qemu-e2k/hw/ufs/ufs.c
Jeuk Kim bc4e68d362 hw/ufs: Initial commit for emulated Universal-Flash-Storage
Universal Flash Storage (UFS) is a high-performance mass storage device
with a serial interface. It is primarily used as a high-performance
data storage device for embedded applications.

This commit contains code for UFS device to be recognized
as a UFS PCI device.
Patches to handle UFS logical unit and Transfer Request will follow.

Signed-off-by: Jeuk Kim <jeuk20.kim@samsung.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-id: 10232660d462ee5cd10cf673f1a9a1205fc8276c.1693980783.git.jeuk20.kim@gmail.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2023-09-07 14:01:29 -04:00

279 lines
7.4 KiB
C

/*
* QEMU Universal Flash Storage (UFS) Controller
*
* Copyright (c) 2023 Samsung Electronics Co., Ltd. All rights reserved.
*
* Written by Jeuk Kim <jeuk20.kim@samsung.com>
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "migration/vmstate.h"
#include "trace.h"
#include "ufs.h"
/* The QEMU-UFS device follows spec version 3.1 */
#define UFS_SPEC_VER 0x00000310
#define UFS_MAX_NUTRS 32
#define UFS_MAX_NUTMRS 8
static void ufs_irq_check(UfsHc *u)
{
PCIDevice *pci = PCI_DEVICE(u);
if ((u->reg.is & UFS_INTR_MASK) & u->reg.ie) {
trace_ufs_irq_raise();
pci_irq_assert(pci);
} else {
trace_ufs_irq_lower();
pci_irq_deassert(pci);
}
}
static void ufs_process_uiccmd(UfsHc *u, uint32_t val)
{
trace_ufs_process_uiccmd(val, u->reg.ucmdarg1, u->reg.ucmdarg2,
u->reg.ucmdarg3);
/*
* Only the essential uic commands for running drivers on Linux and Windows
* are implemented.
*/
switch (val) {
case UFS_UIC_CMD_DME_LINK_STARTUP:
u->reg.hcs = FIELD_DP32(u->reg.hcs, HCS, DP, 1);
u->reg.hcs = FIELD_DP32(u->reg.hcs, HCS, UTRLRDY, 1);
u->reg.hcs = FIELD_DP32(u->reg.hcs, HCS, UTMRLRDY, 1);
u->reg.ucmdarg2 = UFS_UIC_CMD_RESULT_SUCCESS;
break;
/* TODO: Revisit it when Power Management is implemented */
case UFS_UIC_CMD_DME_HIBER_ENTER:
u->reg.is = FIELD_DP32(u->reg.is, IS, UHES, 1);
u->reg.hcs = FIELD_DP32(u->reg.hcs, HCS, UPMCRS, UFS_PWR_LOCAL);
u->reg.ucmdarg2 = UFS_UIC_CMD_RESULT_SUCCESS;
break;
case UFS_UIC_CMD_DME_HIBER_EXIT:
u->reg.is = FIELD_DP32(u->reg.is, IS, UHXS, 1);
u->reg.hcs = FIELD_DP32(u->reg.hcs, HCS, UPMCRS, UFS_PWR_LOCAL);
u->reg.ucmdarg2 = UFS_UIC_CMD_RESULT_SUCCESS;
break;
default:
u->reg.ucmdarg2 = UFS_UIC_CMD_RESULT_FAILURE;
}
u->reg.is = FIELD_DP32(u->reg.is, IS, UCCS, 1);
ufs_irq_check(u);
}
static void ufs_write_reg(UfsHc *u, hwaddr offset, uint32_t data, unsigned size)
{
switch (offset) {
case A_IS:
u->reg.is &= ~data;
ufs_irq_check(u);
break;
case A_IE:
u->reg.ie = data;
ufs_irq_check(u);
break;
case A_HCE:
if (!FIELD_EX32(u->reg.hce, HCE, HCE) && FIELD_EX32(data, HCE, HCE)) {
u->reg.hcs = FIELD_DP32(u->reg.hcs, HCS, UCRDY, 1);
u->reg.hce = FIELD_DP32(u->reg.hce, HCE, HCE, 1);
} else if (FIELD_EX32(u->reg.hce, HCE, HCE) &&
!FIELD_EX32(data, HCE, HCE)) {
u->reg.hcs = 0;
u->reg.hce = FIELD_DP32(u->reg.hce, HCE, HCE, 0);
}
break;
case A_UTRLBA:
u->reg.utrlba = data & R_UTRLBA_UTRLBA_MASK;
break;
case A_UTRLBAU:
u->reg.utrlbau = data;
break;
case A_UTRLDBR:
/* Not yet supported */
break;
case A_UTRLRSR:
u->reg.utrlrsr = data;
break;
case A_UTRLCNR:
u->reg.utrlcnr &= ~data;
break;
case A_UTMRLBA:
u->reg.utmrlba = data & R_UTMRLBA_UTMRLBA_MASK;
break;
case A_UTMRLBAU:
u->reg.utmrlbau = data;
break;
case A_UICCMD:
ufs_process_uiccmd(u, data);
break;
case A_UCMDARG1:
u->reg.ucmdarg1 = data;
break;
case A_UCMDARG2:
u->reg.ucmdarg2 = data;
break;
case A_UCMDARG3:
u->reg.ucmdarg3 = data;
break;
case A_UTRLCLR:
case A_UTMRLDBR:
case A_UTMRLCLR:
case A_UTMRLRSR:
trace_ufs_err_unsupport_register_offset(offset);
break;
default:
trace_ufs_err_invalid_register_offset(offset);
break;
}
}
static uint64_t ufs_mmio_read(void *opaque, hwaddr addr, unsigned size)
{
UfsHc *u = (UfsHc *)opaque;
uint8_t *ptr = (uint8_t *)&u->reg;
uint64_t value;
if (addr > sizeof(u->reg) - size) {
trace_ufs_err_invalid_register_offset(addr);
return 0;
}
value = *(uint32_t *)(ptr + addr);
trace_ufs_mmio_read(addr, value, size);
return value;
}
static void ufs_mmio_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
UfsHc *u = (UfsHc *)opaque;
if (addr > sizeof(u->reg) - size) {
trace_ufs_err_invalid_register_offset(addr);
return;
}
trace_ufs_mmio_write(addr, data, size);
ufs_write_reg(u, addr, data, size);
}
static const MemoryRegionOps ufs_mmio_ops = {
.read = ufs_mmio_read,
.write = ufs_mmio_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static bool ufs_check_constraints(UfsHc *u, Error **errp)
{
if (u->params.nutrs > UFS_MAX_NUTRS) {
error_setg(errp, "nutrs must be less than or equal to %d",
UFS_MAX_NUTRS);
return false;
}
if (u->params.nutmrs > UFS_MAX_NUTMRS) {
error_setg(errp, "nutmrs must be less than or equal to %d",
UFS_MAX_NUTMRS);
return false;
}
return true;
}
static void ufs_init_pci(UfsHc *u, PCIDevice *pci_dev)
{
uint8_t *pci_conf = pci_dev->config;
pci_conf[PCI_INTERRUPT_PIN] = 1;
pci_config_set_prog_interface(pci_conf, 0x1);
memory_region_init_io(&u->iomem, OBJECT(u), &ufs_mmio_ops, u, "ufs",
u->reg_size);
pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &u->iomem);
u->irq = pci_allocate_irq(pci_dev);
}
static void ufs_init_hc(UfsHc *u)
{
uint32_t cap = 0;
u->reg_size = pow2ceil(sizeof(UfsReg));
memset(&u->reg, 0, sizeof(u->reg));
cap = FIELD_DP32(cap, CAP, NUTRS, (u->params.nutrs - 1));
cap = FIELD_DP32(cap, CAP, RTT, 2);
cap = FIELD_DP32(cap, CAP, NUTMRS, (u->params.nutmrs - 1));
cap = FIELD_DP32(cap, CAP, AUTOH8, 0);
cap = FIELD_DP32(cap, CAP, 64AS, 1);
cap = FIELD_DP32(cap, CAP, OODDS, 0);
cap = FIELD_DP32(cap, CAP, UICDMETMS, 0);
cap = FIELD_DP32(cap, CAP, CS, 0);
u->reg.cap = cap;
u->reg.ver = UFS_SPEC_VER;
}
static void ufs_realize(PCIDevice *pci_dev, Error **errp)
{
UfsHc *u = UFS(pci_dev);
if (!ufs_check_constraints(u, errp)) {
return;
}
ufs_init_hc(u);
ufs_init_pci(u, pci_dev);
}
static Property ufs_props[] = {
DEFINE_PROP_STRING("serial", UfsHc, params.serial),
DEFINE_PROP_UINT8("nutrs", UfsHc, params.nutrs, 32),
DEFINE_PROP_UINT8("nutmrs", UfsHc, params.nutmrs, 8),
DEFINE_PROP_END_OF_LIST(),
};
static const VMStateDescription ufs_vmstate = {
.name = "ufs",
.unmigratable = 1,
};
static void ufs_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
pc->realize = ufs_realize;
pc->vendor_id = PCI_VENDOR_ID_REDHAT;
pc->device_id = PCI_DEVICE_ID_REDHAT_UFS;
pc->class_id = PCI_CLASS_STORAGE_UFS;
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
dc->desc = "Universal Flash Storage";
device_class_set_props(dc, ufs_props);
dc->vmsd = &ufs_vmstate;
}
static const TypeInfo ufs_info = {
.name = TYPE_UFS,
.parent = TYPE_PCI_DEVICE,
.class_init = ufs_class_init,
.instance_size = sizeof(UfsHc),
.interfaces = (InterfaceInfo[]){ { INTERFACE_PCIE_DEVICE }, {} },
};
static void ufs_register_types(void)
{
type_register_static(&ufs_info);
}
type_init(ufs_register_types)