qemu-e2k/target-xtensa/translate.c
Max Filippov bd57fb91ae target-xtensa: implement conditional jumps
- BZ (comparison to zero);
- BI0 (comparison to signed immediate);
- BI1 (comparison to unsigned immediate);
- B (two registers comparison, bit sets comparison);
- BEQZ.N/BNEZ.N (narrow comparison to zero).

Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
2011-09-10 16:57:37 +00:00

758 lines
20 KiB
C

/*
* Xtensa ISA:
* http://www.tensilica.com/products/literature-docs/documentation/xtensa-isa-databook.htm
*
* Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the Open Source and Linux Lab nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include "cpu.h"
#include "exec-all.h"
#include "disas.h"
#include "tcg-op.h"
#include "qemu-log.h"
#include "helpers.h"
#define GEN_HELPER 1
#include "helpers.h"
typedef struct DisasContext {
const XtensaConfig *config;
TranslationBlock *tb;
uint32_t pc;
uint32_t next_pc;
int is_jmp;
int singlestep_enabled;
} DisasContext;
static TCGv_ptr cpu_env;
static TCGv_i32 cpu_pc;
static TCGv_i32 cpu_R[16];
#include "gen-icount.h"
void xtensa_translate_init(void)
{
static const char * const regnames[] = {
"ar0", "ar1", "ar2", "ar3",
"ar4", "ar5", "ar6", "ar7",
"ar8", "ar9", "ar10", "ar11",
"ar12", "ar13", "ar14", "ar15",
};
int i;
cpu_env = tcg_global_reg_new_ptr(TCG_AREG0, "env");
cpu_pc = tcg_global_mem_new_i32(TCG_AREG0,
offsetof(CPUState, pc), "pc");
for (i = 0; i < 16; i++) {
cpu_R[i] = tcg_global_mem_new_i32(TCG_AREG0,
offsetof(CPUState, regs[i]),
regnames[i]);
}
#define GEN_HELPER 2
#include "helpers.h"
}
static inline bool option_enabled(DisasContext *dc, int opt)
{
return xtensa_option_enabled(dc->config, opt);
}
static void gen_exception(int excp)
{
TCGv_i32 tmp = tcg_const_i32(excp);
gen_helper_exception(tmp);
tcg_temp_free(tmp);
}
static void gen_jump_slot(DisasContext *dc, TCGv dest, int slot)
{
tcg_gen_mov_i32(cpu_pc, dest);
if (dc->singlestep_enabled) {
gen_exception(EXCP_DEBUG);
} else {
if (slot >= 0) {
tcg_gen_goto_tb(slot);
tcg_gen_exit_tb((tcg_target_long)dc->tb + slot);
} else {
tcg_gen_exit_tb(0);
}
}
dc->is_jmp = DISAS_UPDATE;
}
static void gen_jump(DisasContext *dc, TCGv dest)
{
gen_jump_slot(dc, dest, -1);
}
static void gen_jumpi(DisasContext *dc, uint32_t dest, int slot)
{
TCGv_i32 tmp = tcg_const_i32(dest);
if (((dc->pc ^ dest) & TARGET_PAGE_MASK) != 0) {
slot = -1;
}
gen_jump_slot(dc, tmp, slot);
tcg_temp_free(tmp);
}
static void gen_brcond(DisasContext *dc, TCGCond cond,
TCGv_i32 t0, TCGv_i32 t1, uint32_t offset)
{
int label = gen_new_label();
tcg_gen_brcond_i32(cond, t0, t1, label);
gen_jumpi(dc, dc->next_pc, 0);
gen_set_label(label);
gen_jumpi(dc, dc->pc + offset, 1);
}
static void gen_brcondi(DisasContext *dc, TCGCond cond,
TCGv_i32 t0, uint32_t t1, uint32_t offset)
{
TCGv_i32 tmp = tcg_const_i32(t1);
gen_brcond(dc, cond, t0, tmp, offset);
tcg_temp_free(tmp);
}
static void disas_xtensa_insn(DisasContext *dc)
{
#define HAS_OPTION(opt) do { \
if (!option_enabled(dc, opt)) { \
qemu_log("Option %d is not enabled %s:%d\n", \
(opt), __FILE__, __LINE__); \
goto invalid_opcode; \
} \
} while (0)
#ifdef TARGET_WORDS_BIGENDIAN
#define OP0 (((b0) & 0xf0) >> 4)
#define OP1 (((b2) & 0xf0) >> 4)
#define OP2 ((b2) & 0xf)
#define RRR_R ((b1) & 0xf)
#define RRR_S (((b1) & 0xf0) >> 4)
#define RRR_T ((b0) & 0xf)
#else
#define OP0 (((b0) & 0xf))
#define OP1 (((b2) & 0xf))
#define OP2 (((b2) & 0xf0) >> 4)
#define RRR_R (((b1) & 0xf0) >> 4)
#define RRR_S (((b1) & 0xf))
#define RRR_T (((b0) & 0xf0) >> 4)
#endif
#define RRRN_R RRR_R
#define RRRN_S RRR_S
#define RRRN_T RRR_T
#define RRI8_R RRR_R
#define RRI8_S RRR_S
#define RRI8_T RRR_T
#define RRI8_IMM8 (b2)
#define RRI8_IMM8_SE ((((b2) & 0x80) ? 0xffffff00 : 0) | RRI8_IMM8)
#ifdef TARGET_WORDS_BIGENDIAN
#define RI16_IMM16 (((b1) << 8) | (b2))
#else
#define RI16_IMM16 (((b2) << 8) | (b1))
#endif
#ifdef TARGET_WORDS_BIGENDIAN
#define CALL_N (((b0) & 0xc) >> 2)
#define CALL_OFFSET ((((b0) & 0x3) << 16) | ((b1) << 8) | (b2))
#else
#define CALL_N (((b0) & 0x30) >> 4)
#define CALL_OFFSET ((((b0) & 0xc0) >> 6) | ((b1) << 2) | ((b2) << 10))
#endif
#define CALL_OFFSET_SE \
(((CALL_OFFSET & 0x20000) ? 0xfffc0000 : 0) | CALL_OFFSET)
#define CALLX_N CALL_N
#ifdef TARGET_WORDS_BIGENDIAN
#define CALLX_M ((b0) & 0x3)
#else
#define CALLX_M (((b0) & 0xc0) >> 6)
#endif
#define CALLX_S RRR_S
#define BRI12_M CALLX_M
#define BRI12_S RRR_S
#ifdef TARGET_WORDS_BIGENDIAN
#define BRI12_IMM12 ((((b1) & 0xf) << 8) | (b2))
#else
#define BRI12_IMM12 ((((b1) & 0xf0) >> 4) | ((b2) << 4))
#endif
#define BRI12_IMM12_SE (((BRI12_IMM12 & 0x800) ? 0xfffff000 : 0) | BRI12_IMM12)
#define BRI8_M BRI12_M
#define BRI8_R RRI8_R
#define BRI8_S RRI8_S
#define BRI8_IMM8 RRI8_IMM8
#define BRI8_IMM8_SE RRI8_IMM8_SE
#define RSR_SR (b1)
uint8_t b0 = ldub_code(dc->pc);
uint8_t b1 = ldub_code(dc->pc + 1);
uint8_t b2 = ldub_code(dc->pc + 2);
static const uint32_t B4CONST[] = {
0xffffffff, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 16, 32, 64, 128, 256
};
static const uint32_t B4CONSTU[] = {
32768, 65536, 2, 3, 4, 5, 6, 7, 8, 10, 12, 16, 32, 64, 128, 256
};
if (OP0 >= 8) {
dc->next_pc = dc->pc + 2;
HAS_OPTION(XTENSA_OPTION_CODE_DENSITY);
} else {
dc->next_pc = dc->pc + 3;
}
switch (OP0) {
case 0: /*QRST*/
switch (OP1) {
case 0: /*RST0*/
switch (OP2) {
case 0: /*ST0*/
if ((RRR_R & 0xc) == 0x8) {
HAS_OPTION(XTENSA_OPTION_BOOLEAN);
}
switch (RRR_R) {
case 0: /*SNM0*/
break;
case 1: /*MOVSPw*/
HAS_OPTION(XTENSA_OPTION_WINDOWED_REGISTER);
break;
case 2: /*SYNC*/
break;
case 3:
break;
}
break;
case 1: /*AND*/
tcg_gen_and_i32(cpu_R[RRR_R], cpu_R[RRR_S], cpu_R[RRR_T]);
break;
case 2: /*OR*/
tcg_gen_or_i32(cpu_R[RRR_R], cpu_R[RRR_S], cpu_R[RRR_T]);
break;
case 3: /*XOR*/
tcg_gen_xor_i32(cpu_R[RRR_R], cpu_R[RRR_S], cpu_R[RRR_T]);
break;
case 4: /*ST1*/
break;
case 5: /*TLB*/
break;
case 6: /*RT0*/
switch (RRR_S) {
case 0: /*NEG*/
tcg_gen_neg_i32(cpu_R[RRR_R], cpu_R[RRR_T]);
break;
case 1: /*ABS*/
{
int label = gen_new_label();
tcg_gen_mov_i32(cpu_R[RRR_R], cpu_R[RRR_T]);
tcg_gen_brcondi_i32(
TCG_COND_GE, cpu_R[RRR_R], 0, label);
tcg_gen_neg_i32(cpu_R[RRR_R], cpu_R[RRR_T]);
gen_set_label(label);
}
break;
default: /*reserved*/
break;
}
break;
case 7: /*reserved*/
break;
case 8: /*ADD*/
tcg_gen_add_i32(cpu_R[RRR_R], cpu_R[RRR_S], cpu_R[RRR_T]);
break;
case 9: /*ADD**/
case 10:
case 11:
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_shli_i32(tmp, cpu_R[RRR_S], OP2 - 8);
tcg_gen_add_i32(cpu_R[RRR_R], tmp, cpu_R[RRR_T]);
tcg_temp_free(tmp);
}
break;
case 12: /*SUB*/
tcg_gen_sub_i32(cpu_R[RRR_R], cpu_R[RRR_S], cpu_R[RRR_T]);
break;
case 13: /*SUB**/
case 14:
case 15:
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_shli_i32(tmp, cpu_R[RRR_S], OP2 - 12);
tcg_gen_sub_i32(cpu_R[RRR_R], tmp, cpu_R[RRR_T]);
tcg_temp_free(tmp);
}
break;
}
break;
case 1: /*RST1*/
break;
case 2: /*RST2*/
break;
case 3: /*RST3*/
break;
case 4: /*EXTUI*/
case 5:
break;
case 6: /*CUST0*/
break;
case 7: /*CUST1*/
break;
case 8: /*LSCXp*/
HAS_OPTION(XTENSA_OPTION_COPROCESSOR);
break;
case 9: /*LSC4*/
break;
case 10: /*FP0*/
HAS_OPTION(XTENSA_OPTION_FP_COPROCESSOR);
break;
case 11: /*FP1*/
HAS_OPTION(XTENSA_OPTION_FP_COPROCESSOR);
break;
default: /*reserved*/
break;
}
break;
case 1: /*L32R*/
{
TCGv_i32 tmp = tcg_const_i32(
(0xfffc0000 | (RI16_IMM16 << 2)) +
((dc->pc + 3) & ~3));
/* no ext L32R */
tcg_gen_qemu_ld32u(cpu_R[RRR_T], tmp, 0);
tcg_temp_free(tmp);
}
break;
case 2: /*LSAI*/
break;
case 3: /*LSCIp*/
HAS_OPTION(XTENSA_OPTION_COPROCESSOR);
break;
case 4: /*MAC16d*/
HAS_OPTION(XTENSA_OPTION_MAC16);
break;
case 5: /*CALLN*/
switch (CALL_N) {
case 0: /*CALL0*/
tcg_gen_movi_i32(cpu_R[0], dc->next_pc);
gen_jumpi(dc, (dc->pc & ~3) + (CALL_OFFSET_SE << 2) + 4, 0);
break;
case 1: /*CALL4w*/
case 2: /*CALL8w*/
case 3: /*CALL12w*/
HAS_OPTION(XTENSA_OPTION_WINDOWED_REGISTER);
break;
}
break;
case 6: /*SI*/
switch (CALL_N) {
case 0: /*J*/
gen_jumpi(dc, dc->pc + 4 + CALL_OFFSET_SE, 0);
break;
case 1: /*BZ*/
{
static const TCGCond cond[] = {
TCG_COND_EQ, /*BEQZ*/
TCG_COND_NE, /*BNEZ*/
TCG_COND_LT, /*BLTZ*/
TCG_COND_GE, /*BGEZ*/
};
gen_brcondi(dc, cond[BRI12_M & 3], cpu_R[BRI12_S], 0,
4 + BRI12_IMM12_SE);
}
break;
case 2: /*BI0*/
{
static const TCGCond cond[] = {
TCG_COND_EQ, /*BEQI*/
TCG_COND_NE, /*BNEI*/
TCG_COND_LT, /*BLTI*/
TCG_COND_GE, /*BGEI*/
};
gen_brcondi(dc, cond[BRI8_M & 3],
cpu_R[BRI8_S], B4CONST[BRI8_R], 4 + BRI8_IMM8_SE);
}
break;
case 3: /*BI1*/
switch (BRI8_M) {
case 0: /*ENTRYw*/
HAS_OPTION(XTENSA_OPTION_WINDOWED_REGISTER);
break;
case 1: /*B1*/
switch (BRI8_R) {
case 0: /*BFp*/
HAS_OPTION(XTENSA_OPTION_BOOLEAN);
break;
case 1: /*BTp*/
HAS_OPTION(XTENSA_OPTION_BOOLEAN);
break;
case 8: /*LOOP*/
break;
case 9: /*LOOPNEZ*/
break;
case 10: /*LOOPGTZ*/
break;
default: /*reserved*/
break;
}
break;
case 2: /*BLTUI*/
case 3: /*BGEUI*/
gen_brcondi(dc, BRI8_M == 2 ? TCG_COND_LTU : TCG_COND_GEU,
cpu_R[BRI8_S], B4CONSTU[BRI8_R], 4 + BRI8_IMM8_SE);
break;
}
break;
}
break;
case 7: /*B*/
{
TCGCond eq_ne = (RRI8_R & 8) ? TCG_COND_NE : TCG_COND_EQ;
switch (RRI8_R & 7) {
case 0: /*BNONE*/ /*BANY*/
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_and_i32(tmp, cpu_R[RRI8_S], cpu_R[RRI8_T]);
gen_brcondi(dc, eq_ne, tmp, 0, 4 + RRI8_IMM8_SE);
tcg_temp_free(tmp);
}
break;
case 1: /*BEQ*/ /*BNE*/
case 2: /*BLT*/ /*BGE*/
case 3: /*BLTU*/ /*BGEU*/
{
static const TCGCond cond[] = {
[1] = TCG_COND_EQ,
[2] = TCG_COND_LT,
[3] = TCG_COND_LTU,
[9] = TCG_COND_NE,
[10] = TCG_COND_GE,
[11] = TCG_COND_GEU,
};
gen_brcond(dc, cond[RRI8_R], cpu_R[RRI8_S], cpu_R[RRI8_T],
4 + RRI8_IMM8_SE);
}
break;
case 4: /*BALL*/ /*BNALL*/
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_and_i32(tmp, cpu_R[RRI8_S], cpu_R[RRI8_T]);
gen_brcond(dc, eq_ne, tmp, cpu_R[RRI8_T],
4 + RRI8_IMM8_SE);
tcg_temp_free(tmp);
}
break;
case 5: /*BBC*/ /*BBS*/
{
TCGv_i32 bit = tcg_const_i32(1);
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_andi_i32(tmp, cpu_R[RRI8_T], 0x1f);
tcg_gen_shl_i32(bit, bit, tmp);
tcg_gen_and_i32(tmp, cpu_R[RRI8_S], bit);
gen_brcondi(dc, eq_ne, tmp, 0, 4 + RRI8_IMM8_SE);
tcg_temp_free(tmp);
tcg_temp_free(bit);
}
break;
case 6: /*BBCI*/ /*BBSI*/
case 7:
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_andi_i32(tmp, cpu_R[RRI8_S],
1 << (((RRI8_R & 1) << 4) | RRI8_T));
gen_brcondi(dc, eq_ne, tmp, 0, 4 + RRI8_IMM8_SE);
tcg_temp_free(tmp);
}
break;
}
}
break;
#define gen_narrow_load_store(type) do { \
TCGv_i32 addr = tcg_temp_new_i32(); \
tcg_gen_addi_i32(addr, cpu_R[RRRN_S], RRRN_R << 2); \
tcg_gen_qemu_##type(cpu_R[RRRN_T], addr, 0); \
tcg_temp_free(addr); \
} while (0)
case 8: /*L32I.Nn*/
gen_narrow_load_store(ld32u);
break;
case 9: /*S32I.Nn*/
gen_narrow_load_store(st32);
break;
#undef gen_narrow_load_store
case 10: /*ADD.Nn*/
tcg_gen_add_i32(cpu_R[RRRN_R], cpu_R[RRRN_S], cpu_R[RRRN_T]);
break;
case 11: /*ADDI.Nn*/
tcg_gen_addi_i32(cpu_R[RRRN_R], cpu_R[RRRN_S], RRRN_T ? RRRN_T : -1);
break;
case 12: /*ST2n*/
if (RRRN_T < 8) { /*MOVI.Nn*/
tcg_gen_movi_i32(cpu_R[RRRN_S],
RRRN_R | (RRRN_T << 4) |
((RRRN_T & 6) == 6 ? 0xffffff80 : 0));
} else { /*BEQZ.Nn*/ /*BNEZ.Nn*/
TCGCond eq_ne = (RRRN_T & 4) ? TCG_COND_NE : TCG_COND_EQ;
gen_brcondi(dc, eq_ne, cpu_R[RRRN_S], 0,
4 + (RRRN_R | ((RRRN_T & 3) << 4)));
}
break;
case 13: /*ST3n*/
switch (RRRN_R) {
case 0: /*MOV.Nn*/
tcg_gen_mov_i32(cpu_R[RRRN_T], cpu_R[RRRN_S]);
break;
case 15: /*S3*/
switch (RRRN_T) {
case 0: /*RET.Nn*/
gen_jump(dc, cpu_R[0]);
break;
case 1: /*RETW.Nn*/
break;
case 2: /*BREAK.Nn*/
break;
case 3: /*NOP.Nn*/
break;
case 6: /*ILL.Nn*/
break;
default: /*reserved*/
break;
}
break;
default: /*reserved*/
break;
}
break;
default: /*reserved*/
break;
}
dc->pc = dc->next_pc;
return;
invalid_opcode:
qemu_log("INVALID(pc = %08x)\n", dc->pc);
dc->pc = dc->next_pc;
#undef HAS_OPTION
}
static void check_breakpoint(CPUState *env, DisasContext *dc)
{
CPUBreakpoint *bp;
if (unlikely(!QTAILQ_EMPTY(&env->breakpoints))) {
QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
if (bp->pc == dc->pc) {
tcg_gen_movi_i32(cpu_pc, dc->pc);
gen_exception(EXCP_DEBUG);
dc->is_jmp = DISAS_UPDATE;
}
}
}
}
static void gen_intermediate_code_internal(
CPUState *env, TranslationBlock *tb, int search_pc)
{
DisasContext dc;
int insn_count = 0;
int j, lj = -1;
uint16_t *gen_opc_end = gen_opc_buf + OPC_MAX_SIZE;
int max_insns = tb->cflags & CF_COUNT_MASK;
uint32_t pc_start = tb->pc;
uint32_t next_page_start =
(pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
if (max_insns == 0) {
max_insns = CF_COUNT_MASK;
}
dc.config = env->config;
dc.singlestep_enabled = env->singlestep_enabled;
dc.tb = tb;
dc.pc = pc_start;
dc.is_jmp = DISAS_NEXT;
gen_icount_start();
do {
check_breakpoint(env, &dc);
if (search_pc) {
j = gen_opc_ptr - gen_opc_buf;
if (lj < j) {
lj++;
while (lj < j) {
gen_opc_instr_start[lj++] = 0;
}
}
gen_opc_pc[lj] = dc.pc;
gen_opc_instr_start[lj] = 1;
gen_opc_icount[lj] = insn_count;
}
if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP))) {
tcg_gen_debug_insn_start(dc.pc);
}
disas_xtensa_insn(&dc);
++insn_count;
if (env->singlestep_enabled) {
tcg_gen_movi_i32(cpu_pc, dc.pc);
gen_exception(EXCP_DEBUG);
break;
}
} while (dc.is_jmp == DISAS_NEXT &&
insn_count < max_insns &&
dc.pc < next_page_start &&
gen_opc_ptr < gen_opc_end);
if (dc.is_jmp == DISAS_NEXT) {
gen_jumpi(&dc, dc.pc, 0);
}
gen_icount_end(tb, insn_count);
*gen_opc_ptr = INDEX_op_end;
if (!search_pc) {
tb->size = dc.pc - pc_start;
tb->icount = insn_count;
}
}
void gen_intermediate_code(CPUState *env, TranslationBlock *tb)
{
gen_intermediate_code_internal(env, tb, 0);
}
void gen_intermediate_code_pc(CPUState *env, TranslationBlock *tb)
{
gen_intermediate_code_internal(env, tb, 1);
}
void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
int flags)
{
int i;
cpu_fprintf(f, "PC=%08x\n", env->pc);
for (i = 0; i < 16; ++i) {
cpu_fprintf(f, "A%02d=%08x%c", i, env->regs[i],
(i % 4) == 3 ? '\n' : ' ');
}
}
void restore_state_to_opc(CPUState *env, TranslationBlock *tb, int pc_pos)
{
env->pc = gen_opc_pc[pc_pos];
}