < ms->possible_cpus->len; n++) {
ms->possible_cpus->cpus[n].type = ms->cpu_type;
ms->possible_cpus->cpus[n].arch_id =
sbsa_ref_cpu_mp_affinity(sms, n);
ms->possible_cpus->cpus[n].props.has_thread_id = true;
ms->possible_cpus->cpus[n].props.thread_id = n;
}
return ms->possible_cpus;
}
static CpuInstanceProperties
sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
{
MachineClass *mc = MACHINE_GET_CLASS(ms);
const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
assert(cpu_index < possible_cpus->len);
return possible_cpus->cpus[cpu_index].props;
}
static int64_t
sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
{
return idx % ms->numa_state->num_nodes;
}
static void sbsa_ref_instance_init(Object *obj)
{
SBSAMachineState *sms = SBSA_MACHINE(obj);
sbsa_flash_create(sms);
}
static void sbsa_ref_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->init = sbsa_ref_init;
mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a57");
mc->max_cpus = 512;
mc->pci_allow_0_address = true;
mc->minimum_page_bits = 12;
mc->block_default_type = IF_IDE;
mc->no_cdrom = 1;
mc->default_ram_size = 1 * GiB;
mc->default_ram_id = "sbsa-ref.ram";
mc->default_cpus = 4;
mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
}
static const TypeInfo sbsa_ref_info = {
.name = TYPE_SBSA_MACHINE,
.parent = TYPE_MACHINE,
.instance_init = sbsa_ref_instance_init,
.class_init = sbsa_ref_class_init,
.instance_size = sizeof(SBSAMachineState),
};
static void sbsa_ref_machine_init(void)
{
type_register_static(&sbsa_ref_info);
}
type_init(sbsa_ref_machine_init);