qemu-e2k/hw/char/escc.c
Richard Henderson 2f6cab053f hw/char: Constify VMState
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20231221031652.119827-26-richard.henderson@linaro.org>
2023-12-29 11:17:30 +11:00

1086 lines
32 KiB
C

/*
* QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "hw/qdev-properties-system.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "qemu/module.h"
#include "hw/char/escc.h"
#include "ui/console.h"
#include "qemu/cutils.h"
#include "trace.h"
/*
* Chipset docs:
* "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual",
* http://www.zilog.com/docs/serial/scc_escc_um.pdf
*
* On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001
* (Slave I/O), also produced as NCR89C105. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
*
* The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
* mouse and keyboard ports don't implement all functions and they are
* only asynchronous. There is no DMA.
*
* Z85C30 is also used on PowerMacs and m68k Macs.
*
* There are some small differences between Sparc version (sunzilog)
* and PowerMac (pmac):
* Offset between control and data registers
* There is some kind of lockup bug, but we can ignore it
* CTS is inverted
* DMA on pmac using DBDMA chip
* pmac can do IRDA and faster rates, sunzilog can only do 38400
* pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz
*
* Linux driver for m68k Macs is the same as for PowerMac (pmac_zilog),
* but registers are grouped by type and not by channel:
* channel is selected by bit 0 of the address (instead of bit 1)
* and register is selected by bit 1 of the address (instead of bit 0).
*/
/*
* Modifications:
* 2006-Aug-10 Igor Kovalenko : Renamed KBDQueue to SERIOQueue, implemented
* serial mouse queue.
* Implemented serial mouse protocol.
*
* 2010-May-23 Artyom Tarasenko: Reworked IUS logic
*/
#define CHN_C(s) ((s)->chn == escc_chn_b ? 'b' : 'a')
#define SERIAL_CTRL 0
#define SERIAL_DATA 1
#define W_CMD 0
#define CMD_PTR_MASK 0x07
#define CMD_CMD_MASK 0x38
#define CMD_HI 0x08
#define CMD_CLR_TXINT 0x28
#define CMD_CLR_IUS 0x38
#define W_INTR 1
#define INTR_INTALL 0x01
#define INTR_TXINT 0x02
#define INTR_PAR_SPEC 0x04
#define INTR_RXMODEMSK 0x18
#define INTR_RXINT1ST 0x08
#define INTR_RXINTALL 0x10
#define INTR_WTRQ_TXRX 0x20
#define W_IVEC 2
#define W_RXCTRL 3
#define RXCTRL_RXEN 0x01
#define RXCTRL_HUNT 0x10
#define W_TXCTRL1 4
#define TXCTRL1_PAREN 0x01
#define TXCTRL1_PAREV 0x02
#define TXCTRL1_1STOP 0x04
#define TXCTRL1_1HSTOP 0x08
#define TXCTRL1_2STOP 0x0c
#define TXCTRL1_STPMSK 0x0c
#define TXCTRL1_CLK1X 0x00
#define TXCTRL1_CLK16X 0x40
#define TXCTRL1_CLK32X 0x80
#define TXCTRL1_CLK64X 0xc0
#define TXCTRL1_CLKMSK 0xc0
#define W_TXCTRL2 5
#define TXCTRL2_TXCRC 0x01
#define TXCTRL2_TXEN 0x08
#define TXCTRL2_BITMSK 0x60
#define TXCTRL2_5BITS 0x00
#define TXCTRL2_7BITS 0x20
#define TXCTRL2_6BITS 0x40
#define TXCTRL2_8BITS 0x60
#define W_SYNC1 6
#define W_SYNC2 7
#define W_TXBUF 8
#define W_MINTR 9
#define MINTR_VIS 0x01
#define MINTR_NV 0x02
#define MINTR_STATUSHI 0x10
#define MINTR_SOFTIACK 0x20
#define MINTR_RST_MASK 0xc0
#define MINTR_RST_B 0x40
#define MINTR_RST_A 0x80
#define MINTR_RST_ALL 0xc0
#define W_MISC1 10
#define MISC1_ENC_MASK 0x60
#define W_CLOCK 11
#define CLOCK_TRXC 0x08
#define W_BRGLO 12
#define W_BRGHI 13
#define W_MISC2 14
#define MISC2_BRG_EN 0x01
#define MISC2_BRG_SRC 0x02
#define MISC2_LCL_LOOP 0x10
#define MISC2_PLLCMD0 0x20
#define MISC2_PLLCMD1 0x40
#define MISC2_PLLCMD2 0x80
#define W_EXTINT 15
#define EXTINT_DCD 0x08
#define EXTINT_SYNCINT 0x10
#define EXTINT_CTSINT 0x20
#define EXTINT_TXUNDRN 0x40
#define EXTINT_BRKINT 0x80
#define R_STATUS 0
#define STATUS_RXAV 0x01
#define STATUS_ZERO 0x02
#define STATUS_TXEMPTY 0x04
#define STATUS_DCD 0x08
#define STATUS_SYNC 0x10
#define STATUS_CTS 0x20
#define STATUS_TXUNDRN 0x40
#define STATUS_BRK 0x80
#define R_SPEC 1
#define SPEC_ALLSENT 0x01
#define SPEC_BITS8 0x06
#define R_IVEC 2
#define IVEC_TXINTB 0x00
#define IVEC_LONOINT 0x06
#define IVEC_LORXINTA 0x0c
#define IVEC_LORXINTB 0x04
#define IVEC_LOTXINTA 0x08
#define IVEC_HINOINT 0x60
#define IVEC_HIRXINTA 0x30
#define IVEC_HIRXINTB 0x20
#define IVEC_HITXINTA 0x10
#define R_INTR 3
#define INTR_EXTINTB 0x01
#define INTR_TXINTB 0x02
#define INTR_RXINTB 0x04
#define INTR_EXTINTA 0x08
#define INTR_TXINTA 0x10
#define INTR_RXINTA 0x20
#define R_IPEN 4
#define R_TXCTRL1 5
#define R_TXCTRL2 6
#define R_BC 7
#define R_RXBUF 8
#define R_RXCTRL 9
#define R_MISC 10
#define MISC_2CLKMISS 0x40
#define R_MISC1 11
#define R_BRGLO 12
#define R_BRGHI 13
#define R_MISC1I 14
#define R_EXTINT 15
static uint8_t sunkbd_layout_dip_switch(const char *sunkbd_layout);
static void handle_kbd_command(ESCCChannelState *s, int val);
static int serial_can_receive(void *opaque);
static void serial_receive_byte(ESCCChannelState *s, int ch);
static int reg_shift(ESCCState *s)
{
return s->bit_swap ? s->it_shift + 1 : s->it_shift;
}
static int chn_shift(ESCCState *s)
{
return s->bit_swap ? s->it_shift : s->it_shift + 1;
}
static void clear_queue(void *opaque)
{
ESCCChannelState *s = opaque;
ESCCSERIOQueue *q = &s->queue;
q->rptr = q->wptr = q->count = 0;
}
static void put_queue(void *opaque, int b)
{
ESCCChannelState *s = opaque;
ESCCSERIOQueue *q = &s->queue;
trace_escc_put_queue(CHN_C(s), b);
if (q->count >= ESCC_SERIO_QUEUE_SIZE) {
return;
}
q->data[q->wptr] = b;
if (++q->wptr == ESCC_SERIO_QUEUE_SIZE) {
q->wptr = 0;
}
q->count++;
serial_receive_byte(s, 0);
}
static uint32_t get_queue(void *opaque)
{
ESCCChannelState *s = opaque;
ESCCSERIOQueue *q = &s->queue;
int val;
if (q->count == 0) {
return 0;
} else {
val = q->data[q->rptr];
if (++q->rptr == ESCC_SERIO_QUEUE_SIZE) {
q->rptr = 0;
}
q->count--;
}
trace_escc_get_queue(CHN_C(s), val);
if (q->count > 0) {
serial_receive_byte(s, 0);
}
return val;
}
static int escc_update_irq_chn(ESCCChannelState *s)
{
if ((((s->wregs[W_INTR] & INTR_TXINT) && (s->txint == 1)) ||
/* tx ints enabled, pending */
((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) ||
((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) &&
s->rxint == 1) ||
/* rx ints enabled, pending */
((s->wregs[W_EXTINT] & EXTINT_BRKINT) &&
(s->rregs[R_STATUS] & STATUS_BRK)))) {
/* break int e&p */
return 1;
}
return 0;
}
static void escc_update_irq(ESCCChannelState *s)
{
int irq;
irq = escc_update_irq_chn(s);
irq |= escc_update_irq_chn(s->otherchn);
trace_escc_update_irq(irq);
qemu_set_irq(s->irq, irq);
}
static void escc_reset_chn(ESCCChannelState *s)
{
s->reg = 0;
s->rx = s->tx = 0;
s->rxint = s->txint = 0;
s->rxint_under_svc = s->txint_under_svc = 0;
s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0;
clear_queue(s);
}
static void escc_soft_reset_chn(ESCCChannelState *s)
{
escc_reset_chn(s);
s->wregs[W_CMD] = 0;
s->wregs[W_INTR] &= INTR_PAR_SPEC | INTR_WTRQ_TXRX;
s->wregs[W_RXCTRL] &= ~RXCTRL_RXEN;
/* 1 stop bit */
s->wregs[W_TXCTRL1] |= TXCTRL1_1STOP;
s->wregs[W_TXCTRL2] &= TXCTRL2_TXCRC | TXCTRL2_8BITS;
s->wregs[W_MINTR] &= ~MINTR_SOFTIACK;
s->wregs[W_MISC1] &= MISC1_ENC_MASK;
/* PLL disabled */
s->wregs[W_MISC2] &= MISC2_BRG_EN | MISC2_BRG_SRC |
MISC2_PLLCMD1 | MISC2_PLLCMD2;
s->wregs[W_MISC2] |= MISC2_PLLCMD0;
/* Enable most interrupts */
s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT |
EXTINT_TXUNDRN | EXTINT_BRKINT;
s->rregs[R_STATUS] &= STATUS_DCD | STATUS_SYNC | STATUS_CTS | STATUS_BRK;
s->rregs[R_STATUS] |= STATUS_TXEMPTY | STATUS_TXUNDRN;
if (s->disabled) {
s->rregs[R_STATUS] |= STATUS_DCD | STATUS_SYNC | STATUS_CTS;
}
s->rregs[R_SPEC] &= SPEC_ALLSENT;
s->rregs[R_SPEC] |= SPEC_BITS8;
s->rregs[R_INTR] = 0;
s->rregs[R_MISC] &= MISC_2CLKMISS;
}
static void escc_hard_reset_chn(ESCCChannelState *s)
{
escc_soft_reset_chn(s);
/*
* Hard reset is almost identical to soft reset above, except that the
* values of WR9 (W_MINTR), WR10 (W_MISC1), WR11 (W_CLOCK) and WR14
* (W_MISC2) have extra bits forced to 0/1
*/
s->wregs[W_MINTR] &= MINTR_VIS | MINTR_NV;
s->wregs[W_MINTR] |= MINTR_RST_B | MINTR_RST_A;
s->wregs[W_MISC1] = 0;
s->wregs[W_CLOCK] = CLOCK_TRXC;
s->wregs[W_MISC2] &= MISC2_PLLCMD1 | MISC2_PLLCMD2;
s->wregs[W_MISC2] |= MISC2_LCL_LOOP | MISC2_PLLCMD0;
}
static void escc_reset(DeviceState *d)
{
ESCCState *s = ESCC(d);
int i, j;
for (i = 0; i < 2; i++) {
ESCCChannelState *cs = &s->chn[i];
/*
* According to the ESCC datasheet "Miscellaneous Questions" section
* on page 384, the values of the ESCC registers are not guaranteed on
* power-on until an explicit hardware or software reset has been
* issued. For now we zero the registers so that a device reset always
* returns the emulated device to a fixed state.
*/
for (j = 0; j < ESCC_SERIAL_REGS; j++) {
cs->rregs[j] = 0;
cs->wregs[j] = 0;
}
/*
* ...but there is an exception. The "Transmit Interrupts and Transmit
* Buffer Empty Bit" section on page 50 of the ESCC datasheet says of
* the STATUS_TXEMPTY bit in R_STATUS: "After a hardware reset
* (including a hardware reset by software), or a channel reset, this
* bit is set to 1". The Sun PROM checks this bit early on startup and
* gets stuck in an infinite loop if it is not set.
*/
cs->rregs[R_STATUS] |= STATUS_TXEMPTY;
escc_reset_chn(cs);
}
}
static inline void set_rxint(ESCCChannelState *s)
{
s->rxint = 1;
/*
* XXX: missing daisy chaining: escc_chn_b rx should have a lower priority
* than chn_a rx/tx/special_condition service
*/
s->rxint_under_svc = 1;
if (s->chn == escc_chn_a) {
s->rregs[R_INTR] |= INTR_RXINTA;
if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA;
} else {
s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA;
}
} else {
s->otherchn->rregs[R_INTR] |= INTR_RXINTB;
if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
s->rregs[R_IVEC] = IVEC_HIRXINTB;
} else {
s->rregs[R_IVEC] = IVEC_LORXINTB;
}
}
escc_update_irq(s);
}
static inline void set_txint(ESCCChannelState *s)
{
s->txint = 1;
if (!s->rxint_under_svc) {
s->txint_under_svc = 1;
if (s->chn == escc_chn_a) {
if (s->wregs[W_INTR] & INTR_TXINT) {
s->rregs[R_INTR] |= INTR_TXINTA;
}
if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA;
} else {
s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA;
}
} else {
s->rregs[R_IVEC] = IVEC_TXINTB;
if (s->wregs[W_INTR] & INTR_TXINT) {
s->otherchn->rregs[R_INTR] |= INTR_TXINTB;
}
}
escc_update_irq(s);
}
}
static inline void clr_rxint(ESCCChannelState *s)
{
s->rxint = 0;
s->rxint_under_svc = 0;
if (s->chn == escc_chn_a) {
if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
} else {
s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
}
s->rregs[R_INTR] &= ~INTR_RXINTA;
} else {
if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
s->rregs[R_IVEC] = IVEC_HINOINT;
} else {
s->rregs[R_IVEC] = IVEC_LONOINT;
}
s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB;
}
if (s->txint) {
set_txint(s);
}
escc_update_irq(s);
}
static inline void clr_txint(ESCCChannelState *s)
{
s->txint = 0;
s->txint_under_svc = 0;
if (s->chn == escc_chn_a) {
if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
} else {
s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
}
s->rregs[R_INTR] &= ~INTR_TXINTA;
} else {
s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
s->rregs[R_IVEC] = IVEC_HINOINT;
} else {
s->rregs[R_IVEC] = IVEC_LONOINT;
}
s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
}
if (s->rxint) {
set_rxint(s);
}
escc_update_irq(s);
}
static void escc_update_parameters(ESCCChannelState *s)
{
int speed, parity, data_bits, stop_bits;
QEMUSerialSetParams ssp;
if (!qemu_chr_fe_backend_connected(&s->chr) || s->type != escc_serial) {
return;
}
if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) {
if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV) {
parity = 'E';
} else {
parity = 'O';
}
} else {
parity = 'N';
}
if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP) {
stop_bits = 2;
} else {
stop_bits = 1;
}
switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) {
case TXCTRL2_5BITS:
data_bits = 5;
break;
case TXCTRL2_7BITS:
data_bits = 7;
break;
case TXCTRL2_6BITS:
data_bits = 6;
break;
default:
case TXCTRL2_8BITS:
data_bits = 8;
break;
}
speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2);
switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) {
case TXCTRL1_CLK1X:
break;
case TXCTRL1_CLK16X:
speed /= 16;
break;
case TXCTRL1_CLK32X:
speed /= 32;
break;
default:
case TXCTRL1_CLK64X:
speed /= 64;
break;
}
ssp.speed = speed;
ssp.parity = parity;
ssp.data_bits = data_bits;
ssp.stop_bits = stop_bits;
trace_escc_update_parameters(CHN_C(s), speed, parity, data_bits, stop_bits);
qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
}
static void escc_mem_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
ESCCState *serial = opaque;
ESCCChannelState *s;
uint32_t saddr;
int newreg, channel;
val &= 0xff;
saddr = (addr >> reg_shift(serial)) & 1;
channel = (addr >> chn_shift(serial)) & 1;
s = &serial->chn[channel];
switch (saddr) {
case SERIAL_CTRL:
trace_escc_mem_writeb_ctrl(CHN_C(s), s->reg, val & 0xff);
newreg = 0;
switch (s->reg) {
case W_CMD:
newreg = val & CMD_PTR_MASK;
val &= CMD_CMD_MASK;
switch (val) {
case CMD_HI:
newreg |= CMD_HI;
break;
case CMD_CLR_TXINT:
clr_txint(s);
break;
case CMD_CLR_IUS:
if (s->rxint_under_svc) {
s->rxint_under_svc = 0;
if (s->txint) {
set_txint(s);
}
} else if (s->txint_under_svc) {
s->txint_under_svc = 0;
}
escc_update_irq(s);
break;
default:
break;
}
break;
case W_RXCTRL:
s->wregs[s->reg] = val;
if (val & RXCTRL_HUNT) {
s->rregs[R_STATUS] |= STATUS_SYNC;
}
break;
case W_INTR ... W_IVEC:
case W_SYNC1 ... W_TXBUF:
case W_MISC1 ... W_CLOCK:
case W_MISC2 ... W_EXTINT:
s->wregs[s->reg] = val;
break;
case W_TXCTRL1:
s->wregs[s->reg] = val;
/*
* The ESCC datasheet states that SPEC_ALLSENT is always set in
* sync mode, and set in async mode when all characters have
* cleared the transmitter. Since writes to SERIAL_DATA use the
* blocking qemu_chr_fe_write_all() function to write each
* character, the guest can never see the state when async data
* is in the process of being transmitted so we can set this bit
* unconditionally regardless of the state of the W_TXCTRL1 mode
* bits.
*/
s->rregs[R_SPEC] |= SPEC_ALLSENT;
escc_update_parameters(s);
break;
case W_TXCTRL2:
s->wregs[s->reg] = val;
escc_update_parameters(s);
break;
case W_BRGLO:
case W_BRGHI:
s->wregs[s->reg] = val;
s->rregs[s->reg] = val;
escc_update_parameters(s);
break;
case W_MINTR:
switch (val & MINTR_RST_MASK) {
case 0:
default:
break;
case MINTR_RST_B:
trace_escc_soft_reset_chn(CHN_C(&serial->chn[0]));
escc_soft_reset_chn(&serial->chn[0]);
return;
case MINTR_RST_A:
trace_escc_soft_reset_chn(CHN_C(&serial->chn[1]));
escc_soft_reset_chn(&serial->chn[1]);
return;
case MINTR_RST_ALL:
trace_escc_hard_reset();
escc_hard_reset_chn(&serial->chn[0]);
escc_hard_reset_chn(&serial->chn[1]);
return;
}
break;
default:
break;
}
if (s->reg == 0) {
s->reg = newreg;
} else {
s->reg = 0;
}
break;
case SERIAL_DATA:
trace_escc_mem_writeb_data(CHN_C(s), val);
/*
* Lower the irq when data is written to the Tx buffer and no other
* interrupts are currently pending. The irq will be raised again once
* the Tx buffer becomes empty below.
*/
s->txint = 0;
escc_update_irq(s);
s->tx = val;
if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { /* tx enabled */
if (s->wregs[W_MISC2] & MISC2_LCL_LOOP) {
serial_receive_byte(s, s->tx);
} else if (qemu_chr_fe_backend_connected(&s->chr)) {
/*
* XXX this blocks entire thread. Rewrite to use
* qemu_chr_fe_write and background I/O callbacks
*/
qemu_chr_fe_write_all(&s->chr, &s->tx, 1);
} else if (s->type == escc_kbd && !s->disabled) {
handle_kbd_command(s, val);
}
}
s->rregs[R_STATUS] |= STATUS_TXEMPTY; /* Tx buffer empty */
s->rregs[R_SPEC] |= SPEC_ALLSENT; /* All sent */
set_txint(s);
break;
default:
break;
}
}
static uint64_t escc_mem_read(void *opaque, hwaddr addr,
unsigned size)
{
ESCCState *serial = opaque;
ESCCChannelState *s;
uint32_t saddr;
uint32_t ret;
int channel;
saddr = (addr >> reg_shift(serial)) & 1;
channel = (addr >> chn_shift(serial)) & 1;
s = &serial->chn[channel];
switch (saddr) {
case SERIAL_CTRL:
trace_escc_mem_readb_ctrl(CHN_C(s), s->reg, s->rregs[s->reg]);
ret = s->rregs[s->reg];
s->reg = 0;
return ret;
case SERIAL_DATA:
s->rregs[R_STATUS] &= ~STATUS_RXAV;
clr_rxint(s);
if (s->type == escc_kbd || s->type == escc_mouse) {
ret = get_queue(s);
} else {
ret = s->rx;
}
trace_escc_mem_readb_data(CHN_C(s), ret);
qemu_chr_fe_accept_input(&s->chr);
return ret;
default:
break;
}
return 0;
}
static const MemoryRegionOps escc_mem_ops = {
.read = escc_mem_read,
.write = escc_mem_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 1,
},
};
static int serial_can_receive(void *opaque)
{
ESCCChannelState *s = opaque;
int ret;
if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) /* Rx not enabled */
|| ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV)) {
/* char already available */
ret = 0;
} else {
ret = 1;
}
return ret;
}
static void serial_receive_byte(ESCCChannelState *s, int ch)
{
trace_escc_serial_receive_byte(CHN_C(s), ch);
s->rregs[R_STATUS] |= STATUS_RXAV;
s->rx = ch;
set_rxint(s);
}
static void serial_receive_break(ESCCChannelState *s)
{
s->rregs[R_STATUS] |= STATUS_BRK;
escc_update_irq(s);
}
static void serial_receive1(void *opaque, const uint8_t *buf, int size)
{
ESCCChannelState *s = opaque;
serial_receive_byte(s, buf[0]);
}
static void serial_event(void *opaque, QEMUChrEvent event)
{
ESCCChannelState *s = opaque;
if (event == CHR_EVENT_BREAK) {
serial_receive_break(s);
}
}
static const VMStateDescription vmstate_escc_chn = {
.name = "escc_chn",
.version_id = 2,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(vmstate_dummy, ESCCChannelState),
VMSTATE_UINT32(reg, ESCCChannelState),
VMSTATE_UINT32(rxint, ESCCChannelState),
VMSTATE_UINT32(txint, ESCCChannelState),
VMSTATE_UINT32(rxint_under_svc, ESCCChannelState),
VMSTATE_UINT32(txint_under_svc, ESCCChannelState),
VMSTATE_UINT8(rx, ESCCChannelState),
VMSTATE_UINT8(tx, ESCCChannelState),
VMSTATE_BUFFER(wregs, ESCCChannelState),
VMSTATE_BUFFER(rregs, ESCCChannelState),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_escc = {
.name = "escc",
.version_id = 2,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_STRUCT_ARRAY(chn, ESCCState, 2, 2, vmstate_escc_chn,
ESCCChannelState),
VMSTATE_END_OF_LIST()
}
};
static void sunkbd_handle_event(DeviceState *dev, QemuConsole *src,
InputEvent *evt)
{
ESCCChannelState *s = (ESCCChannelState *)dev;
int qcode, keycode;
InputKeyEvent *key;
assert(evt->type == INPUT_EVENT_KIND_KEY);
key = evt->u.key.data;
qcode = qemu_input_key_value_to_qcode(key->key);
trace_escc_sunkbd_event_in(qcode, QKeyCode_str(qcode),
key->down);
if (qcode == Q_KEY_CODE_CAPS_LOCK) {
if (key->down) {
s->caps_lock_mode ^= 1;
if (s->caps_lock_mode == 2) {
return; /* Drop second press */
}
} else {
s->caps_lock_mode ^= 2;
if (s->caps_lock_mode == 3) {
return; /* Drop first release */
}
}
}
if (qcode == Q_KEY_CODE_NUM_LOCK) {
if (key->down) {
s->num_lock_mode ^= 1;
if (s->num_lock_mode == 2) {
return; /* Drop second press */
}
} else {
s->num_lock_mode ^= 2;
if (s->num_lock_mode == 3) {
return; /* Drop first release */
}
}
}
if (qcode >= qemu_input_map_qcode_to_sun_len) {
return;
}
keycode = qemu_input_map_qcode_to_sun[qcode];
if (!key->down) {
keycode |= 0x80;
}
trace_escc_sunkbd_event_out(keycode);
put_queue(s, keycode);
}
static const QemuInputHandler sunkbd_handler = {
.name = "sun keyboard",
.mask = INPUT_EVENT_MASK_KEY,
.event = sunkbd_handle_event,
};
static uint8_t sunkbd_layout_dip_switch(const char *kbd_layout)
{
/* Return the value of the dip-switches in a SUN Type 5 keyboard */
static uint8_t ret = 0xff;
if ((ret == 0xff) && kbd_layout) {
int i;
struct layout_values {
const char *lang;
uint8_t dip;
} languages[] =
/*
* Dip values from table 3-16 Layouts for Type 4, 5 and 5c Keyboards
*/
{
{"en-us", 0x21}, /* U.S.A. (US5.kt) */
/* 0x22 is some other US (US_UNIX5.kt) */
{"fr", 0x23}, /* France (France5.kt) */
{"da", 0x24}, /* Denmark (Denmark5.kt) */
{"de", 0x25}, /* Germany (Germany5.kt) */
{"it", 0x26}, /* Italy (Italy5.kt) */
{"nl", 0x27}, /* The Netherlands (Netherland5.kt) */
{"no", 0x28}, /* Norway (Norway.kt) */
{"pt", 0x29}, /* Portugal (Portugal5.kt) */
{"es", 0x2a}, /* Spain (Spain5.kt) */
{"sv", 0x2b}, /* Sweden (Sweden5.kt) */
{"fr-ch", 0x2c}, /* Switzerland/French (Switzer_Fr5.kt) */
{"de-ch", 0x2d}, /* Switzerland/German (Switzer_Ge5.kt) */
{"en-gb", 0x2e}, /* Great Britain (UK5.kt) */
{"ko", 0x2f}, /* Korea (Korea5.kt) */
{"tw", 0x30}, /* Taiwan (Taiwan5.kt) */
{"ja", 0x31}, /* Japan (Japan5.kt) */
{"fr-ca", 0x32}, /* Canada/French (Canada_Fr5.kt) */
{"hu", 0x33}, /* Hungary (Hungary5.kt) */
{"pl", 0x34}, /* Poland (Poland5.kt) */
{"cz", 0x35}, /* Czech (Czech5.kt) */
{"ru", 0x36}, /* Russia (Russia5.kt) */
{"lv", 0x37}, /* Latvia (Latvia5.kt) */
{"tr", 0x38}, /* Turkey-Q5 (TurkeyQ5.kt) */
{"gr", 0x39}, /* Greece (Greece5.kt) */
{"ar", 0x3a}, /* Arabic (Arabic5.kt) */
{"lt", 0x3b}, /* Lithuania (Lithuania5.kt) */
{"nl-be", 0x3c}, /* Belgium (Belgian5.kt) */
{"be", 0x3c}, /* Belgium (Belgian5.kt) */
};
for (i = 0;
i < sizeof(languages) / sizeof(struct layout_values);
i++) {
if (!strcmp(kbd_layout, languages[i].lang)) {
ret = languages[i].dip;
return ret;
}
}
/* Found no known language code */
if ((kbd_layout[0] >= '0') && (kbd_layout[0] <= '9')) {
unsigned int tmp;
/* As a fallback we also accept numeric dip switch value */
if (!qemu_strtoui(kbd_layout, NULL, 0, &tmp)) {
ret = tmp;
}
}
}
if (ret == 0xff) {
/* Final fallback if keyboard_layout was not set or recognized */
ret = 0x21; /* en-us layout */
}
return ret;
}
static void handle_kbd_command(ESCCChannelState *s, int val)
{
trace_escc_kbd_command(val);
if (s->led_mode) { /* Ignore led byte */
s->led_mode = 0;
return;
}
switch (val) {
case 1: /* Reset, return type code */
clear_queue(s);
put_queue(s, 0xff);
put_queue(s, 4); /* Type 4 */
put_queue(s, 0x7f);
break;
case 0xe: /* Set leds */
s->led_mode = 1;
break;
case 7: /* Query layout */
case 0xf:
clear_queue(s);
put_queue(s, 0xfe);
put_queue(s, sunkbd_layout_dip_switch(s->sunkbd_layout));
break;
default:
break;
}
}
static void sunmouse_event(void *opaque,
int dx, int dy, int dz, int buttons_state)
{
ESCCChannelState *s = opaque;
int ch;
trace_escc_sunmouse_event(dx, dy, buttons_state);
ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */
if (buttons_state & MOUSE_EVENT_LBUTTON) {
ch ^= 0x4;
}
if (buttons_state & MOUSE_EVENT_MBUTTON) {
ch ^= 0x2;
}
if (buttons_state & MOUSE_EVENT_RBUTTON) {
ch ^= 0x1;
}
put_queue(s, ch);
ch = dx;
if (ch > 127) {
ch = 127;
} else if (ch < -127) {
ch = -127;
}
put_queue(s, ch & 0xff);
ch = -dy;
if (ch > 127) {
ch = 127;
} else if (ch < -127) {
ch = -127;
}
put_queue(s, ch & 0xff);
/* MSC protocol specifies two extra motion bytes */
put_queue(s, 0);
put_queue(s, 0);
}
static void escc_init1(Object *obj)
{
ESCCState *s = ESCC(obj);
SysBusDevice *dev = SYS_BUS_DEVICE(obj);
unsigned int i;
for (i = 0; i < 2; i++) {
sysbus_init_irq(dev, &s->chn[i].irq);
s->chn[i].chn = 1 - i;
}
s->chn[0].otherchn = &s->chn[1];
s->chn[1].otherchn = &s->chn[0];
sysbus_init_mmio(dev, &s->mmio);
}
static void escc_realize(DeviceState *dev, Error **errp)
{
ESCCState *s = ESCC(dev);
unsigned int i;
s->chn[0].disabled = s->disabled;
s->chn[1].disabled = s->disabled;
memory_region_init_io(&s->mmio, OBJECT(dev), &escc_mem_ops, s, "escc",
ESCC_SIZE << s->it_shift);
for (i = 0; i < 2; i++) {
if (qemu_chr_fe_backend_connected(&s->chn[i].chr)) {
s->chn[i].clock = s->frequency / 2;
qemu_chr_fe_set_handlers(&s->chn[i].chr, serial_can_receive,
serial_receive1, serial_event, NULL,
&s->chn[i], NULL, true);
}
}
if (s->chn[0].type == escc_mouse) {
qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0,
"QEMU Sun Mouse");
}
if (s->chn[1].type == escc_kbd) {
s->chn[1].hs = qemu_input_handler_register((DeviceState *)(&s->chn[1]),
&sunkbd_handler);
}
}
static Property escc_properties[] = {
DEFINE_PROP_UINT32("frequency", ESCCState, frequency, 0),
DEFINE_PROP_UINT32("it_shift", ESCCState, it_shift, 0),
DEFINE_PROP_BOOL("bit_swap", ESCCState, bit_swap, false),
DEFINE_PROP_UINT32("disabled", ESCCState, disabled, 0),
DEFINE_PROP_UINT32("chnBtype", ESCCState, chn[0].type, 0),
DEFINE_PROP_UINT32("chnAtype", ESCCState, chn[1].type, 0),
DEFINE_PROP_CHR("chrB", ESCCState, chn[0].chr),
DEFINE_PROP_CHR("chrA", ESCCState, chn[1].chr),
DEFINE_PROP_STRING("chnA-sunkbd-layout", ESCCState, chn[1].sunkbd_layout),
DEFINE_PROP_END_OF_LIST(),
};
static void escc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = escc_reset;
dc->realize = escc_realize;
dc->vmsd = &vmstate_escc;
device_class_set_props(dc, escc_properties);
set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
}
static const TypeInfo escc_info = {
.name = TYPE_ESCC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(ESCCState),
.instance_init = escc_init1,
.class_init = escc_class_init,
};
static void escc_register_types(void)
{
type_register_static(&escc_info);
}
type_init(escc_register_types)