qemu-e2k/hw/misc/mps2-fpgaio.c
Peter Maydell 39901aea06 hw/misc/mps2-fpgaio: Support AN547 DBGCTRL register
For the AN547 image, the FPGAIO block has an extra DBGCTRL register,
which is used to control the SPNIDEN, SPIDEN, NPIDEN and DBGEN inputs
to the CPU.  These signals control when the CPU permits use of the
external debug interface.  Our CPU models don't implement the
external debug interface, so we model the register as
reads-as-written.

Implement the register, with a property defining whether it is
present, and allow mps2-tz boards to specify that it is present.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Tested-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20210219144617.4782-39-peter.maydell@linaro.org
2021-03-08 17:20:03 +00:00

356 lines
11 KiB
C

/*
* ARM MPS2 AN505 FPGAIO emulation
*
* Copyright (c) 2018 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
/* This is a model of the "FPGA system control and I/O" block found
* in the AN505 FPGA image for the MPS2 devboard.
* It is documented in AN505:
* https://developer.arm.com/documentation/dai0505/latest/
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qapi/error.h"
#include "trace.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "hw/registerfields.h"
#include "hw/misc/mps2-fpgaio.h"
#include "hw/misc/led.h"
#include "hw/qdev-properties.h"
#include "qemu/timer.h"
REG32(LED0, 0)
REG32(DBGCTRL, 4)
REG32(BUTTON, 8)
REG32(CLK1HZ, 0x10)
REG32(CLK100HZ, 0x14)
REG32(COUNTER, 0x18)
REG32(PRESCALE, 0x1c)
REG32(PSCNTR, 0x20)
REG32(SWITCH, 0x28)
REG32(MISC, 0x4c)
static uint32_t counter_from_tickoff(int64_t now, int64_t tick_offset, int frq)
{
return muldiv64(now - tick_offset, frq, NANOSECONDS_PER_SECOND);
}
static int64_t tickoff_from_counter(int64_t now, uint32_t count, int frq)
{
return now - muldiv64(count, NANOSECONDS_PER_SECOND, frq);
}
static void resync_counter(MPS2FPGAIO *s)
{
/*
* Update s->counter and s->pscntr to their true current values
* by calculating how many times PSCNTR has ticked since the
* last time we did a resync.
*/
int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
int64_t elapsed = now - s->pscntr_sync_ticks;
/*
* Round elapsed down to a whole number of PSCNTR ticks, so we don't
* lose time if we do multiple resyncs in a single tick.
*/
uint64_t ticks = muldiv64(elapsed, s->prescale_clk, NANOSECONDS_PER_SECOND);
/*
* Work out what PSCNTR and COUNTER have moved to. We assume that
* PSCNTR reloads from PRESCALE one tick-period after it hits zero,
* and that COUNTER increments at the same moment.
*/
if (ticks == 0) {
/* We haven't ticked since the last time we were asked */
return;
} else if (ticks < s->pscntr) {
/* We haven't yet reached zero, just reduce the PSCNTR */
s->pscntr -= ticks;
} else {
if (s->prescale == 0) {
/*
* If the reload value is zero then the PSCNTR will stick
* at zero once it reaches it, and so we will increment
* COUNTER every tick after that.
*/
s->counter += ticks - s->pscntr;
s->pscntr = 0;
} else {
/*
* This is the complicated bit. This ASCII art diagram gives an
* example with PRESCALE==5 PSCNTR==7:
*
* ticks 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
* PSCNTR 7 6 5 4 3 2 1 0 5 4 3 2 1 0 5
* cinc 1 2
* y 0 1 2 3 4 5 6 7 8 9 10 11 12
* x 0 1 2 3 4 5 0 1 2 3 4 5 0
*
* where x = y % (s->prescale + 1)
* and so PSCNTR = s->prescale - x
* and COUNTER is incremented by y / (s->prescale + 1)
*
* The case where PSCNTR < PRESCALE works out the same,
* though we must be careful to calculate y as 64-bit unsigned
* for all parts of the expression.
* y < 0 is not possible because that implies ticks < s->pscntr.
*/
uint64_t y = ticks - s->pscntr + s->prescale;
s->pscntr = s->prescale - (y % (s->prescale + 1));
s->counter += y / (s->prescale + 1);
}
}
/*
* Only advance the sync time to the timestamp of the last PSCNTR tick,
* not all the way to 'now', so we don't lose time if we do multiple
* resyncs in a single tick.
*/
s->pscntr_sync_ticks += muldiv64(ticks, NANOSECONDS_PER_SECOND,
s->prescale_clk);
}
static uint64_t mps2_fpgaio_read(void *opaque, hwaddr offset, unsigned size)
{
MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
uint64_t r;
int64_t now;
switch (offset) {
case A_LED0:
r = s->led0;
break;
case A_DBGCTRL:
if (!s->has_dbgctrl) {
goto bad_offset;
}
r = s->dbgctrl;
break;
case A_BUTTON:
/* User-pressable board buttons. We don't model that, so just return
* zeroes.
*/
r = 0;
break;
case A_PRESCALE:
r = s->prescale;
break;
case A_MISC:
r = s->misc;
break;
case A_CLK1HZ:
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
r = counter_from_tickoff(now, s->clk1hz_tick_offset, 1);
break;
case A_CLK100HZ:
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
r = counter_from_tickoff(now, s->clk100hz_tick_offset, 100);
break;
case A_COUNTER:
resync_counter(s);
r = s->counter;
break;
case A_PSCNTR:
resync_counter(s);
r = s->pscntr;
break;
case A_SWITCH:
if (!s->has_switches) {
goto bad_offset;
}
/* User-togglable board switches. We don't model that, so report 0. */
r = 0;
break;
default:
bad_offset:
qemu_log_mask(LOG_GUEST_ERROR,
"MPS2 FPGAIO read: bad offset %x\n", (int) offset);
r = 0;
break;
}
trace_mps2_fpgaio_read(offset, r, size);
return r;
}
static void mps2_fpgaio_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
int64_t now;
trace_mps2_fpgaio_write(offset, value, size);
switch (offset) {
case A_LED0:
if (s->num_leds != 0) {
uint32_t i;
s->led0 = value & MAKE_64BIT_MASK(0, s->num_leds);
for (i = 0; i < s->num_leds; i++) {
led_set_state(s->led[i], value & (1 << i));
}
}
break;
case A_DBGCTRL:
if (!s->has_dbgctrl) {
goto bad_offset;
}
qemu_log_mask(LOG_UNIMP,
"MPS2 FPGAIO: DBGCTRL unimplemented\n");
s->dbgctrl = value;
break;
case A_PRESCALE:
resync_counter(s);
s->prescale = value;
break;
case A_MISC:
/* These are control bits for some of the other devices on the
* board (SPI, CLCD, etc). We don't implement that yet, so just
* make the bits read as written.
*/
qemu_log_mask(LOG_UNIMP,
"MPS2 FPGAIO: MISC control bits unimplemented\n");
s->misc = value;
break;
case A_CLK1HZ:
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
s->clk1hz_tick_offset = tickoff_from_counter(now, value, 1);
break;
case A_CLK100HZ:
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
s->clk100hz_tick_offset = tickoff_from_counter(now, value, 100);
break;
case A_COUNTER:
resync_counter(s);
s->counter = value;
break;
case A_PSCNTR:
resync_counter(s);
s->pscntr = value;
break;
default:
bad_offset:
qemu_log_mask(LOG_GUEST_ERROR,
"MPS2 FPGAIO write: bad offset 0x%x\n", (int) offset);
break;
}
}
static const MemoryRegionOps mps2_fpgaio_ops = {
.read = mps2_fpgaio_read,
.write = mps2_fpgaio_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void mps2_fpgaio_reset(DeviceState *dev)
{
MPS2FPGAIO *s = MPS2_FPGAIO(dev);
int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
trace_mps2_fpgaio_reset();
s->led0 = 0;
s->prescale = 0;
s->misc = 0;
s->clk1hz_tick_offset = tickoff_from_counter(now, 0, 1);
s->clk100hz_tick_offset = tickoff_from_counter(now, 0, 100);
s->counter = 0;
s->pscntr = 0;
s->pscntr_sync_ticks = now;
for (size_t i = 0; i < s->num_leds; i++) {
device_cold_reset(DEVICE(s->led[i]));
}
}
static void mps2_fpgaio_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
MPS2FPGAIO *s = MPS2_FPGAIO(obj);
memory_region_init_io(&s->iomem, obj, &mps2_fpgaio_ops, s,
"mps2-fpgaio", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
}
static void mps2_fpgaio_realize(DeviceState *dev, Error **errp)
{
MPS2FPGAIO *s = MPS2_FPGAIO(dev);
uint32_t i;
if (s->num_leds > MPS2FPGAIO_MAX_LEDS) {
error_setg(errp, "num-leds cannot be greater than %d",
MPS2FPGAIO_MAX_LEDS);
return;
}
for (i = 0; i < s->num_leds; i++) {
g_autofree char *ledname = g_strdup_printf("USERLED%d", i);
s->led[i] = led_create_simple(OBJECT(dev), GPIO_POLARITY_ACTIVE_HIGH,
LED_COLOR_GREEN, ledname);
}
}
static const VMStateDescription mps2_fpgaio_vmstate = {
.name = "mps2-fpgaio",
.version_id = 3,
.minimum_version_id = 3,
.fields = (VMStateField[]) {
VMSTATE_UINT32(led0, MPS2FPGAIO),
VMSTATE_UINT32(prescale, MPS2FPGAIO),
VMSTATE_UINT32(misc, MPS2FPGAIO),
VMSTATE_UINT32(dbgctrl, MPS2FPGAIO),
VMSTATE_INT64(clk1hz_tick_offset, MPS2FPGAIO),
VMSTATE_INT64(clk100hz_tick_offset, MPS2FPGAIO),
VMSTATE_UINT32(counter, MPS2FPGAIO),
VMSTATE_UINT32(pscntr, MPS2FPGAIO),
VMSTATE_INT64(pscntr_sync_ticks, MPS2FPGAIO),
VMSTATE_END_OF_LIST()
},
};
static Property mps2_fpgaio_properties[] = {
/* Frequency of the prescale counter */
DEFINE_PROP_UINT32("prescale-clk", MPS2FPGAIO, prescale_clk, 20000000),
/* Number of LEDs controlled by LED0 register */
DEFINE_PROP_UINT32("num-leds", MPS2FPGAIO, num_leds, 2),
DEFINE_PROP_BOOL("has-switches", MPS2FPGAIO, has_switches, false),
DEFINE_PROP_BOOL("has-dbgctrl", MPS2FPGAIO, has_dbgctrl, false),
DEFINE_PROP_END_OF_LIST(),
};
static void mps2_fpgaio_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->vmsd = &mps2_fpgaio_vmstate;
dc->realize = mps2_fpgaio_realize;
dc->reset = mps2_fpgaio_reset;
device_class_set_props(dc, mps2_fpgaio_properties);
}
static const TypeInfo mps2_fpgaio_info = {
.name = TYPE_MPS2_FPGAIO,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(MPS2FPGAIO),
.instance_init = mps2_fpgaio_init,
.class_init = mps2_fpgaio_class_init,
};
static void mps2_fpgaio_register_types(void)
{
type_register_static(&mps2_fpgaio_info);
}
type_init(mps2_fpgaio_register_types);