qemu-e2k/target/s390x/misc_helper.c
Eric Blake cf83f14005 shutdown: Add source information to SHUTDOWN and RESET
Time to wire up all the call sites that request a shutdown or
reset to use the enum added in the previous patch.

It would have been less churn to keep the common case with no
arguments as meaning guest-triggered, and only modified the
host-triggered code paths, via a wrapper function, but then we'd
still have to audit that I didn't miss any host-triggered spots;
changing the signature forces us to double-check that I correctly
categorized all callers.

Since command line options can change whether a guest reset request
causes an actual reset vs. a shutdown, it's easy to also add the
information to reset requests.

Signed-off-by: Eric Blake <eblake@redhat.com>
Acked-by: David Gibson <david@gibson.dropbear.id.au> [ppc parts]
Reviewed-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk> [SPARC part]
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com> [s390x parts]
Message-Id: <20170515214114.15442-5-eblake@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
2017-05-23 13:28:17 +02:00

739 lines
20 KiB
C

/*
* S/390 misc helper routines
*
* Copyright (c) 2009 Ulrich Hecht
* Copyright (c) 2009 Alexander Graf
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/main-loop.h"
#include "cpu.h"
#include "exec/memory.h"
#include "qemu/host-utils.h"
#include "exec/helper-proto.h"
#include "sysemu/kvm.h"
#include "qemu/timer.h"
#include "qemu/main-loop.h"
#include "exec/address-spaces.h"
#ifdef CONFIG_KVM
#include <linux/kvm.h>
#endif
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#if !defined(CONFIG_USER_ONLY)
#include "hw/watchdog/wdt_diag288.h"
#include "sysemu/cpus.h"
#include "sysemu/sysemu.h"
#include "hw/s390x/ebcdic.h"
#include "hw/s390x/ipl.h"
#endif
/* #define DEBUG_HELPER */
#ifdef DEBUG_HELPER
#define HELPER_LOG(x...) qemu_log(x)
#else
#define HELPER_LOG(x...)
#endif
/* Raise an exception dynamically from a helper function. */
void QEMU_NORETURN runtime_exception(CPUS390XState *env, int excp,
uintptr_t retaddr)
{
CPUState *cs = CPU(s390_env_get_cpu(env));
int t;
cs->exception_index = EXCP_PGM;
env->int_pgm_code = excp;
/* Use the (ultimate) callers address to find the insn that trapped. */
cpu_restore_state(cs, retaddr);
/* Advance past the insn. */
t = cpu_ldub_code(env, env->psw.addr);
env->int_pgm_ilen = t = get_ilen(t);
env->psw.addr += t;
cpu_loop_exit(cs);
}
/* Raise an exception statically from a TB. */
void HELPER(exception)(CPUS390XState *env, uint32_t excp)
{
CPUState *cs = CPU(s390_env_get_cpu(env));
HELPER_LOG("%s: exception %d\n", __func__, excp);
cs->exception_index = excp;
cpu_loop_exit(cs);
}
#ifndef CONFIG_USER_ONLY
void program_interrupt(CPUS390XState *env, uint32_t code, int ilen)
{
S390CPU *cpu = s390_env_get_cpu(env);
qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n",
env->psw.addr);
if (kvm_enabled()) {
#ifdef CONFIG_KVM
struct kvm_s390_irq irq = {
.type = KVM_S390_PROGRAM_INT,
.u.pgm.code = code,
};
kvm_s390_vcpu_interrupt(cpu, &irq);
#endif
} else {
CPUState *cs = CPU(cpu);
env->int_pgm_code = code;
env->int_pgm_ilen = ilen;
cs->exception_index = EXCP_PGM;
cpu_loop_exit(cs);
}
}
/* SCLP service call */
uint32_t HELPER(servc)(CPUS390XState *env, uint64_t r1, uint64_t r2)
{
qemu_mutex_lock_iothread();
int r = sclp_service_call(env, r1, r2);
if (r < 0) {
program_interrupt(env, -r, 4);
r = 0;
}
qemu_mutex_unlock_iothread();
return r;
}
#ifndef CONFIG_USER_ONLY
static int modified_clear_reset(S390CPU *cpu)
{
S390CPUClass *scc = S390_CPU_GET_CLASS(cpu);
CPUState *t;
pause_all_vcpus();
cpu_synchronize_all_states();
CPU_FOREACH(t) {
run_on_cpu(t, s390_do_cpu_full_reset, RUN_ON_CPU_NULL);
}
s390_cmma_reset();
subsystem_reset();
s390_crypto_reset();
scc->load_normal(CPU(cpu));
cpu_synchronize_all_post_reset();
resume_all_vcpus();
return 0;
}
static int load_normal_reset(S390CPU *cpu)
{
S390CPUClass *scc = S390_CPU_GET_CLASS(cpu);
CPUState *t;
pause_all_vcpus();
cpu_synchronize_all_states();
CPU_FOREACH(t) {
run_on_cpu(t, s390_do_cpu_reset, RUN_ON_CPU_NULL);
}
s390_cmma_reset();
subsystem_reset();
scc->initial_cpu_reset(CPU(cpu));
scc->load_normal(CPU(cpu));
cpu_synchronize_all_post_reset();
resume_all_vcpus();
return 0;
}
int handle_diag_288(CPUS390XState *env, uint64_t r1, uint64_t r3)
{
uint64_t func = env->regs[r1];
uint64_t timeout = env->regs[r1 + 1];
uint64_t action = env->regs[r3];
Object *obj;
DIAG288State *diag288;
DIAG288Class *diag288_class;
if (r1 % 2 || action != 0) {
return -1;
}
/* Timeout must be more than 15 seconds except for timer deletion */
if (func != WDT_DIAG288_CANCEL && timeout < 15) {
return -1;
}
obj = object_resolve_path_type("", TYPE_WDT_DIAG288, NULL);
if (!obj) {
return -1;
}
diag288 = DIAG288(obj);
diag288_class = DIAG288_GET_CLASS(diag288);
return diag288_class->handle_timer(diag288, func, timeout);
}
#define DIAG_308_RC_OK 0x0001
#define DIAG_308_RC_NO_CONF 0x0102
#define DIAG_308_RC_INVALID 0x0402
void handle_diag_308(CPUS390XState *env, uint64_t r1, uint64_t r3)
{
uint64_t addr = env->regs[r1];
uint64_t subcode = env->regs[r3];
IplParameterBlock *iplb;
if (env->psw.mask & PSW_MASK_PSTATE) {
program_interrupt(env, PGM_PRIVILEGED, ILEN_LATER_INC);
return;
}
if ((subcode & ~0x0ffffULL) || (subcode > 6)) {
program_interrupt(env, PGM_SPECIFICATION, ILEN_LATER_INC);
return;
}
switch (subcode) {
case 0:
modified_clear_reset(s390_env_get_cpu(env));
if (tcg_enabled()) {
cpu_loop_exit(CPU(s390_env_get_cpu(env)));
}
break;
case 1:
load_normal_reset(s390_env_get_cpu(env));
if (tcg_enabled()) {
cpu_loop_exit(CPU(s390_env_get_cpu(env)));
}
break;
case 3:
s390_reipl_request();
if (tcg_enabled()) {
cpu_loop_exit(CPU(s390_env_get_cpu(env)));
}
break;
case 5:
if ((r1 & 1) || (addr & 0x0fffULL)) {
program_interrupt(env, PGM_SPECIFICATION, ILEN_LATER_INC);
return;
}
if (!address_space_access_valid(&address_space_memory, addr,
sizeof(IplParameterBlock), false)) {
program_interrupt(env, PGM_ADDRESSING, ILEN_LATER_INC);
return;
}
iplb = g_malloc0(sizeof(IplParameterBlock));
cpu_physical_memory_read(addr, iplb, sizeof(iplb->len));
if (!iplb_valid_len(iplb)) {
env->regs[r1 + 1] = DIAG_308_RC_INVALID;
goto out;
}
cpu_physical_memory_read(addr, iplb, be32_to_cpu(iplb->len));
if (!iplb_valid_ccw(iplb) && !iplb_valid_fcp(iplb)) {
env->regs[r1 + 1] = DIAG_308_RC_INVALID;
goto out;
}
s390_ipl_update_diag308(iplb);
env->regs[r1 + 1] = DIAG_308_RC_OK;
out:
g_free(iplb);
return;
case 6:
if ((r1 & 1) || (addr & 0x0fffULL)) {
program_interrupt(env, PGM_SPECIFICATION, ILEN_LATER_INC);
return;
}
if (!address_space_access_valid(&address_space_memory, addr,
sizeof(IplParameterBlock), true)) {
program_interrupt(env, PGM_ADDRESSING, ILEN_LATER_INC);
return;
}
iplb = s390_ipl_get_iplb();
if (iplb) {
cpu_physical_memory_write(addr, iplb, be32_to_cpu(iplb->len));
env->regs[r1 + 1] = DIAG_308_RC_OK;
} else {
env->regs[r1 + 1] = DIAG_308_RC_NO_CONF;
}
return;
default:
hw_error("Unhandled diag308 subcode %" PRIx64, subcode);
break;
}
}
#endif
void HELPER(diag)(CPUS390XState *env, uint32_t r1, uint32_t r3, uint32_t num)
{
uint64_t r;
switch (num) {
case 0x500:
/* KVM hypercall */
qemu_mutex_lock_iothread();
r = s390_virtio_hypercall(env);
qemu_mutex_unlock_iothread();
break;
case 0x44:
/* yield */
r = 0;
break;
case 0x308:
/* ipl */
handle_diag_308(env, r1, r3);
r = 0;
break;
default:
r = -1;
break;
}
if (r) {
program_interrupt(env, PGM_OPERATION, ILEN_LATER_INC);
}
}
/* Set Prefix */
void HELPER(spx)(CPUS390XState *env, uint64_t a1)
{
CPUState *cs = CPU(s390_env_get_cpu(env));
uint32_t prefix = a1 & 0x7fffe000;
env->psa = prefix;
HELPER_LOG("prefix: %#x\n", prefix);
tlb_flush_page(cs, 0);
tlb_flush_page(cs, TARGET_PAGE_SIZE);
}
/* Store Clock */
uint64_t HELPER(stck)(CPUS390XState *env)
{
uint64_t time;
time = env->tod_offset +
time2tod(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - env->tod_basetime);
return time;
}
/* Set Clock Comparator */
void HELPER(sckc)(CPUS390XState *env, uint64_t time)
{
if (time == -1ULL) {
return;
}
env->ckc = time;
/* difference between origins */
time -= env->tod_offset;
/* nanoseconds */
time = tod2time(time);
timer_mod(env->tod_timer, env->tod_basetime + time);
}
/* Store Clock Comparator */
uint64_t HELPER(stckc)(CPUS390XState *env)
{
return env->ckc;
}
/* Set CPU Timer */
void HELPER(spt)(CPUS390XState *env, uint64_t time)
{
if (time == -1ULL) {
return;
}
/* nanoseconds */
time = tod2time(time);
env->cputm = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + time;
timer_mod(env->cpu_timer, env->cputm);
}
/* Store CPU Timer */
uint64_t HELPER(stpt)(CPUS390XState *env)
{
return time2tod(env->cputm - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
}
/* Store System Information */
uint32_t HELPER(stsi)(CPUS390XState *env, uint64_t a0,
uint64_t r0, uint64_t r1)
{
int cc = 0;
int sel1, sel2;
if ((r0 & STSI_LEVEL_MASK) <= STSI_LEVEL_3 &&
((r0 & STSI_R0_RESERVED_MASK) || (r1 & STSI_R1_RESERVED_MASK))) {
/* valid function code, invalid reserved bits */
program_interrupt(env, PGM_SPECIFICATION, 2);
}
sel1 = r0 & STSI_R0_SEL1_MASK;
sel2 = r1 & STSI_R1_SEL2_MASK;
/* XXX: spec exception if sysib is not 4k-aligned */
switch (r0 & STSI_LEVEL_MASK) {
case STSI_LEVEL_1:
if ((sel1 == 1) && (sel2 == 1)) {
/* Basic Machine Configuration */
struct sysib_111 sysib;
memset(&sysib, 0, sizeof(sysib));
ebcdic_put(sysib.manuf, "QEMU ", 16);
/* same as machine type number in STORE CPU ID */
ebcdic_put(sysib.type, "QEMU", 4);
/* same as model number in STORE CPU ID */
ebcdic_put(sysib.model, "QEMU ", 16);
ebcdic_put(sysib.sequence, "QEMU ", 16);
ebcdic_put(sysib.plant, "QEMU", 4);
cpu_physical_memory_write(a0, &sysib, sizeof(sysib));
} else if ((sel1 == 2) && (sel2 == 1)) {
/* Basic Machine CPU */
struct sysib_121 sysib;
memset(&sysib, 0, sizeof(sysib));
/* XXX make different for different CPUs? */
ebcdic_put(sysib.sequence, "QEMUQEMUQEMUQEMU", 16);
ebcdic_put(sysib.plant, "QEMU", 4);
stw_p(&sysib.cpu_addr, env->cpu_num);
cpu_physical_memory_write(a0, &sysib, sizeof(sysib));
} else if ((sel1 == 2) && (sel2 == 2)) {
/* Basic Machine CPUs */
struct sysib_122 sysib;
memset(&sysib, 0, sizeof(sysib));
stl_p(&sysib.capability, 0x443afc29);
/* XXX change when SMP comes */
stw_p(&sysib.total_cpus, 1);
stw_p(&sysib.active_cpus, 1);
stw_p(&sysib.standby_cpus, 0);
stw_p(&sysib.reserved_cpus, 0);
cpu_physical_memory_write(a0, &sysib, sizeof(sysib));
} else {
cc = 3;
}
break;
case STSI_LEVEL_2:
{
if ((sel1 == 2) && (sel2 == 1)) {
/* LPAR CPU */
struct sysib_221 sysib;
memset(&sysib, 0, sizeof(sysib));
/* XXX make different for different CPUs? */
ebcdic_put(sysib.sequence, "QEMUQEMUQEMUQEMU", 16);
ebcdic_put(sysib.plant, "QEMU", 4);
stw_p(&sysib.cpu_addr, env->cpu_num);
stw_p(&sysib.cpu_id, 0);
cpu_physical_memory_write(a0, &sysib, sizeof(sysib));
} else if ((sel1 == 2) && (sel2 == 2)) {
/* LPAR CPUs */
struct sysib_222 sysib;
memset(&sysib, 0, sizeof(sysib));
stw_p(&sysib.lpar_num, 0);
sysib.lcpuc = 0;
/* XXX change when SMP comes */
stw_p(&sysib.total_cpus, 1);
stw_p(&sysib.conf_cpus, 1);
stw_p(&sysib.standby_cpus, 0);
stw_p(&sysib.reserved_cpus, 0);
ebcdic_put(sysib.name, "QEMU ", 8);
stl_p(&sysib.caf, 1000);
stw_p(&sysib.dedicated_cpus, 0);
stw_p(&sysib.shared_cpus, 0);
cpu_physical_memory_write(a0, &sysib, sizeof(sysib));
} else {
cc = 3;
}
break;
}
case STSI_LEVEL_3:
{
if ((sel1 == 2) && (sel2 == 2)) {
/* VM CPUs */
struct sysib_322 sysib;
memset(&sysib, 0, sizeof(sysib));
sysib.count = 1;
/* XXX change when SMP comes */
stw_p(&sysib.vm[0].total_cpus, 1);
stw_p(&sysib.vm[0].conf_cpus, 1);
stw_p(&sysib.vm[0].standby_cpus, 0);
stw_p(&sysib.vm[0].reserved_cpus, 0);
ebcdic_put(sysib.vm[0].name, "KVMguest", 8);
stl_p(&sysib.vm[0].caf, 1000);
ebcdic_put(sysib.vm[0].cpi, "KVM/Linux ", 16);
cpu_physical_memory_write(a0, &sysib, sizeof(sysib));
} else {
cc = 3;
}
break;
}
case STSI_LEVEL_CURRENT:
env->regs[0] = STSI_LEVEL_3;
break;
default:
cc = 3;
break;
}
return cc;
}
uint32_t HELPER(sigp)(CPUS390XState *env, uint64_t order_code, uint32_t r1,
uint64_t cpu_addr)
{
int cc = SIGP_CC_ORDER_CODE_ACCEPTED;
HELPER_LOG("%s: %016" PRIx64 " %08x %016" PRIx64 "\n",
__func__, order_code, r1, cpu_addr);
/* Remember: Use "R1 or R1 + 1, whichever is the odd-numbered register"
as parameter (input). Status (output) is always R1. */
switch (order_code & SIGP_ORDER_MASK) {
case SIGP_SET_ARCH:
/* switch arch */
break;
case SIGP_SENSE:
/* enumerate CPU status */
if (cpu_addr) {
/* XXX implement when SMP comes */
return 3;
}
env->regs[r1] &= 0xffffffff00000000ULL;
cc = 1;
break;
#if !defined(CONFIG_USER_ONLY)
case SIGP_RESTART:
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
cpu_loop_exit(CPU(s390_env_get_cpu(env)));
break;
case SIGP_STOP:
qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
cpu_loop_exit(CPU(s390_env_get_cpu(env)));
break;
#endif
default:
/* unknown sigp */
fprintf(stderr, "XXX unknown sigp: 0x%" PRIx64 "\n", order_code);
cc = SIGP_CC_NOT_OPERATIONAL;
}
return cc;
}
#endif
#ifndef CONFIG_USER_ONLY
void HELPER(xsch)(CPUS390XState *env, uint64_t r1)
{
S390CPU *cpu = s390_env_get_cpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_xsch(cpu, r1);
qemu_mutex_unlock_iothread();
}
void HELPER(csch)(CPUS390XState *env, uint64_t r1)
{
S390CPU *cpu = s390_env_get_cpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_csch(cpu, r1);
qemu_mutex_unlock_iothread();
}
void HELPER(hsch)(CPUS390XState *env, uint64_t r1)
{
S390CPU *cpu = s390_env_get_cpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_hsch(cpu, r1);
qemu_mutex_unlock_iothread();
}
void HELPER(msch)(CPUS390XState *env, uint64_t r1, uint64_t inst)
{
S390CPU *cpu = s390_env_get_cpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_msch(cpu, r1, inst >> 16);
qemu_mutex_unlock_iothread();
}
void HELPER(rchp)(CPUS390XState *env, uint64_t r1)
{
S390CPU *cpu = s390_env_get_cpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_rchp(cpu, r1);
qemu_mutex_unlock_iothread();
}
void HELPER(rsch)(CPUS390XState *env, uint64_t r1)
{
S390CPU *cpu = s390_env_get_cpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_rsch(cpu, r1);
qemu_mutex_unlock_iothread();
}
void HELPER(ssch)(CPUS390XState *env, uint64_t r1, uint64_t inst)
{
S390CPU *cpu = s390_env_get_cpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_ssch(cpu, r1, inst >> 16);
qemu_mutex_unlock_iothread();
}
void HELPER(stsch)(CPUS390XState *env, uint64_t r1, uint64_t inst)
{
S390CPU *cpu = s390_env_get_cpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_stsch(cpu, r1, inst >> 16);
qemu_mutex_unlock_iothread();
}
void HELPER(tsch)(CPUS390XState *env, uint64_t r1, uint64_t inst)
{
S390CPU *cpu = s390_env_get_cpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_tsch(cpu, r1, inst >> 16);
qemu_mutex_unlock_iothread();
}
void HELPER(chsc)(CPUS390XState *env, uint64_t inst)
{
S390CPU *cpu = s390_env_get_cpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_chsc(cpu, inst >> 16);
qemu_mutex_unlock_iothread();
}
#endif
#ifndef CONFIG_USER_ONLY
void HELPER(per_check_exception)(CPUS390XState *env)
{
CPUState *cs = CPU(s390_env_get_cpu(env));
if (env->per_perc_atmid) {
env->int_pgm_code = PGM_PER;
env->int_pgm_ilen = get_ilen(cpu_ldub_code(env, env->per_address));
cs->exception_index = EXCP_PGM;
cpu_loop_exit(cs);
}
}
void HELPER(per_branch)(CPUS390XState *env, uint64_t from, uint64_t to)
{
if ((env->cregs[9] & PER_CR9_EVENT_BRANCH)) {
if (!(env->cregs[9] & PER_CR9_CONTROL_BRANCH_ADDRESS)
|| get_per_in_range(env, to)) {
env->per_address = from;
env->per_perc_atmid = PER_CODE_EVENT_BRANCH | get_per_atmid(env);
}
}
}
void HELPER(per_ifetch)(CPUS390XState *env, uint64_t addr)
{
if ((env->cregs[9] & PER_CR9_EVENT_IFETCH) && get_per_in_range(env, addr)) {
env->per_address = addr;
env->per_perc_atmid = PER_CODE_EVENT_IFETCH | get_per_atmid(env);
/* If the instruction has to be nullified, trigger the
exception immediately. */
if (env->cregs[9] & PER_CR9_EVENT_NULLIFICATION) {
CPUState *cs = CPU(s390_env_get_cpu(env));
env->int_pgm_code = PGM_PER;
env->int_pgm_ilen = get_ilen(cpu_ldub_code(env, addr));
cs->exception_index = EXCP_PGM;
cpu_loop_exit(cs);
}
}
}
#endif
/* The maximum bit defined at the moment is 129. */
#define MAX_STFL_WORDS 3
/* Canonicalize the current cpu's features into the 64-bit words required
by STFLE. Return the index-1 of the max word that is non-zero. */
static unsigned do_stfle(CPUS390XState *env, uint64_t words[MAX_STFL_WORDS])
{
S390CPU *cpu = s390_env_get_cpu(env);
const unsigned long *features = cpu->model->features;
unsigned max_bit = 0;
S390Feat feat;
memset(words, 0, sizeof(uint64_t) * MAX_STFL_WORDS);
if (test_bit(S390_FEAT_ZARCH, features)) {
/* z/Architecture is always active if around */
words[0] = 1ull << (63 - 2);
}
for (feat = find_first_bit(features, S390_FEAT_MAX);
feat < S390_FEAT_MAX;
feat = find_next_bit(features, S390_FEAT_MAX, feat + 1)) {
const S390FeatDef *def = s390_feat_def(feat);
if (def->type == S390_FEAT_TYPE_STFL) {
unsigned bit = def->bit;
if (bit > max_bit) {
max_bit = bit;
}
assert(bit / 64 < MAX_STFL_WORDS);
words[bit / 64] |= 1ULL << (63 - bit % 64);
}
}
return max_bit / 64;
}
void HELPER(stfl)(CPUS390XState *env)
{
uint64_t words[MAX_STFL_WORDS];
do_stfle(env, words);
cpu_stl_data(env, 200, words[0] >> 32);
}
uint32_t HELPER(stfle)(CPUS390XState *env, uint64_t addr)
{
uint64_t words[MAX_STFL_WORDS];
unsigned count_m1 = env->regs[0] & 0xff;
unsigned max_m1 = do_stfle(env, words);
unsigned i;
for (i = 0; i <= count_m1; ++i) {
cpu_stq_data(env, addr + 8 * i, words[i]);
}
env->regs[0] = deposit64(env->regs[0], 0, 8, max_m1);
return (count_m1 >= max_m1 ? 0 : 3);
}