j_mayer 7a51ad822f For consistency, move muls64 / mulu64 prototypes to host-utils.h
Make x86_64 optimized versions inline.


git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@3523 c046a42c-6fe2-441c-8c8c-71466251a162
2007-11-04 02:24:58 +00:00

1112 lines
15 KiB
C

/*
* Alpha emulation cpu micro-operations for qemu.
*
* Copyright (c) 2007 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#define DEBUG_OP
#include "config.h"
#include "exec.h"
#include "host-utils.h"
#include "op_helper.h"
#define REG 0
#include "op_template.h"
#define REG 1
#include "op_template.h"
#define REG 2
#include "op_template.h"
#define REG 3
#include "op_template.h"
#define REG 4
#include "op_template.h"
#define REG 5
#include "op_template.h"
#define REG 6
#include "op_template.h"
#define REG 7
#include "op_template.h"
#define REG 8
#include "op_template.h"
#define REG 9
#include "op_template.h"
#define REG 10
#include "op_template.h"
#define REG 11
#include "op_template.h"
#define REG 12
#include "op_template.h"
#define REG 13
#include "op_template.h"
#define REG 14
#include "op_template.h"
#define REG 15
#include "op_template.h"
#define REG 16
#include "op_template.h"
#define REG 17
#include "op_template.h"
#define REG 18
#include "op_template.h"
#define REG 19
#include "op_template.h"
#define REG 20
#include "op_template.h"
#define REG 21
#include "op_template.h"
#define REG 22
#include "op_template.h"
#define REG 23
#include "op_template.h"
#define REG 24
#include "op_template.h"
#define REG 25
#include "op_template.h"
#define REG 26
#include "op_template.h"
#define REG 27
#include "op_template.h"
#define REG 28
#include "op_template.h"
#define REG 29
#include "op_template.h"
#define REG 30
#include "op_template.h"
#define REG 31
#include "op_template.h"
/* Debug stuff */
void OPPROTO op_no_op (void)
{
#if !defined (DEBUG_OP)
__asm__ __volatile__("nop" : : : "memory");
#endif
RETURN();
}
void OPPROTO op_tb_flush (void)
{
helper_tb_flush();
RETURN();
}
/* Load and stores */
#define MEMSUFFIX _raw
#include "op_mem.h"
#if !defined(CONFIG_USER_ONLY)
#define MEMSUFFIX _kernel
#include "op_mem.h"
#define MEMSUFFIX _executive
#include "op_mem.h"
#define MEMSUFFIX _supervisor
#include "op_mem.h"
#define MEMSUFFIX _user
#include "op_mem.h"
/* This is used for pal modes */
#define MEMSUFFIX _data
#include "op_mem.h"
#endif
/* Special operation for load and store */
void OPPROTO op_n7 (void)
{
T0 &= ~(uint64_t)0x7;
RETURN();
}
/* Misc */
void OPPROTO op_excp (void)
{
helper_excp(PARAM(1), PARAM(2));
RETURN();
}
void OPPROTO op_load_amask (void)
{
helper_amask();
RETURN();
}
void OPPROTO op_load_pcc (void)
{
helper_load_pcc();
RETURN();
}
void OPPROTO op_load_implver (void)
{
helper_load_implver();
RETURN();
}
void OPPROTO op_load_fpcr (void)
{
helper_load_fpcr();
RETURN();
}
void OPPROTO op_store_fpcr (void)
{
helper_store_fpcr();
RETURN();
}
void OPPROTO op_load_irf (void)
{
helper_load_irf();
RETURN();
}
void OPPROTO op_set_irf (void)
{
helper_set_irf();
RETURN();
}
void OPPROTO op_clear_irf (void)
{
helper_clear_irf();
RETURN();
}
void OPPROTO op_exit_tb (void)
{
EXIT_TB();
}
/* Arithmetic */
void OPPROTO op_addq (void)
{
T0 += T1;
RETURN();
}
void OPPROTO op_addqv (void)
{
helper_addqv();
RETURN();
}
void OPPROTO op_addl (void)
{
T0 = (int64_t)((int32_t)(T0 + T1));
RETURN();
}
void OPPROTO op_addlv (void)
{
helper_addlv();
RETURN();
}
void OPPROTO op_subq (void)
{
T0 -= T1;
RETURN();
}
void OPPROTO op_subqv (void)
{
helper_subqv();
RETURN();
}
void OPPROTO op_subl (void)
{
T0 = (int64_t)((int32_t)(T0 - T1));
RETURN();
}
void OPPROTO op_sublv (void)
{
helper_sublv();
RETURN();
}
void OPPROTO op_s4 (void)
{
T0 <<= 2;
RETURN();
}
void OPPROTO op_s8 (void)
{
T0 <<= 3;
RETURN();
}
void OPPROTO op_mull (void)
{
T0 = (int64_t)((int32_t)T0 * (int32_t)T1);
RETURN();
}
void OPPROTO op_mullv (void)
{
helper_mullv();
RETURN();
}
void OPPROTO op_mulq (void)
{
T0 = (int64_t)T0 * (int64_t)T1;
RETURN();
}
void OPPROTO op_mulqv (void)
{
helper_mulqv();
RETURN();
}
void OPPROTO op_umulh (void)
{
uint64_t tl, th;
mulu64(&tl, &th, T0, T1);
T0 = th;
RETURN();
}
/* Logical */
void OPPROTO op_and (void)
{
T0 &= T1;
RETURN();
}
void OPPROTO op_bic (void)
{
T0 &= ~T1;
RETURN();
}
void OPPROTO op_bis (void)
{
T0 |= T1;
RETURN();
}
void OPPROTO op_eqv (void)
{
T0 ^= ~T1;
RETURN();
}
void OPPROTO op_ornot (void)
{
T0 |= ~T1;
RETURN();
}
void OPPROTO op_xor (void)
{
T0 ^= T1;
RETURN();
}
void OPPROTO op_sll (void)
{
T0 <<= T1;
RETURN();
}
void OPPROTO op_srl (void)
{
T0 >>= T1;
RETURN();
}
void OPPROTO op_sra (void)
{
T0 = (int64_t)T0 >> T1;
RETURN();
}
void OPPROTO op_sextb (void)
{
T0 = (int64_t)((int8_t)T0);
RETURN();
}
void OPPROTO op_sextw (void)
{
T0 = (int64_t)((int16_t)T0);
RETURN();
}
void OPPROTO op_ctpop (void)
{
helper_ctpop();
RETURN();
}
void OPPROTO op_ctlz (void)
{
helper_ctlz();
RETURN();
}
void OPPROTO op_cttz (void)
{
helper_cttz();
RETURN();
}
void OPPROTO op_mskbl (void)
{
helper_mskbl();
RETURN();
}
void OPPROTO op_extbl (void)
{
helper_extbl();
RETURN();
}
void OPPROTO op_insbl (void)
{
helper_insbl();
RETURN();
}
void OPPROTO op_mskwl (void)
{
helper_mskwl();
RETURN();
}
void OPPROTO op_extwl (void)
{
helper_extwl();
RETURN();
}
void OPPROTO op_inswl (void)
{
helper_inswl();
RETURN();
}
void OPPROTO op_mskll (void)
{
helper_mskll();
RETURN();
}
void OPPROTO op_extll (void)
{
helper_extll();
RETURN();
}
void OPPROTO op_insll (void)
{
helper_insll();
RETURN();
}
void OPPROTO op_zap (void)
{
helper_zap();
RETURN();
}
void OPPROTO op_zapnot (void)
{
helper_zapnot();
RETURN();
}
void OPPROTO op_mskql (void)
{
helper_mskql();
RETURN();
}
void OPPROTO op_extql (void)
{
helper_extql();
RETURN();
}
void OPPROTO op_insql (void)
{
helper_insql();
RETURN();
}
void OPPROTO op_mskwh (void)
{
helper_mskwh();
RETURN();
}
void OPPROTO op_inswh (void)
{
helper_inswh();
RETURN();
}
void OPPROTO op_extwh (void)
{
helper_extwh();
RETURN();
}
void OPPROTO op_msklh (void)
{
helper_msklh();
RETURN();
}
void OPPROTO op_inslh (void)
{
helper_inslh();
RETURN();
}
void OPPROTO op_extlh (void)
{
helper_extlh();
RETURN();
}
void OPPROTO op_mskqh (void)
{
helper_mskqh();
RETURN();
}
void OPPROTO op_insqh (void)
{
helper_insqh();
RETURN();
}
void OPPROTO op_extqh (void)
{
helper_extqh();
RETURN();
}
/* Tests */
void OPPROTO op_cmpult (void)
{
if (T0 < T1)
T0 = 1;
else
T0 = 0;
RETURN();
}
void OPPROTO op_cmpule (void)
{
if (T0 <= T1)
T0 = 1;
else
T0 = 0;
RETURN();
}
void OPPROTO op_cmpeq (void)
{
if (T0 == T1)
T0 = 1;
else
T0 = 0;
RETURN();
}
void OPPROTO op_cmplt (void)
{
if ((int64_t)T0 < (int64_t)T1)
T0 = 1;
else
T0 = 0;
RETURN();
}
void OPPROTO op_cmple (void)
{
if ((int64_t)T0 <= (int64_t)T1)
T0 = 1;
else
T0 = 0;
RETURN();
}
void OPPROTO op_cmpbge (void)
{
helper_cmpbge();
RETURN();
}
void OPPROTO op_cmpeqz (void)
{
if (T0 == 0)
T0 = 1;
else
T0 = 0;
RETURN();
}
void OPPROTO op_cmpnez (void)
{
if (T0 != 0)
T0 = 1;
else
T0 = 0;
RETURN();
}
void OPPROTO op_cmpltz (void)
{
if ((int64_t)T0 < 0)
T0 = 1;
else
T0 = 0;
RETURN();
}
void OPPROTO op_cmplez (void)
{
if ((int64_t)T0 <= 0)
T0 = 1;
else
T0 = 0;
RETURN();
}
void OPPROTO op_cmpgtz (void)
{
if ((int64_t)T0 > 0)
T0 = 1;
else
T0 = 0;
RETURN();
}
void OPPROTO op_cmpgez (void)
{
if ((int64_t)T0 >= 0)
T0 = 1;
else
T0 = 0;
RETURN();
}
void OPPROTO op_cmplbs (void)
{
T0 &= 1;
RETURN();
}
void OPPROTO op_cmplbc (void)
{
T0 = (~T0) & 1;
RETURN();
}
/* Branches */
void OPPROTO op_branch (void)
{
env->pc = T0 & ~3;
RETURN();
}
void OPPROTO op_addq1 (void)
{
T1 += T0;
RETURN();
}
#if 0 // Qemu does not know how to do this...
void OPPROTO op_bcond (void)
{
if (T0)
env->pc = T1 & ~3;
else
env->pc = PARAM(1);
RETURN();
}
#else
void OPPROTO op_bcond (void)
{
if (T0)
env->pc = T1 & ~3;
else
env->pc = ((uint64_t)PARAM(1) << 32) | (uint64_t)PARAM(2);
RETURN();
}
#endif
#if 0 // Qemu does not know how to do this...
void OPPROTO op_update_pc (void)
{
env->pc = PARAM(1);
RETURN();
}
#else
void OPPROTO op_update_pc (void)
{
env->pc = ((uint64_t)PARAM(1) << 32) | (uint64_t)PARAM(2);
RETURN();
}
#endif
/* Optimization for 32 bits hosts architectures */
void OPPROTO op_update_pc32 (void)
{
env->pc = (uint64_t)PARAM(1);
RETURN();
}
/* IEEE floating point arithmetic */
/* S floating (single) */
void OPPROTO op_adds (void)
{
FT0 = float32_add(FT0, FT1, &FP_STATUS);
RETURN();
}
void OPPROTO op_subs (void)
{
FT0 = float32_sub(FT0, FT1, &FP_STATUS);
RETURN();
}
void OPPROTO op_muls (void)
{
FT0 = float32_mul(FT0, FT1, &FP_STATUS);
RETURN();
}
void OPPROTO op_divs (void)
{
FT0 = float32_div(FT0, FT1, &FP_STATUS);
RETURN();
}
void OPPROTO op_sqrts (void)
{
helper_sqrts();
RETURN();
}
void OPPROTO op_cpys (void)
{
helper_cpys();
RETURN();
}
void OPPROTO op_cpysn (void)
{
helper_cpysn();
RETURN();
}
void OPPROTO op_cpyse (void)
{
helper_cpyse();
RETURN();
}
void OPPROTO op_itofs (void)
{
helper_itofs();
RETURN();
}
void OPPROTO op_ftois (void)
{
helper_ftois();
RETURN();
}
/* T floating (double) */
void OPPROTO op_addt (void)
{
FT0 = float64_add(FT0, FT1, &FP_STATUS);
RETURN();
}
void OPPROTO op_subt (void)
{
FT0 = float64_sub(FT0, FT1, &FP_STATUS);
RETURN();
}
void OPPROTO op_mult (void)
{
FT0 = float64_mul(FT0, FT1, &FP_STATUS);
RETURN();
}
void OPPROTO op_divt (void)
{
FT0 = float64_div(FT0, FT1, &FP_STATUS);
RETURN();
}
void OPPROTO op_sqrtt (void)
{
helper_sqrtt();
RETURN();
}
void OPPROTO op_cmptun (void)
{
helper_cmptun();
RETURN();
}
void OPPROTO op_cmpteq (void)
{
helper_cmpteq();
RETURN();
}
void OPPROTO op_cmptle (void)
{
helper_cmptle();
RETURN();
}
void OPPROTO op_cmptlt (void)
{
helper_cmptlt();
RETURN();
}
void OPPROTO op_itoft (void)
{
helper_itoft();
RETURN();
}
void OPPROTO op_ftoit (void)
{
helper_ftoit();
RETURN();
}
/* VAX floating point arithmetic */
/* F floating */
void OPPROTO op_addf (void)
{
helper_addf();
RETURN();
}
void OPPROTO op_subf (void)
{
helper_subf();
RETURN();
}
void OPPROTO op_mulf (void)
{
helper_mulf();
RETURN();
}
void OPPROTO op_divf (void)
{
helper_divf();
RETURN();
}
void OPPROTO op_sqrtf (void)
{
helper_sqrtf();
RETURN();
}
void OPPROTO op_cmpfeq (void)
{
helper_cmpfeq();
RETURN();
}
void OPPROTO op_cmpfne (void)
{
helper_cmpfne();
RETURN();
}
void OPPROTO op_cmpflt (void)
{
helper_cmpflt();
RETURN();
}
void OPPROTO op_cmpfle (void)
{
helper_cmpfle();
RETURN();
}
void OPPROTO op_cmpfgt (void)
{
helper_cmpfgt();
RETURN();
}
void OPPROTO op_cmpfge (void)
{
helper_cmpfge();
RETURN();
}
void OPPROTO op_itoff (void)
{
helper_itoff();
RETURN();
}
/* G floating */
void OPPROTO op_addg (void)
{
helper_addg();
RETURN();
}
void OPPROTO op_subg (void)
{
helper_subg();
RETURN();
}
void OPPROTO op_mulg (void)
{
helper_mulg();
RETURN();
}
void OPPROTO op_divg (void)
{
helper_divg();
RETURN();
}
void OPPROTO op_sqrtg (void)
{
helper_sqrtg();
RETURN();
}
void OPPROTO op_cmpgeq (void)
{
helper_cmpgeq();
RETURN();
}
void OPPROTO op_cmpglt (void)
{
helper_cmpglt();
RETURN();
}
void OPPROTO op_cmpgle (void)
{
helper_cmpgle();
RETURN();
}
/* Floating point format conversion */
void OPPROTO op_cvtst (void)
{
FT0 = (float)FT0;
RETURN();
}
void OPPROTO op_cvtqs (void)
{
helper_cvtqs();
RETURN();
}
void OPPROTO op_cvtts (void)
{
FT0 = (float)FT0;
RETURN();
}
void OPPROTO op_cvttq (void)
{
helper_cvttq();
RETURN();
}
void OPPROTO op_cvtqt (void)
{
helper_cvtqt();
RETURN();
}
void OPPROTO op_cvtqf (void)
{
helper_cvtqf();
RETURN();
}
void OPPROTO op_cvtgf (void)
{
helper_cvtgf();
RETURN();
}
void OPPROTO op_cvtgd (void)
{
helper_cvtgd();
RETURN();
}
void OPPROTO op_cvtgq (void)
{
helper_cvtgq();
RETURN();
}
void OPPROTO op_cvtqg (void)
{
helper_cvtqg();
RETURN();
}
void OPPROTO op_cvtdg (void)
{
helper_cvtdg();
RETURN();
}
void OPPROTO op_cvtlq (void)
{
helper_cvtlq();
RETURN();
}
void OPPROTO op_cvtql (void)
{
helper_cvtql();
RETURN();
}
void OPPROTO op_cvtqlv (void)
{
helper_cvtqlv();
RETURN();
}
void OPPROTO op_cvtqlsv (void)
{
helper_cvtqlsv();
RETURN();
}
/* PALcode support special instructions */
#if !defined (CONFIG_USER_ONLY)
void OPPROTO op_hw_rei (void)
{
env->pc = env->ipr[IPR_EXC_ADDR] & ~3;
env->ipr[IPR_EXC_ADDR] = env->ipr[IPR_EXC_ADDR] & 1;
/* XXX: re-enable interrupts and memory mapping */
RETURN();
}
void OPPROTO op_hw_ret (void)
{
env->pc = T0 & ~3;
env->ipr[IPR_EXC_ADDR] = T0 & 1;
/* XXX: re-enable interrupts and memory mapping */
RETURN();
}
void OPPROTO op_mfpr (void)
{
helper_mfpr(PARAM(1));
RETURN();
}
void OPPROTO op_mtpr (void)
{
helper_mtpr(PARAM(1));
RETURN();
}
void OPPROTO op_set_alt_mode (void)
{
env->saved_mode = env->ps & 0xC;
env->ps = (env->ps & ~0xC) | (env->ipr[IPR_ALT_MODE] & 0xC);
RETURN();
}
void OPPROTO op_restore_mode (void)
{
env->ps = (env->ps & ~0xC) | env->saved_mode;
RETURN();
}
void OPPROTO op_ld_phys_to_virt (void)
{
helper_ld_phys_to_virt();
RETURN();
}
void OPPROTO op_st_phys_to_virt (void)
{
helper_st_phys_to_virt();
RETURN();
}
#endif /* !defined (CONFIG_USER_ONLY) */