2625 lines
67 KiB
C
2625 lines
67 KiB
C
/*
|
|
* gdb server stub
|
|
*
|
|
* Copyright (c) 2003-2005 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "config.h"
|
|
#include "qemu-common.h"
|
|
#ifdef CONFIG_USER_ONLY
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <stdarg.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
|
|
#include "qemu.h"
|
|
#else
|
|
#include "monitor.h"
|
|
#include "qemu-char.h"
|
|
#include "sysemu.h"
|
|
#include "gdbstub.h"
|
|
#endif
|
|
|
|
#define MAX_PACKET_LENGTH 4096
|
|
|
|
#include "qemu_socket.h"
|
|
#include "kvm.h"
|
|
|
|
|
|
enum {
|
|
GDB_SIGNAL_0 = 0,
|
|
GDB_SIGNAL_INT = 2,
|
|
GDB_SIGNAL_TRAP = 5,
|
|
GDB_SIGNAL_UNKNOWN = 143
|
|
};
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
|
|
/* Map target signal numbers to GDB protocol signal numbers and vice
|
|
* versa. For user emulation's currently supported systems, we can
|
|
* assume most signals are defined.
|
|
*/
|
|
|
|
static int gdb_signal_table[] = {
|
|
0,
|
|
TARGET_SIGHUP,
|
|
TARGET_SIGINT,
|
|
TARGET_SIGQUIT,
|
|
TARGET_SIGILL,
|
|
TARGET_SIGTRAP,
|
|
TARGET_SIGABRT,
|
|
-1, /* SIGEMT */
|
|
TARGET_SIGFPE,
|
|
TARGET_SIGKILL,
|
|
TARGET_SIGBUS,
|
|
TARGET_SIGSEGV,
|
|
TARGET_SIGSYS,
|
|
TARGET_SIGPIPE,
|
|
TARGET_SIGALRM,
|
|
TARGET_SIGTERM,
|
|
TARGET_SIGURG,
|
|
TARGET_SIGSTOP,
|
|
TARGET_SIGTSTP,
|
|
TARGET_SIGCONT,
|
|
TARGET_SIGCHLD,
|
|
TARGET_SIGTTIN,
|
|
TARGET_SIGTTOU,
|
|
TARGET_SIGIO,
|
|
TARGET_SIGXCPU,
|
|
TARGET_SIGXFSZ,
|
|
TARGET_SIGVTALRM,
|
|
TARGET_SIGPROF,
|
|
TARGET_SIGWINCH,
|
|
-1, /* SIGLOST */
|
|
TARGET_SIGUSR1,
|
|
TARGET_SIGUSR2,
|
|
#ifdef TARGET_SIGPWR
|
|
TARGET_SIGPWR,
|
|
#else
|
|
-1,
|
|
#endif
|
|
-1, /* SIGPOLL */
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
#ifdef __SIGRTMIN
|
|
__SIGRTMIN + 1,
|
|
__SIGRTMIN + 2,
|
|
__SIGRTMIN + 3,
|
|
__SIGRTMIN + 4,
|
|
__SIGRTMIN + 5,
|
|
__SIGRTMIN + 6,
|
|
__SIGRTMIN + 7,
|
|
__SIGRTMIN + 8,
|
|
__SIGRTMIN + 9,
|
|
__SIGRTMIN + 10,
|
|
__SIGRTMIN + 11,
|
|
__SIGRTMIN + 12,
|
|
__SIGRTMIN + 13,
|
|
__SIGRTMIN + 14,
|
|
__SIGRTMIN + 15,
|
|
__SIGRTMIN + 16,
|
|
__SIGRTMIN + 17,
|
|
__SIGRTMIN + 18,
|
|
__SIGRTMIN + 19,
|
|
__SIGRTMIN + 20,
|
|
__SIGRTMIN + 21,
|
|
__SIGRTMIN + 22,
|
|
__SIGRTMIN + 23,
|
|
__SIGRTMIN + 24,
|
|
__SIGRTMIN + 25,
|
|
__SIGRTMIN + 26,
|
|
__SIGRTMIN + 27,
|
|
__SIGRTMIN + 28,
|
|
__SIGRTMIN + 29,
|
|
__SIGRTMIN + 30,
|
|
__SIGRTMIN + 31,
|
|
-1, /* SIGCANCEL */
|
|
__SIGRTMIN,
|
|
__SIGRTMIN + 32,
|
|
__SIGRTMIN + 33,
|
|
__SIGRTMIN + 34,
|
|
__SIGRTMIN + 35,
|
|
__SIGRTMIN + 36,
|
|
__SIGRTMIN + 37,
|
|
__SIGRTMIN + 38,
|
|
__SIGRTMIN + 39,
|
|
__SIGRTMIN + 40,
|
|
__SIGRTMIN + 41,
|
|
__SIGRTMIN + 42,
|
|
__SIGRTMIN + 43,
|
|
__SIGRTMIN + 44,
|
|
__SIGRTMIN + 45,
|
|
__SIGRTMIN + 46,
|
|
__SIGRTMIN + 47,
|
|
__SIGRTMIN + 48,
|
|
__SIGRTMIN + 49,
|
|
__SIGRTMIN + 50,
|
|
__SIGRTMIN + 51,
|
|
__SIGRTMIN + 52,
|
|
__SIGRTMIN + 53,
|
|
__SIGRTMIN + 54,
|
|
__SIGRTMIN + 55,
|
|
__SIGRTMIN + 56,
|
|
__SIGRTMIN + 57,
|
|
__SIGRTMIN + 58,
|
|
__SIGRTMIN + 59,
|
|
__SIGRTMIN + 60,
|
|
__SIGRTMIN + 61,
|
|
__SIGRTMIN + 62,
|
|
__SIGRTMIN + 63,
|
|
__SIGRTMIN + 64,
|
|
__SIGRTMIN + 65,
|
|
__SIGRTMIN + 66,
|
|
__SIGRTMIN + 67,
|
|
__SIGRTMIN + 68,
|
|
__SIGRTMIN + 69,
|
|
__SIGRTMIN + 70,
|
|
__SIGRTMIN + 71,
|
|
__SIGRTMIN + 72,
|
|
__SIGRTMIN + 73,
|
|
__SIGRTMIN + 74,
|
|
__SIGRTMIN + 75,
|
|
__SIGRTMIN + 76,
|
|
__SIGRTMIN + 77,
|
|
__SIGRTMIN + 78,
|
|
__SIGRTMIN + 79,
|
|
__SIGRTMIN + 80,
|
|
__SIGRTMIN + 81,
|
|
__SIGRTMIN + 82,
|
|
__SIGRTMIN + 83,
|
|
__SIGRTMIN + 84,
|
|
__SIGRTMIN + 85,
|
|
__SIGRTMIN + 86,
|
|
__SIGRTMIN + 87,
|
|
__SIGRTMIN + 88,
|
|
__SIGRTMIN + 89,
|
|
__SIGRTMIN + 90,
|
|
__SIGRTMIN + 91,
|
|
__SIGRTMIN + 92,
|
|
__SIGRTMIN + 93,
|
|
__SIGRTMIN + 94,
|
|
__SIGRTMIN + 95,
|
|
-1, /* SIGINFO */
|
|
-1, /* UNKNOWN */
|
|
-1, /* DEFAULT */
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1
|
|
#endif
|
|
};
|
|
#else
|
|
/* In system mode we only need SIGINT and SIGTRAP; other signals
|
|
are not yet supported. */
|
|
|
|
enum {
|
|
TARGET_SIGINT = 2,
|
|
TARGET_SIGTRAP = 5
|
|
};
|
|
|
|
static int gdb_signal_table[] = {
|
|
-1,
|
|
-1,
|
|
TARGET_SIGINT,
|
|
-1,
|
|
-1,
|
|
TARGET_SIGTRAP
|
|
};
|
|
#endif
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
static int target_signal_to_gdb (int sig)
|
|
{
|
|
int i;
|
|
for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
|
|
if (gdb_signal_table[i] == sig)
|
|
return i;
|
|
return GDB_SIGNAL_UNKNOWN;
|
|
}
|
|
#endif
|
|
|
|
static int gdb_signal_to_target (int sig)
|
|
{
|
|
if (sig < ARRAY_SIZE (gdb_signal_table))
|
|
return gdb_signal_table[sig];
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
//#define DEBUG_GDB
|
|
|
|
typedef struct GDBRegisterState {
|
|
int base_reg;
|
|
int num_regs;
|
|
gdb_reg_cb get_reg;
|
|
gdb_reg_cb set_reg;
|
|
const char *xml;
|
|
struct GDBRegisterState *next;
|
|
} GDBRegisterState;
|
|
|
|
enum RSState {
|
|
RS_INACTIVE,
|
|
RS_IDLE,
|
|
RS_GETLINE,
|
|
RS_CHKSUM1,
|
|
RS_CHKSUM2,
|
|
RS_SYSCALL,
|
|
};
|
|
typedef struct GDBState {
|
|
CPUState *c_cpu; /* current CPU for step/continue ops */
|
|
CPUState *g_cpu; /* current CPU for other ops */
|
|
CPUState *query_cpu; /* for q{f|s}ThreadInfo */
|
|
enum RSState state; /* parsing state */
|
|
char line_buf[MAX_PACKET_LENGTH];
|
|
int line_buf_index;
|
|
int line_csum;
|
|
uint8_t last_packet[MAX_PACKET_LENGTH + 4];
|
|
int last_packet_len;
|
|
int signal;
|
|
#ifdef CONFIG_USER_ONLY
|
|
int fd;
|
|
int running_state;
|
|
#else
|
|
CharDriverState *chr;
|
|
CharDriverState *mon_chr;
|
|
#endif
|
|
} GDBState;
|
|
|
|
/* By default use no IRQs and no timers while single stepping so as to
|
|
* make single stepping like an ICE HW step.
|
|
*/
|
|
static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
|
|
|
|
static GDBState *gdbserver_state;
|
|
|
|
/* This is an ugly hack to cope with both new and old gdb.
|
|
If gdb sends qXfer:features:read then assume we're talking to a newish
|
|
gdb that understands target descriptions. */
|
|
static int gdb_has_xml;
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
/* XXX: This is not thread safe. Do we care? */
|
|
static int gdbserver_fd = -1;
|
|
|
|
static int get_char(GDBState *s)
|
|
{
|
|
uint8_t ch;
|
|
int ret;
|
|
|
|
for(;;) {
|
|
ret = recv(s->fd, &ch, 1, 0);
|
|
if (ret < 0) {
|
|
if (errno == ECONNRESET)
|
|
s->fd = -1;
|
|
if (errno != EINTR && errno != EAGAIN)
|
|
return -1;
|
|
} else if (ret == 0) {
|
|
close(s->fd);
|
|
s->fd = -1;
|
|
return -1;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
return ch;
|
|
}
|
|
#endif
|
|
|
|
static gdb_syscall_complete_cb gdb_current_syscall_cb;
|
|
|
|
static enum {
|
|
GDB_SYS_UNKNOWN,
|
|
GDB_SYS_ENABLED,
|
|
GDB_SYS_DISABLED,
|
|
} gdb_syscall_mode;
|
|
|
|
/* If gdb is connected when the first semihosting syscall occurs then use
|
|
remote gdb syscalls. Otherwise use native file IO. */
|
|
int use_gdb_syscalls(void)
|
|
{
|
|
if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
|
|
gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
|
|
: GDB_SYS_DISABLED);
|
|
}
|
|
return gdb_syscall_mode == GDB_SYS_ENABLED;
|
|
}
|
|
|
|
/* Resume execution. */
|
|
static inline void gdb_continue(GDBState *s)
|
|
{
|
|
#ifdef CONFIG_USER_ONLY
|
|
s->running_state = 1;
|
|
#else
|
|
vm_start();
|
|
#endif
|
|
}
|
|
|
|
static void put_buffer(GDBState *s, const uint8_t *buf, int len)
|
|
{
|
|
#ifdef CONFIG_USER_ONLY
|
|
int ret;
|
|
|
|
while (len > 0) {
|
|
ret = send(s->fd, buf, len, 0);
|
|
if (ret < 0) {
|
|
if (errno != EINTR && errno != EAGAIN)
|
|
return;
|
|
} else {
|
|
buf += ret;
|
|
len -= ret;
|
|
}
|
|
}
|
|
#else
|
|
qemu_chr_write(s->chr, buf, len);
|
|
#endif
|
|
}
|
|
|
|
static inline int fromhex(int v)
|
|
{
|
|
if (v >= '0' && v <= '9')
|
|
return v - '0';
|
|
else if (v >= 'A' && v <= 'F')
|
|
return v - 'A' + 10;
|
|
else if (v >= 'a' && v <= 'f')
|
|
return v - 'a' + 10;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static inline int tohex(int v)
|
|
{
|
|
if (v < 10)
|
|
return v + '0';
|
|
else
|
|
return v - 10 + 'a';
|
|
}
|
|
|
|
static void memtohex(char *buf, const uint8_t *mem, int len)
|
|
{
|
|
int i, c;
|
|
char *q;
|
|
q = buf;
|
|
for(i = 0; i < len; i++) {
|
|
c = mem[i];
|
|
*q++ = tohex(c >> 4);
|
|
*q++ = tohex(c & 0xf);
|
|
}
|
|
*q = '\0';
|
|
}
|
|
|
|
static void hextomem(uint8_t *mem, const char *buf, int len)
|
|
{
|
|
int i;
|
|
|
|
for(i = 0; i < len; i++) {
|
|
mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
|
|
buf += 2;
|
|
}
|
|
}
|
|
|
|
/* return -1 if error, 0 if OK */
|
|
static int put_packet_binary(GDBState *s, const char *buf, int len)
|
|
{
|
|
int csum, i;
|
|
uint8_t *p;
|
|
|
|
for(;;) {
|
|
p = s->last_packet;
|
|
*(p++) = '$';
|
|
memcpy(p, buf, len);
|
|
p += len;
|
|
csum = 0;
|
|
for(i = 0; i < len; i++) {
|
|
csum += buf[i];
|
|
}
|
|
*(p++) = '#';
|
|
*(p++) = tohex((csum >> 4) & 0xf);
|
|
*(p++) = tohex((csum) & 0xf);
|
|
|
|
s->last_packet_len = p - s->last_packet;
|
|
put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
i = get_char(s);
|
|
if (i < 0)
|
|
return -1;
|
|
if (i == '+')
|
|
break;
|
|
#else
|
|
break;
|
|
#endif
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* return -1 if error, 0 if OK */
|
|
static int put_packet(GDBState *s, const char *buf)
|
|
{
|
|
#ifdef DEBUG_GDB
|
|
printf("reply='%s'\n", buf);
|
|
#endif
|
|
|
|
return put_packet_binary(s, buf, strlen(buf));
|
|
}
|
|
|
|
/* The GDB remote protocol transfers values in target byte order. This means
|
|
we can use the raw memory access routines to access the value buffer.
|
|
Conveniently, these also handle the case where the buffer is mis-aligned.
|
|
*/
|
|
#define GET_REG8(val) do { \
|
|
stb_p(mem_buf, val); \
|
|
return 1; \
|
|
} while(0)
|
|
#define GET_REG16(val) do { \
|
|
stw_p(mem_buf, val); \
|
|
return 2; \
|
|
} while(0)
|
|
#define GET_REG32(val) do { \
|
|
stl_p(mem_buf, val); \
|
|
return 4; \
|
|
} while(0)
|
|
#define GET_REG64(val) do { \
|
|
stq_p(mem_buf, val); \
|
|
return 8; \
|
|
} while(0)
|
|
|
|
#if TARGET_LONG_BITS == 64
|
|
#define GET_REGL(val) GET_REG64(val)
|
|
#define ldtul_p(addr) ldq_p(addr)
|
|
#else
|
|
#define GET_REGL(val) GET_REG32(val)
|
|
#define ldtul_p(addr) ldl_p(addr)
|
|
#endif
|
|
|
|
#if defined(TARGET_I386)
|
|
|
|
#ifdef TARGET_X86_64
|
|
static const int gpr_map[16] = {
|
|
R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
|
|
8, 9, 10, 11, 12, 13, 14, 15
|
|
};
|
|
#else
|
|
#define gpr_map gpr_map32
|
|
#endif
|
|
static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
|
|
|
|
#define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
|
|
|
|
#define IDX_IP_REG CPU_NB_REGS
|
|
#define IDX_FLAGS_REG (IDX_IP_REG + 1)
|
|
#define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
|
|
#define IDX_FP_REGS (IDX_SEG_REGS + 6)
|
|
#define IDX_XMM_REGS (IDX_FP_REGS + 16)
|
|
#define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
|
|
|
|
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
if (n < CPU_NB_REGS) {
|
|
if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
|
|
GET_REG64(env->regs[gpr_map[n]]);
|
|
} else if (n < CPU_NB_REGS32) {
|
|
GET_REG32(env->regs[gpr_map32[n]]);
|
|
}
|
|
} else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
|
|
#ifdef USE_X86LDOUBLE
|
|
/* FIXME: byteswap float values - after fixing fpregs layout. */
|
|
memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
|
|
#else
|
|
memset(mem_buf, 0, 10);
|
|
#endif
|
|
return 10;
|
|
} else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
|
|
n -= IDX_XMM_REGS;
|
|
if (n < CPU_NB_REGS32 ||
|
|
(TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
|
|
stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
|
|
stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
|
|
return 16;
|
|
}
|
|
} else {
|
|
switch (n) {
|
|
case IDX_IP_REG:
|
|
if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
|
|
GET_REG64(env->eip);
|
|
} else {
|
|
GET_REG32(env->eip);
|
|
}
|
|
case IDX_FLAGS_REG: GET_REG32(env->eflags);
|
|
|
|
case IDX_SEG_REGS: GET_REG32(env->segs[R_CS].selector);
|
|
case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector);
|
|
case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector);
|
|
case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector);
|
|
case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector);
|
|
case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector);
|
|
|
|
case IDX_FP_REGS + 8: GET_REG32(env->fpuc);
|
|
case IDX_FP_REGS + 9: GET_REG32((env->fpus & ~0x3800) |
|
|
(env->fpstt & 0x7) << 11);
|
|
case IDX_FP_REGS + 10: GET_REG32(0); /* ftag */
|
|
case IDX_FP_REGS + 11: GET_REG32(0); /* fiseg */
|
|
case IDX_FP_REGS + 12: GET_REG32(0); /* fioff */
|
|
case IDX_FP_REGS + 13: GET_REG32(0); /* foseg */
|
|
case IDX_FP_REGS + 14: GET_REG32(0); /* fooff */
|
|
case IDX_FP_REGS + 15: GET_REG32(0); /* fop */
|
|
|
|
case IDX_MXCSR_REG: GET_REG32(env->mxcsr);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int cpu_x86_gdb_load_seg(CPUState *env, int sreg, uint8_t *mem_buf)
|
|
{
|
|
uint16_t selector = ldl_p(mem_buf);
|
|
|
|
if (selector != env->segs[sreg].selector) {
|
|
#if defined(CONFIG_USER_ONLY)
|
|
cpu_x86_load_seg(env, sreg, selector);
|
|
#else
|
|
unsigned int limit, flags;
|
|
target_ulong base;
|
|
|
|
if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
|
|
base = selector << 4;
|
|
limit = 0xffff;
|
|
flags = 0;
|
|
} else {
|
|
if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags))
|
|
return 4;
|
|
}
|
|
cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
|
|
#endif
|
|
}
|
|
return 4;
|
|
}
|
|
|
|
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
if (n < CPU_NB_REGS) {
|
|
if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
|
|
env->regs[gpr_map[n]] = ldtul_p(mem_buf);
|
|
return sizeof(target_ulong);
|
|
} else if (n < CPU_NB_REGS32) {
|
|
n = gpr_map32[n];
|
|
env->regs[n] &= ~0xffffffffUL;
|
|
env->regs[n] |= (uint32_t)ldl_p(mem_buf);
|
|
return 4;
|
|
}
|
|
} else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
|
|
#ifdef USE_X86LDOUBLE
|
|
/* FIXME: byteswap float values - after fixing fpregs layout. */
|
|
memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
|
|
#endif
|
|
return 10;
|
|
} else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
|
|
n -= IDX_XMM_REGS;
|
|
if (n < CPU_NB_REGS32 ||
|
|
(TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
|
|
env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf);
|
|
env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8);
|
|
return 16;
|
|
}
|
|
} else {
|
|
switch (n) {
|
|
case IDX_IP_REG:
|
|
if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
|
|
env->eip = ldq_p(mem_buf);
|
|
return 8;
|
|
} else {
|
|
env->eip &= ~0xffffffffUL;
|
|
env->eip |= (uint32_t)ldl_p(mem_buf);
|
|
return 4;
|
|
}
|
|
case IDX_FLAGS_REG:
|
|
env->eflags = ldl_p(mem_buf);
|
|
return 4;
|
|
|
|
case IDX_SEG_REGS: return cpu_x86_gdb_load_seg(env, R_CS, mem_buf);
|
|
case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf);
|
|
case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf);
|
|
case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf);
|
|
case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf);
|
|
case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf);
|
|
|
|
case IDX_FP_REGS + 8:
|
|
env->fpuc = ldl_p(mem_buf);
|
|
return 4;
|
|
case IDX_FP_REGS + 9:
|
|
tmp = ldl_p(mem_buf);
|
|
env->fpstt = (tmp >> 11) & 7;
|
|
env->fpus = tmp & ~0x3800;
|
|
return 4;
|
|
case IDX_FP_REGS + 10: /* ftag */ return 4;
|
|
case IDX_FP_REGS + 11: /* fiseg */ return 4;
|
|
case IDX_FP_REGS + 12: /* fioff */ return 4;
|
|
case IDX_FP_REGS + 13: /* foseg */ return 4;
|
|
case IDX_FP_REGS + 14: /* fooff */ return 4;
|
|
case IDX_FP_REGS + 15: /* fop */ return 4;
|
|
|
|
case IDX_MXCSR_REG:
|
|
env->mxcsr = ldl_p(mem_buf);
|
|
return 4;
|
|
}
|
|
}
|
|
/* Unrecognised register. */
|
|
return 0;
|
|
}
|
|
|
|
#elif defined (TARGET_PPC)
|
|
|
|
/* Old gdb always expects FP registers. Newer (xml-aware) gdb only
|
|
expects whatever the target description contains. Due to a
|
|
historical mishap the FP registers appear in between core integer
|
|
regs and PC, MSR, CR, and so forth. We hack round this by giving the
|
|
FP regs zero size when talking to a newer gdb. */
|
|
#define NUM_CORE_REGS 71
|
|
#if defined (TARGET_PPC64)
|
|
#define GDB_CORE_XML "power64-core.xml"
|
|
#else
|
|
#define GDB_CORE_XML "power-core.xml"
|
|
#endif
|
|
|
|
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
if (n < 32) {
|
|
/* gprs */
|
|
GET_REGL(env->gpr[n]);
|
|
} else if (n < 64) {
|
|
/* fprs */
|
|
if (gdb_has_xml)
|
|
return 0;
|
|
stfq_p(mem_buf, env->fpr[n-32]);
|
|
return 8;
|
|
} else {
|
|
switch (n) {
|
|
case 64: GET_REGL(env->nip);
|
|
case 65: GET_REGL(env->msr);
|
|
case 66:
|
|
{
|
|
uint32_t cr = 0;
|
|
int i;
|
|
for (i = 0; i < 8; i++)
|
|
cr |= env->crf[i] << (32 - ((i + 1) * 4));
|
|
GET_REG32(cr);
|
|
}
|
|
case 67: GET_REGL(env->lr);
|
|
case 68: GET_REGL(env->ctr);
|
|
case 69: GET_REGL(env->xer);
|
|
case 70:
|
|
{
|
|
if (gdb_has_xml)
|
|
return 0;
|
|
GET_REG32(0); /* fpscr */
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
if (n < 32) {
|
|
/* gprs */
|
|
env->gpr[n] = ldtul_p(mem_buf);
|
|
return sizeof(target_ulong);
|
|
} else if (n < 64) {
|
|
/* fprs */
|
|
if (gdb_has_xml)
|
|
return 0;
|
|
env->fpr[n-32] = ldfq_p(mem_buf);
|
|
return 8;
|
|
} else {
|
|
switch (n) {
|
|
case 64:
|
|
env->nip = ldtul_p(mem_buf);
|
|
return sizeof(target_ulong);
|
|
case 65:
|
|
ppc_store_msr(env, ldtul_p(mem_buf));
|
|
return sizeof(target_ulong);
|
|
case 66:
|
|
{
|
|
uint32_t cr = ldl_p(mem_buf);
|
|
int i;
|
|
for (i = 0; i < 8; i++)
|
|
env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
|
|
return 4;
|
|
}
|
|
case 67:
|
|
env->lr = ldtul_p(mem_buf);
|
|
return sizeof(target_ulong);
|
|
case 68:
|
|
env->ctr = ldtul_p(mem_buf);
|
|
return sizeof(target_ulong);
|
|
case 69:
|
|
env->xer = ldtul_p(mem_buf);
|
|
return sizeof(target_ulong);
|
|
case 70:
|
|
/* fpscr */
|
|
if (gdb_has_xml)
|
|
return 0;
|
|
return 4;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#elif defined (TARGET_SPARC)
|
|
|
|
#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
|
|
#define NUM_CORE_REGS 86
|
|
#else
|
|
#define NUM_CORE_REGS 72
|
|
#endif
|
|
|
|
#ifdef TARGET_ABI32
|
|
#define GET_REGA(val) GET_REG32(val)
|
|
#else
|
|
#define GET_REGA(val) GET_REGL(val)
|
|
#endif
|
|
|
|
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
if (n < 8) {
|
|
/* g0..g7 */
|
|
GET_REGA(env->gregs[n]);
|
|
}
|
|
if (n < 32) {
|
|
/* register window */
|
|
GET_REGA(env->regwptr[n - 8]);
|
|
}
|
|
#if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
|
|
if (n < 64) {
|
|
/* fprs */
|
|
GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
|
|
}
|
|
/* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
|
|
switch (n) {
|
|
case 64: GET_REGA(env->y);
|
|
case 65: GET_REGA(GET_PSR(env));
|
|
case 66: GET_REGA(env->wim);
|
|
case 67: GET_REGA(env->tbr);
|
|
case 68: GET_REGA(env->pc);
|
|
case 69: GET_REGA(env->npc);
|
|
case 70: GET_REGA(env->fsr);
|
|
case 71: GET_REGA(0); /* csr */
|
|
default: GET_REGA(0);
|
|
}
|
|
#else
|
|
if (n < 64) {
|
|
/* f0-f31 */
|
|
GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
|
|
}
|
|
if (n < 80) {
|
|
/* f32-f62 (double width, even numbers only) */
|
|
uint64_t val;
|
|
|
|
val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
|
|
val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
|
|
GET_REG64(val);
|
|
}
|
|
switch (n) {
|
|
case 80: GET_REGL(env->pc);
|
|
case 81: GET_REGL(env->npc);
|
|
case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
|
|
((env->asi & 0xff) << 24) |
|
|
((env->pstate & 0xfff) << 8) |
|
|
GET_CWP64(env));
|
|
case 83: GET_REGL(env->fsr);
|
|
case 84: GET_REGL(env->fprs);
|
|
case 85: GET_REGL(env->y);
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
#if defined(TARGET_ABI32)
|
|
abi_ulong tmp;
|
|
|
|
tmp = ldl_p(mem_buf);
|
|
#else
|
|
target_ulong tmp;
|
|
|
|
tmp = ldtul_p(mem_buf);
|
|
#endif
|
|
|
|
if (n < 8) {
|
|
/* g0..g7 */
|
|
env->gregs[n] = tmp;
|
|
} else if (n < 32) {
|
|
/* register window */
|
|
env->regwptr[n - 8] = tmp;
|
|
}
|
|
#if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
|
|
else if (n < 64) {
|
|
/* fprs */
|
|
*((uint32_t *)&env->fpr[n - 32]) = tmp;
|
|
} else {
|
|
/* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
|
|
switch (n) {
|
|
case 64: env->y = tmp; break;
|
|
case 65: PUT_PSR(env, tmp); break;
|
|
case 66: env->wim = tmp; break;
|
|
case 67: env->tbr = tmp; break;
|
|
case 68: env->pc = tmp; break;
|
|
case 69: env->npc = tmp; break;
|
|
case 70: env->fsr = tmp; break;
|
|
default: return 0;
|
|
}
|
|
}
|
|
return 4;
|
|
#else
|
|
else if (n < 64) {
|
|
/* f0-f31 */
|
|
env->fpr[n] = ldfl_p(mem_buf);
|
|
return 4;
|
|
} else if (n < 80) {
|
|
/* f32-f62 (double width, even numbers only) */
|
|
*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
|
|
*((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
|
|
} else {
|
|
switch (n) {
|
|
case 80: env->pc = tmp; break;
|
|
case 81: env->npc = tmp; break;
|
|
case 82:
|
|
PUT_CCR(env, tmp >> 32);
|
|
env->asi = (tmp >> 24) & 0xff;
|
|
env->pstate = (tmp >> 8) & 0xfff;
|
|
PUT_CWP64(env, tmp & 0xff);
|
|
break;
|
|
case 83: env->fsr = tmp; break;
|
|
case 84: env->fprs = tmp; break;
|
|
case 85: env->y = tmp; break;
|
|
default: return 0;
|
|
}
|
|
}
|
|
return 8;
|
|
#endif
|
|
}
|
|
#elif defined (TARGET_ARM)
|
|
|
|
/* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
|
|
whatever the target description contains. Due to a historical mishap
|
|
the FPA registers appear in between core integer regs and the CPSR.
|
|
We hack round this by giving the FPA regs zero size when talking to a
|
|
newer gdb. */
|
|
#define NUM_CORE_REGS 26
|
|
#define GDB_CORE_XML "arm-core.xml"
|
|
|
|
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
if (n < 16) {
|
|
/* Core integer register. */
|
|
GET_REG32(env->regs[n]);
|
|
}
|
|
if (n < 24) {
|
|
/* FPA registers. */
|
|
if (gdb_has_xml)
|
|
return 0;
|
|
memset(mem_buf, 0, 12);
|
|
return 12;
|
|
}
|
|
switch (n) {
|
|
case 24:
|
|
/* FPA status register. */
|
|
if (gdb_has_xml)
|
|
return 0;
|
|
GET_REG32(0);
|
|
case 25:
|
|
/* CPSR */
|
|
GET_REG32(cpsr_read(env));
|
|
}
|
|
/* Unknown register. */
|
|
return 0;
|
|
}
|
|
|
|
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
tmp = ldl_p(mem_buf);
|
|
|
|
/* Mask out low bit of PC to workaround gdb bugs. This will probably
|
|
cause problems if we ever implement the Jazelle DBX extensions. */
|
|
if (n == 15)
|
|
tmp &= ~1;
|
|
|
|
if (n < 16) {
|
|
/* Core integer register. */
|
|
env->regs[n] = tmp;
|
|
return 4;
|
|
}
|
|
if (n < 24) { /* 16-23 */
|
|
/* FPA registers (ignored). */
|
|
if (gdb_has_xml)
|
|
return 0;
|
|
return 12;
|
|
}
|
|
switch (n) {
|
|
case 24:
|
|
/* FPA status register (ignored). */
|
|
if (gdb_has_xml)
|
|
return 0;
|
|
return 4;
|
|
case 25:
|
|
/* CPSR */
|
|
cpsr_write (env, tmp, 0xffffffff);
|
|
return 4;
|
|
}
|
|
/* Unknown register. */
|
|
return 0;
|
|
}
|
|
|
|
#elif defined (TARGET_M68K)
|
|
|
|
#define NUM_CORE_REGS 18
|
|
|
|
#define GDB_CORE_XML "cf-core.xml"
|
|
|
|
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
if (n < 8) {
|
|
/* D0-D7 */
|
|
GET_REG32(env->dregs[n]);
|
|
} else if (n < 16) {
|
|
/* A0-A7 */
|
|
GET_REG32(env->aregs[n - 8]);
|
|
} else {
|
|
switch (n) {
|
|
case 16: GET_REG32(env->sr);
|
|
case 17: GET_REG32(env->pc);
|
|
}
|
|
}
|
|
/* FP registers not included here because they vary between
|
|
ColdFire and m68k. Use XML bits for these. */
|
|
return 0;
|
|
}
|
|
|
|
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
tmp = ldl_p(mem_buf);
|
|
|
|
if (n < 8) {
|
|
/* D0-D7 */
|
|
env->dregs[n] = tmp;
|
|
} else if (n < 16) {
|
|
/* A0-A7 */
|
|
env->aregs[n - 8] = tmp;
|
|
} else {
|
|
switch (n) {
|
|
case 16: env->sr = tmp; break;
|
|
case 17: env->pc = tmp; break;
|
|
default: return 0;
|
|
}
|
|
}
|
|
return 4;
|
|
}
|
|
#elif defined (TARGET_MIPS)
|
|
|
|
#define NUM_CORE_REGS 73
|
|
|
|
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
if (n < 32) {
|
|
GET_REGL(env->active_tc.gpr[n]);
|
|
}
|
|
if (env->CP0_Config1 & (1 << CP0C1_FP)) {
|
|
if (n >= 38 && n < 70) {
|
|
if (env->CP0_Status & (1 << CP0St_FR))
|
|
GET_REGL(env->active_fpu.fpr[n - 38].d);
|
|
else
|
|
GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
|
|
}
|
|
switch (n) {
|
|
case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
|
|
case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
|
|
}
|
|
}
|
|
switch (n) {
|
|
case 32: GET_REGL((int32_t)env->CP0_Status);
|
|
case 33: GET_REGL(env->active_tc.LO[0]);
|
|
case 34: GET_REGL(env->active_tc.HI[0]);
|
|
case 35: GET_REGL(env->CP0_BadVAddr);
|
|
case 36: GET_REGL((int32_t)env->CP0_Cause);
|
|
case 37: GET_REGL(env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16));
|
|
case 72: GET_REGL(0); /* fp */
|
|
case 89: GET_REGL((int32_t)env->CP0_PRid);
|
|
}
|
|
if (n >= 73 && n <= 88) {
|
|
/* 16 embedded regs. */
|
|
GET_REGL(0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* convert MIPS rounding mode in FCR31 to IEEE library */
|
|
static unsigned int ieee_rm[] =
|
|
{
|
|
float_round_nearest_even,
|
|
float_round_to_zero,
|
|
float_round_up,
|
|
float_round_down
|
|
};
|
|
#define RESTORE_ROUNDING_MODE \
|
|
set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
|
|
|
|
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
target_ulong tmp;
|
|
|
|
tmp = ldtul_p(mem_buf);
|
|
|
|
if (n < 32) {
|
|
env->active_tc.gpr[n] = tmp;
|
|
return sizeof(target_ulong);
|
|
}
|
|
if (env->CP0_Config1 & (1 << CP0C1_FP)
|
|
&& n >= 38 && n < 73) {
|
|
if (n < 70) {
|
|
if (env->CP0_Status & (1 << CP0St_FR))
|
|
env->active_fpu.fpr[n - 38].d = tmp;
|
|
else
|
|
env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
|
|
}
|
|
switch (n) {
|
|
case 70:
|
|
env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
|
|
/* set rounding mode */
|
|
RESTORE_ROUNDING_MODE;
|
|
#ifndef CONFIG_SOFTFLOAT
|
|
/* no floating point exception for native float */
|
|
SET_FP_ENABLE(env->active_fpu.fcr31, 0);
|
|
#endif
|
|
break;
|
|
case 71: env->active_fpu.fcr0 = tmp; break;
|
|
}
|
|
return sizeof(target_ulong);
|
|
}
|
|
switch (n) {
|
|
case 32: env->CP0_Status = tmp; break;
|
|
case 33: env->active_tc.LO[0] = tmp; break;
|
|
case 34: env->active_tc.HI[0] = tmp; break;
|
|
case 35: env->CP0_BadVAddr = tmp; break;
|
|
case 36: env->CP0_Cause = tmp; break;
|
|
case 37:
|
|
env->active_tc.PC = tmp & ~(target_ulong)1;
|
|
if (tmp & 1) {
|
|
env->hflags |= MIPS_HFLAG_M16;
|
|
} else {
|
|
env->hflags &= ~(MIPS_HFLAG_M16);
|
|
}
|
|
break;
|
|
case 72: /* fp, ignored */ break;
|
|
default:
|
|
if (n > 89)
|
|
return 0;
|
|
/* Other registers are readonly. Ignore writes. */
|
|
break;
|
|
}
|
|
|
|
return sizeof(target_ulong);
|
|
}
|
|
#elif defined (TARGET_SH4)
|
|
|
|
/* Hint: Use "set architecture sh4" in GDB to see fpu registers */
|
|
/* FIXME: We should use XML for this. */
|
|
|
|
#define NUM_CORE_REGS 59
|
|
|
|
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
if (n < 8) {
|
|
if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
|
|
GET_REGL(env->gregs[n + 16]);
|
|
} else {
|
|
GET_REGL(env->gregs[n]);
|
|
}
|
|
} else if (n < 16) {
|
|
GET_REGL(env->gregs[n - 8]);
|
|
} else if (n >= 25 && n < 41) {
|
|
GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
|
|
} else if (n >= 43 && n < 51) {
|
|
GET_REGL(env->gregs[n - 43]);
|
|
} else if (n >= 51 && n < 59) {
|
|
GET_REGL(env->gregs[n - (51 - 16)]);
|
|
}
|
|
switch (n) {
|
|
case 16: GET_REGL(env->pc);
|
|
case 17: GET_REGL(env->pr);
|
|
case 18: GET_REGL(env->gbr);
|
|
case 19: GET_REGL(env->vbr);
|
|
case 20: GET_REGL(env->mach);
|
|
case 21: GET_REGL(env->macl);
|
|
case 22: GET_REGL(env->sr);
|
|
case 23: GET_REGL(env->fpul);
|
|
case 24: GET_REGL(env->fpscr);
|
|
case 41: GET_REGL(env->ssr);
|
|
case 42: GET_REGL(env->spc);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
tmp = ldl_p(mem_buf);
|
|
|
|
if (n < 8) {
|
|
if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
|
|
env->gregs[n + 16] = tmp;
|
|
} else {
|
|
env->gregs[n] = tmp;
|
|
}
|
|
return 4;
|
|
} else if (n < 16) {
|
|
env->gregs[n - 8] = tmp;
|
|
return 4;
|
|
} else if (n >= 25 && n < 41) {
|
|
env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
|
|
} else if (n >= 43 && n < 51) {
|
|
env->gregs[n - 43] = tmp;
|
|
return 4;
|
|
} else if (n >= 51 && n < 59) {
|
|
env->gregs[n - (51 - 16)] = tmp;
|
|
return 4;
|
|
}
|
|
switch (n) {
|
|
case 16: env->pc = tmp;
|
|
case 17: env->pr = tmp;
|
|
case 18: env->gbr = tmp;
|
|
case 19: env->vbr = tmp;
|
|
case 20: env->mach = tmp;
|
|
case 21: env->macl = tmp;
|
|
case 22: env->sr = tmp;
|
|
case 23: env->fpul = tmp;
|
|
case 24: env->fpscr = tmp;
|
|
case 41: env->ssr = tmp;
|
|
case 42: env->spc = tmp;
|
|
default: return 0;
|
|
}
|
|
|
|
return 4;
|
|
}
|
|
#elif defined (TARGET_MICROBLAZE)
|
|
|
|
#define NUM_CORE_REGS (32 + 5)
|
|
|
|
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
if (n < 32) {
|
|
GET_REG32(env->regs[n]);
|
|
} else {
|
|
GET_REG32(env->sregs[n - 32]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
if (n > NUM_CORE_REGS)
|
|
return 0;
|
|
|
|
tmp = ldl_p(mem_buf);
|
|
|
|
if (n < 32) {
|
|
env->regs[n] = tmp;
|
|
} else {
|
|
env->sregs[n - 32] = tmp;
|
|
}
|
|
return 4;
|
|
}
|
|
#elif defined (TARGET_CRIS)
|
|
|
|
#define NUM_CORE_REGS 49
|
|
|
|
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
uint8_t srs;
|
|
|
|
srs = env->pregs[PR_SRS];
|
|
if (n < 16) {
|
|
GET_REG32(env->regs[n]);
|
|
}
|
|
|
|
if (n >= 21 && n < 32) {
|
|
GET_REG32(env->pregs[n - 16]);
|
|
}
|
|
if (n >= 33 && n < 49) {
|
|
GET_REG32(env->sregs[srs][n - 33]);
|
|
}
|
|
switch (n) {
|
|
case 16: GET_REG8(env->pregs[0]);
|
|
case 17: GET_REG8(env->pregs[1]);
|
|
case 18: GET_REG32(env->pregs[2]);
|
|
case 19: GET_REG8(srs);
|
|
case 20: GET_REG16(env->pregs[4]);
|
|
case 32: GET_REG32(env->pc);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
if (n > 49)
|
|
return 0;
|
|
|
|
tmp = ldl_p(mem_buf);
|
|
|
|
if (n < 16) {
|
|
env->regs[n] = tmp;
|
|
}
|
|
|
|
if (n >= 21 && n < 32) {
|
|
env->pregs[n - 16] = tmp;
|
|
}
|
|
|
|
/* FIXME: Should support function regs be writable? */
|
|
switch (n) {
|
|
case 16: return 1;
|
|
case 17: return 1;
|
|
case 18: env->pregs[PR_PID] = tmp; break;
|
|
case 19: return 1;
|
|
case 20: return 2;
|
|
case 32: env->pc = tmp; break;
|
|
}
|
|
|
|
return 4;
|
|
}
|
|
#elif defined (TARGET_ALPHA)
|
|
|
|
#define NUM_CORE_REGS 65
|
|
|
|
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
if (n < 31) {
|
|
GET_REGL(env->ir[n]);
|
|
}
|
|
else if (n == 31) {
|
|
GET_REGL(0);
|
|
}
|
|
else if (n<63) {
|
|
uint64_t val;
|
|
|
|
val = *((uint64_t *)&env->fir[n-32]);
|
|
GET_REGL(val);
|
|
}
|
|
else if (n==63) {
|
|
GET_REGL(env->fpcr);
|
|
}
|
|
else if (n==64) {
|
|
GET_REGL(env->pc);
|
|
}
|
|
else {
|
|
GET_REGL(0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
target_ulong tmp;
|
|
tmp = ldtul_p(mem_buf);
|
|
|
|
if (n < 31) {
|
|
env->ir[n] = tmp;
|
|
}
|
|
|
|
if (n > 31 && n < 63) {
|
|
env->fir[n - 32] = ldfl_p(mem_buf);
|
|
}
|
|
|
|
if (n == 64 ) {
|
|
env->pc=tmp;
|
|
}
|
|
|
|
return 8;
|
|
}
|
|
#elif defined (TARGET_S390X)
|
|
|
|
#define NUM_CORE_REGS S390_NUM_TOTAL_REGS
|
|
|
|
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
switch (n) {
|
|
case S390_PSWM_REGNUM: GET_REGL(env->psw.mask); break;
|
|
case S390_PSWA_REGNUM: GET_REGL(env->psw.addr); break;
|
|
case S390_R0_REGNUM ... S390_R15_REGNUM:
|
|
GET_REGL(env->regs[n-S390_R0_REGNUM]); break;
|
|
case S390_A0_REGNUM ... S390_A15_REGNUM:
|
|
GET_REG32(env->aregs[n-S390_A0_REGNUM]); break;
|
|
case S390_FPC_REGNUM: GET_REG32(env->fpc); break;
|
|
case S390_F0_REGNUM ... S390_F15_REGNUM:
|
|
/* XXX */
|
|
break;
|
|
case S390_PC_REGNUM: GET_REGL(env->psw.addr); break;
|
|
case S390_CC_REGNUM: GET_REG32(env->cc); break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
target_ulong tmpl;
|
|
uint32_t tmp32;
|
|
int r = 8;
|
|
tmpl = ldtul_p(mem_buf);
|
|
tmp32 = ldl_p(mem_buf);
|
|
|
|
switch (n) {
|
|
case S390_PSWM_REGNUM: env->psw.mask = tmpl; break;
|
|
case S390_PSWA_REGNUM: env->psw.addr = tmpl; break;
|
|
case S390_R0_REGNUM ... S390_R15_REGNUM:
|
|
env->regs[n-S390_R0_REGNUM] = tmpl; break;
|
|
case S390_A0_REGNUM ... S390_A15_REGNUM:
|
|
env->aregs[n-S390_A0_REGNUM] = tmp32; r=4; break;
|
|
case S390_FPC_REGNUM: env->fpc = tmp32; r=4; break;
|
|
case S390_F0_REGNUM ... S390_F15_REGNUM:
|
|
/* XXX */
|
|
break;
|
|
case S390_PC_REGNUM: env->psw.addr = tmpl; break;
|
|
case S390_CC_REGNUM: env->cc = tmp32; r=4; break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
#else
|
|
|
|
#define NUM_CORE_REGS 0
|
|
|
|
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
static int num_g_regs = NUM_CORE_REGS;
|
|
|
|
#ifdef GDB_CORE_XML
|
|
/* Encode data using the encoding for 'x' packets. */
|
|
static int memtox(char *buf, const char *mem, int len)
|
|
{
|
|
char *p = buf;
|
|
char c;
|
|
|
|
while (len--) {
|
|
c = *(mem++);
|
|
switch (c) {
|
|
case '#': case '$': case '*': case '}':
|
|
*(p++) = '}';
|
|
*(p++) = c ^ 0x20;
|
|
break;
|
|
default:
|
|
*(p++) = c;
|
|
break;
|
|
}
|
|
}
|
|
return p - buf;
|
|
}
|
|
|
|
static const char *get_feature_xml(const char *p, const char **newp)
|
|
{
|
|
extern const char *const xml_builtin[][2];
|
|
size_t len;
|
|
int i;
|
|
const char *name;
|
|
static char target_xml[1024];
|
|
|
|
len = 0;
|
|
while (p[len] && p[len] != ':')
|
|
len++;
|
|
*newp = p + len;
|
|
|
|
name = NULL;
|
|
if (strncmp(p, "target.xml", len) == 0) {
|
|
/* Generate the XML description for this CPU. */
|
|
if (!target_xml[0]) {
|
|
GDBRegisterState *r;
|
|
|
|
snprintf(target_xml, sizeof(target_xml),
|
|
"<?xml version=\"1.0\"?>"
|
|
"<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
|
|
"<target>"
|
|
"<xi:include href=\"%s\"/>",
|
|
GDB_CORE_XML);
|
|
|
|
for (r = first_cpu->gdb_regs; r; r = r->next) {
|
|
pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
|
|
pstrcat(target_xml, sizeof(target_xml), r->xml);
|
|
pstrcat(target_xml, sizeof(target_xml), "\"/>");
|
|
}
|
|
pstrcat(target_xml, sizeof(target_xml), "</target>");
|
|
}
|
|
return target_xml;
|
|
}
|
|
for (i = 0; ; i++) {
|
|
name = xml_builtin[i][0];
|
|
if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
|
|
break;
|
|
}
|
|
return name ? xml_builtin[i][1] : NULL;
|
|
}
|
|
#endif
|
|
|
|
static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
|
|
{
|
|
GDBRegisterState *r;
|
|
|
|
if (reg < NUM_CORE_REGS)
|
|
return cpu_gdb_read_register(env, mem_buf, reg);
|
|
|
|
for (r = env->gdb_regs; r; r = r->next) {
|
|
if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
|
|
return r->get_reg(env, mem_buf, reg - r->base_reg);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
|
|
{
|
|
GDBRegisterState *r;
|
|
|
|
if (reg < NUM_CORE_REGS)
|
|
return cpu_gdb_write_register(env, mem_buf, reg);
|
|
|
|
for (r = env->gdb_regs; r; r = r->next) {
|
|
if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
|
|
return r->set_reg(env, mem_buf, reg - r->base_reg);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Register a supplemental set of CPU registers. If g_pos is nonzero it
|
|
specifies the first register number and these registers are included in
|
|
a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
|
|
gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
|
|
*/
|
|
|
|
void gdb_register_coprocessor(CPUState * env,
|
|
gdb_reg_cb get_reg, gdb_reg_cb set_reg,
|
|
int num_regs, const char *xml, int g_pos)
|
|
{
|
|
GDBRegisterState *s;
|
|
GDBRegisterState **p;
|
|
static int last_reg = NUM_CORE_REGS;
|
|
|
|
s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
|
|
s->base_reg = last_reg;
|
|
s->num_regs = num_regs;
|
|
s->get_reg = get_reg;
|
|
s->set_reg = set_reg;
|
|
s->xml = xml;
|
|
p = &env->gdb_regs;
|
|
while (*p) {
|
|
/* Check for duplicates. */
|
|
if (strcmp((*p)->xml, xml) == 0)
|
|
return;
|
|
p = &(*p)->next;
|
|
}
|
|
/* Add to end of list. */
|
|
last_reg += num_regs;
|
|
*p = s;
|
|
if (g_pos) {
|
|
if (g_pos != s->base_reg) {
|
|
fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
|
|
"Expected %d got %d\n", xml, g_pos, s->base_reg);
|
|
} else {
|
|
num_g_regs = last_reg;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
static const int xlat_gdb_type[] = {
|
|
[GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
|
|
[GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
|
|
[GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
|
|
};
|
|
#endif
|
|
|
|
static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
|
|
{
|
|
CPUState *env;
|
|
int err = 0;
|
|
|
|
if (kvm_enabled())
|
|
return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
|
|
|
|
switch (type) {
|
|
case GDB_BREAKPOINT_SW:
|
|
case GDB_BREAKPOINT_HW:
|
|
for (env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
|
|
if (err)
|
|
break;
|
|
}
|
|
return err;
|
|
#ifndef CONFIG_USER_ONLY
|
|
case GDB_WATCHPOINT_WRITE:
|
|
case GDB_WATCHPOINT_READ:
|
|
case GDB_WATCHPOINT_ACCESS:
|
|
for (env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
|
|
NULL);
|
|
if (err)
|
|
break;
|
|
}
|
|
return err;
|
|
#endif
|
|
default:
|
|
return -ENOSYS;
|
|
}
|
|
}
|
|
|
|
static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
|
|
{
|
|
CPUState *env;
|
|
int err = 0;
|
|
|
|
if (kvm_enabled())
|
|
return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
|
|
|
|
switch (type) {
|
|
case GDB_BREAKPOINT_SW:
|
|
case GDB_BREAKPOINT_HW:
|
|
for (env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
err = cpu_breakpoint_remove(env, addr, BP_GDB);
|
|
if (err)
|
|
break;
|
|
}
|
|
return err;
|
|
#ifndef CONFIG_USER_ONLY
|
|
case GDB_WATCHPOINT_WRITE:
|
|
case GDB_WATCHPOINT_READ:
|
|
case GDB_WATCHPOINT_ACCESS:
|
|
for (env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
|
|
if (err)
|
|
break;
|
|
}
|
|
return err;
|
|
#endif
|
|
default:
|
|
return -ENOSYS;
|
|
}
|
|
}
|
|
|
|
static void gdb_breakpoint_remove_all(void)
|
|
{
|
|
CPUState *env;
|
|
|
|
if (kvm_enabled()) {
|
|
kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
|
|
return;
|
|
}
|
|
|
|
for (env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
cpu_breakpoint_remove_all(env, BP_GDB);
|
|
#ifndef CONFIG_USER_ONLY
|
|
cpu_watchpoint_remove_all(env, BP_GDB);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
|
|
{
|
|
#if defined(TARGET_I386)
|
|
cpu_synchronize_state(s->c_cpu);
|
|
s->c_cpu->eip = pc;
|
|
#elif defined (TARGET_PPC)
|
|
s->c_cpu->nip = pc;
|
|
#elif defined (TARGET_SPARC)
|
|
s->c_cpu->pc = pc;
|
|
s->c_cpu->npc = pc + 4;
|
|
#elif defined (TARGET_ARM)
|
|
s->c_cpu->regs[15] = pc;
|
|
#elif defined (TARGET_SH4)
|
|
s->c_cpu->pc = pc;
|
|
#elif defined (TARGET_MIPS)
|
|
s->c_cpu->active_tc.PC = pc & ~(target_ulong)1;
|
|
if (pc & 1) {
|
|
s->c_cpu->hflags |= MIPS_HFLAG_M16;
|
|
} else {
|
|
s->c_cpu->hflags &= ~(MIPS_HFLAG_M16);
|
|
}
|
|
#elif defined (TARGET_MICROBLAZE)
|
|
s->c_cpu->sregs[SR_PC] = pc;
|
|
#elif defined (TARGET_CRIS)
|
|
s->c_cpu->pc = pc;
|
|
#elif defined (TARGET_ALPHA)
|
|
s->c_cpu->pc = pc;
|
|
#elif defined (TARGET_S390X)
|
|
cpu_synchronize_state(s->c_cpu);
|
|
s->c_cpu->psw.addr = pc;
|
|
#endif
|
|
}
|
|
|
|
static inline int gdb_id(CPUState *env)
|
|
{
|
|
#if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
|
|
return env->host_tid;
|
|
#else
|
|
return env->cpu_index + 1;
|
|
#endif
|
|
}
|
|
|
|
static CPUState *find_cpu(uint32_t thread_id)
|
|
{
|
|
CPUState *env;
|
|
|
|
for (env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
if (gdb_id(env) == thread_id) {
|
|
return env;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int gdb_handle_packet(GDBState *s, const char *line_buf)
|
|
{
|
|
CPUState *env;
|
|
const char *p;
|
|
uint32_t thread;
|
|
int ch, reg_size, type, res;
|
|
char buf[MAX_PACKET_LENGTH];
|
|
uint8_t mem_buf[MAX_PACKET_LENGTH];
|
|
uint8_t *registers;
|
|
target_ulong addr, len;
|
|
|
|
#ifdef DEBUG_GDB
|
|
printf("command='%s'\n", line_buf);
|
|
#endif
|
|
p = line_buf;
|
|
ch = *p++;
|
|
switch(ch) {
|
|
case '?':
|
|
/* TODO: Make this return the correct value for user-mode. */
|
|
snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
|
|
gdb_id(s->c_cpu));
|
|
put_packet(s, buf);
|
|
/* Remove all the breakpoints when this query is issued,
|
|
* because gdb is doing and initial connect and the state
|
|
* should be cleaned up.
|
|
*/
|
|
gdb_breakpoint_remove_all();
|
|
break;
|
|
case 'c':
|
|
if (*p != '\0') {
|
|
addr = strtoull(p, (char **)&p, 16);
|
|
gdb_set_cpu_pc(s, addr);
|
|
}
|
|
s->signal = 0;
|
|
gdb_continue(s);
|
|
return RS_IDLE;
|
|
case 'C':
|
|
s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
|
|
if (s->signal == -1)
|
|
s->signal = 0;
|
|
gdb_continue(s);
|
|
return RS_IDLE;
|
|
case 'v':
|
|
if (strncmp(p, "Cont", 4) == 0) {
|
|
int res_signal, res_thread;
|
|
|
|
p += 4;
|
|
if (*p == '?') {
|
|
put_packet(s, "vCont;c;C;s;S");
|
|
break;
|
|
}
|
|
res = 0;
|
|
res_signal = 0;
|
|
res_thread = 0;
|
|
while (*p) {
|
|
int action, signal;
|
|
|
|
if (*p++ != ';') {
|
|
res = 0;
|
|
break;
|
|
}
|
|
action = *p++;
|
|
signal = 0;
|
|
if (action == 'C' || action == 'S') {
|
|
signal = strtoul(p, (char **)&p, 16);
|
|
} else if (action != 'c' && action != 's') {
|
|
res = 0;
|
|
break;
|
|
}
|
|
thread = 0;
|
|
if (*p == ':') {
|
|
thread = strtoull(p+1, (char **)&p, 16);
|
|
}
|
|
action = tolower(action);
|
|
if (res == 0 || (res == 'c' && action == 's')) {
|
|
res = action;
|
|
res_signal = signal;
|
|
res_thread = thread;
|
|
}
|
|
}
|
|
if (res) {
|
|
if (res_thread != -1 && res_thread != 0) {
|
|
env = find_cpu(res_thread);
|
|
if (env == NULL) {
|
|
put_packet(s, "E22");
|
|
break;
|
|
}
|
|
s->c_cpu = env;
|
|
}
|
|
if (res == 's') {
|
|
cpu_single_step(s->c_cpu, sstep_flags);
|
|
}
|
|
s->signal = res_signal;
|
|
gdb_continue(s);
|
|
return RS_IDLE;
|
|
}
|
|
break;
|
|
} else {
|
|
goto unknown_command;
|
|
}
|
|
case 'k':
|
|
/* Kill the target */
|
|
fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
|
|
exit(0);
|
|
case 'D':
|
|
/* Detach packet */
|
|
gdb_breakpoint_remove_all();
|
|
gdb_continue(s);
|
|
put_packet(s, "OK");
|
|
break;
|
|
case 's':
|
|
if (*p != '\0') {
|
|
addr = strtoull(p, (char **)&p, 16);
|
|
gdb_set_cpu_pc(s, addr);
|
|
}
|
|
cpu_single_step(s->c_cpu, sstep_flags);
|
|
gdb_continue(s);
|
|
return RS_IDLE;
|
|
case 'F':
|
|
{
|
|
target_ulong ret;
|
|
target_ulong err;
|
|
|
|
ret = strtoull(p, (char **)&p, 16);
|
|
if (*p == ',') {
|
|
p++;
|
|
err = strtoull(p, (char **)&p, 16);
|
|
} else {
|
|
err = 0;
|
|
}
|
|
if (*p == ',')
|
|
p++;
|
|
type = *p;
|
|
if (gdb_current_syscall_cb)
|
|
gdb_current_syscall_cb(s->c_cpu, ret, err);
|
|
if (type == 'C') {
|
|
put_packet(s, "T02");
|
|
} else {
|
|
gdb_continue(s);
|
|
}
|
|
}
|
|
break;
|
|
case 'g':
|
|
cpu_synchronize_state(s->g_cpu);
|
|
len = 0;
|
|
for (addr = 0; addr < num_g_regs; addr++) {
|
|
reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
|
|
len += reg_size;
|
|
}
|
|
memtohex(buf, mem_buf, len);
|
|
put_packet(s, buf);
|
|
break;
|
|
case 'G':
|
|
cpu_synchronize_state(s->g_cpu);
|
|
registers = mem_buf;
|
|
len = strlen(p) / 2;
|
|
hextomem((uint8_t *)registers, p, len);
|
|
for (addr = 0; addr < num_g_regs && len > 0; addr++) {
|
|
reg_size = gdb_write_register(s->g_cpu, registers, addr);
|
|
len -= reg_size;
|
|
registers += reg_size;
|
|
}
|
|
put_packet(s, "OK");
|
|
break;
|
|
case 'm':
|
|
addr = strtoull(p, (char **)&p, 16);
|
|
if (*p == ',')
|
|
p++;
|
|
len = strtoull(p, NULL, 16);
|
|
if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
|
|
put_packet (s, "E14");
|
|
} else {
|
|
memtohex(buf, mem_buf, len);
|
|
put_packet(s, buf);
|
|
}
|
|
break;
|
|
case 'M':
|
|
addr = strtoull(p, (char **)&p, 16);
|
|
if (*p == ',')
|
|
p++;
|
|
len = strtoull(p, (char **)&p, 16);
|
|
if (*p == ':')
|
|
p++;
|
|
hextomem(mem_buf, p, len);
|
|
if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
|
|
put_packet(s, "E14");
|
|
else
|
|
put_packet(s, "OK");
|
|
break;
|
|
case 'p':
|
|
/* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
|
|
This works, but can be very slow. Anything new enough to
|
|
understand XML also knows how to use this properly. */
|
|
if (!gdb_has_xml)
|
|
goto unknown_command;
|
|
addr = strtoull(p, (char **)&p, 16);
|
|
reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
|
|
if (reg_size) {
|
|
memtohex(buf, mem_buf, reg_size);
|
|
put_packet(s, buf);
|
|
} else {
|
|
put_packet(s, "E14");
|
|
}
|
|
break;
|
|
case 'P':
|
|
if (!gdb_has_xml)
|
|
goto unknown_command;
|
|
addr = strtoull(p, (char **)&p, 16);
|
|
if (*p == '=')
|
|
p++;
|
|
reg_size = strlen(p) / 2;
|
|
hextomem(mem_buf, p, reg_size);
|
|
gdb_write_register(s->g_cpu, mem_buf, addr);
|
|
put_packet(s, "OK");
|
|
break;
|
|
case 'Z':
|
|
case 'z':
|
|
type = strtoul(p, (char **)&p, 16);
|
|
if (*p == ',')
|
|
p++;
|
|
addr = strtoull(p, (char **)&p, 16);
|
|
if (*p == ',')
|
|
p++;
|
|
len = strtoull(p, (char **)&p, 16);
|
|
if (ch == 'Z')
|
|
res = gdb_breakpoint_insert(addr, len, type);
|
|
else
|
|
res = gdb_breakpoint_remove(addr, len, type);
|
|
if (res >= 0)
|
|
put_packet(s, "OK");
|
|
else if (res == -ENOSYS)
|
|
put_packet(s, "");
|
|
else
|
|
put_packet(s, "E22");
|
|
break;
|
|
case 'H':
|
|
type = *p++;
|
|
thread = strtoull(p, (char **)&p, 16);
|
|
if (thread == -1 || thread == 0) {
|
|
put_packet(s, "OK");
|
|
break;
|
|
}
|
|
env = find_cpu(thread);
|
|
if (env == NULL) {
|
|
put_packet(s, "E22");
|
|
break;
|
|
}
|
|
switch (type) {
|
|
case 'c':
|
|
s->c_cpu = env;
|
|
put_packet(s, "OK");
|
|
break;
|
|
case 'g':
|
|
s->g_cpu = env;
|
|
put_packet(s, "OK");
|
|
break;
|
|
default:
|
|
put_packet(s, "E22");
|
|
break;
|
|
}
|
|
break;
|
|
case 'T':
|
|
thread = strtoull(p, (char **)&p, 16);
|
|
env = find_cpu(thread);
|
|
|
|
if (env != NULL) {
|
|
put_packet(s, "OK");
|
|
} else {
|
|
put_packet(s, "E22");
|
|
}
|
|
break;
|
|
case 'q':
|
|
case 'Q':
|
|
/* parse any 'q' packets here */
|
|
if (!strcmp(p,"qemu.sstepbits")) {
|
|
/* Query Breakpoint bit definitions */
|
|
snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
|
|
SSTEP_ENABLE,
|
|
SSTEP_NOIRQ,
|
|
SSTEP_NOTIMER);
|
|
put_packet(s, buf);
|
|
break;
|
|
} else if (strncmp(p,"qemu.sstep",10) == 0) {
|
|
/* Display or change the sstep_flags */
|
|
p += 10;
|
|
if (*p != '=') {
|
|
/* Display current setting */
|
|
snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
|
|
put_packet(s, buf);
|
|
break;
|
|
}
|
|
p++;
|
|
type = strtoul(p, (char **)&p, 16);
|
|
sstep_flags = type;
|
|
put_packet(s, "OK");
|
|
break;
|
|
} else if (strcmp(p,"C") == 0) {
|
|
/* "Current thread" remains vague in the spec, so always return
|
|
* the first CPU (gdb returns the first thread). */
|
|
put_packet(s, "QC1");
|
|
break;
|
|
} else if (strcmp(p,"fThreadInfo") == 0) {
|
|
s->query_cpu = first_cpu;
|
|
goto report_cpuinfo;
|
|
} else if (strcmp(p,"sThreadInfo") == 0) {
|
|
report_cpuinfo:
|
|
if (s->query_cpu) {
|
|
snprintf(buf, sizeof(buf), "m%x", gdb_id(s->query_cpu));
|
|
put_packet(s, buf);
|
|
s->query_cpu = s->query_cpu->next_cpu;
|
|
} else
|
|
put_packet(s, "l");
|
|
break;
|
|
} else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
|
|
thread = strtoull(p+16, (char **)&p, 16);
|
|
env = find_cpu(thread);
|
|
if (env != NULL) {
|
|
cpu_synchronize_state(env);
|
|
len = snprintf((char *)mem_buf, sizeof(mem_buf),
|
|
"CPU#%d [%s]", env->cpu_index,
|
|
env->halted ? "halted " : "running");
|
|
memtohex(buf, mem_buf, len);
|
|
put_packet(s, buf);
|
|
}
|
|
break;
|
|
}
|
|
#ifdef CONFIG_USER_ONLY
|
|
else if (strncmp(p, "Offsets", 7) == 0) {
|
|
TaskState *ts = s->c_cpu->opaque;
|
|
|
|
snprintf(buf, sizeof(buf),
|
|
"Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
|
|
";Bss=" TARGET_ABI_FMT_lx,
|
|
ts->info->code_offset,
|
|
ts->info->data_offset,
|
|
ts->info->data_offset);
|
|
put_packet(s, buf);
|
|
break;
|
|
}
|
|
#else /* !CONFIG_USER_ONLY */
|
|
else if (strncmp(p, "Rcmd,", 5) == 0) {
|
|
int len = strlen(p + 5);
|
|
|
|
if ((len % 2) != 0) {
|
|
put_packet(s, "E01");
|
|
break;
|
|
}
|
|
hextomem(mem_buf, p + 5, len);
|
|
len = len / 2;
|
|
mem_buf[len++] = 0;
|
|
qemu_chr_read(s->mon_chr, mem_buf, len);
|
|
put_packet(s, "OK");
|
|
break;
|
|
}
|
|
#endif /* !CONFIG_USER_ONLY */
|
|
if (strncmp(p, "Supported", 9) == 0) {
|
|
snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
|
|
#ifdef GDB_CORE_XML
|
|
pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
|
|
#endif
|
|
put_packet(s, buf);
|
|
break;
|
|
}
|
|
#ifdef GDB_CORE_XML
|
|
if (strncmp(p, "Xfer:features:read:", 19) == 0) {
|
|
const char *xml;
|
|
target_ulong total_len;
|
|
|
|
gdb_has_xml = 1;
|
|
p += 19;
|
|
xml = get_feature_xml(p, &p);
|
|
if (!xml) {
|
|
snprintf(buf, sizeof(buf), "E00");
|
|
put_packet(s, buf);
|
|
break;
|
|
}
|
|
|
|
if (*p == ':')
|
|
p++;
|
|
addr = strtoul(p, (char **)&p, 16);
|
|
if (*p == ',')
|
|
p++;
|
|
len = strtoul(p, (char **)&p, 16);
|
|
|
|
total_len = strlen(xml);
|
|
if (addr > total_len) {
|
|
snprintf(buf, sizeof(buf), "E00");
|
|
put_packet(s, buf);
|
|
break;
|
|
}
|
|
if (len > (MAX_PACKET_LENGTH - 5) / 2)
|
|
len = (MAX_PACKET_LENGTH - 5) / 2;
|
|
if (len < total_len - addr) {
|
|
buf[0] = 'm';
|
|
len = memtox(buf + 1, xml + addr, len);
|
|
} else {
|
|
buf[0] = 'l';
|
|
len = memtox(buf + 1, xml + addr, total_len - addr);
|
|
}
|
|
put_packet_binary(s, buf, len + 1);
|
|
break;
|
|
}
|
|
#endif
|
|
/* Unrecognised 'q' command. */
|
|
goto unknown_command;
|
|
|
|
default:
|
|
unknown_command:
|
|
/* put empty packet */
|
|
buf[0] = '\0';
|
|
put_packet(s, buf);
|
|
break;
|
|
}
|
|
return RS_IDLE;
|
|
}
|
|
|
|
void gdb_set_stop_cpu(CPUState *env)
|
|
{
|
|
gdbserver_state->c_cpu = env;
|
|
gdbserver_state->g_cpu = env;
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
static void gdb_vm_state_change(void *opaque, int running, int reason)
|
|
{
|
|
GDBState *s = gdbserver_state;
|
|
CPUState *env = s->c_cpu;
|
|
char buf[256];
|
|
const char *type;
|
|
int ret;
|
|
|
|
if (running || (reason != EXCP_DEBUG && reason != EXCP_INTERRUPT) ||
|
|
s->state == RS_INACTIVE || s->state == RS_SYSCALL)
|
|
return;
|
|
|
|
/* disable single step if it was enable */
|
|
cpu_single_step(env, 0);
|
|
|
|
if (reason == EXCP_DEBUG) {
|
|
if (env->watchpoint_hit) {
|
|
switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
|
|
case BP_MEM_READ:
|
|
type = "r";
|
|
break;
|
|
case BP_MEM_ACCESS:
|
|
type = "a";
|
|
break;
|
|
default:
|
|
type = "";
|
|
break;
|
|
}
|
|
snprintf(buf, sizeof(buf),
|
|
"T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
|
|
GDB_SIGNAL_TRAP, gdb_id(env), type,
|
|
env->watchpoint_hit->vaddr);
|
|
put_packet(s, buf);
|
|
env->watchpoint_hit = NULL;
|
|
return;
|
|
}
|
|
tb_flush(env);
|
|
ret = GDB_SIGNAL_TRAP;
|
|
} else {
|
|
ret = GDB_SIGNAL_INT;
|
|
}
|
|
snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, gdb_id(env));
|
|
put_packet(s, buf);
|
|
}
|
|
#endif
|
|
|
|
/* Send a gdb syscall request.
|
|
This accepts limited printf-style format specifiers, specifically:
|
|
%x - target_ulong argument printed in hex.
|
|
%lx - 64-bit argument printed in hex.
|
|
%s - string pointer (target_ulong) and length (int) pair. */
|
|
void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
|
|
{
|
|
va_list va;
|
|
char buf[256];
|
|
char *p;
|
|
target_ulong addr;
|
|
uint64_t i64;
|
|
GDBState *s;
|
|
|
|
s = gdbserver_state;
|
|
if (!s)
|
|
return;
|
|
gdb_current_syscall_cb = cb;
|
|
s->state = RS_SYSCALL;
|
|
#ifndef CONFIG_USER_ONLY
|
|
vm_stop(EXCP_DEBUG);
|
|
#endif
|
|
s->state = RS_IDLE;
|
|
va_start(va, fmt);
|
|
p = buf;
|
|
*(p++) = 'F';
|
|
while (*fmt) {
|
|
if (*fmt == '%') {
|
|
fmt++;
|
|
switch (*fmt++) {
|
|
case 'x':
|
|
addr = va_arg(va, target_ulong);
|
|
p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
|
|
break;
|
|
case 'l':
|
|
if (*(fmt++) != 'x')
|
|
goto bad_format;
|
|
i64 = va_arg(va, uint64_t);
|
|
p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
|
|
break;
|
|
case 's':
|
|
addr = va_arg(va, target_ulong);
|
|
p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
|
|
addr, va_arg(va, int));
|
|
break;
|
|
default:
|
|
bad_format:
|
|
fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
|
|
fmt - 1);
|
|
break;
|
|
}
|
|
} else {
|
|
*(p++) = *(fmt++);
|
|
}
|
|
}
|
|
*p = 0;
|
|
va_end(va);
|
|
put_packet(s, buf);
|
|
#ifdef CONFIG_USER_ONLY
|
|
gdb_handlesig(s->c_cpu, 0);
|
|
#else
|
|
cpu_exit(s->c_cpu);
|
|
#endif
|
|
}
|
|
|
|
static void gdb_read_byte(GDBState *s, int ch)
|
|
{
|
|
int i, csum;
|
|
uint8_t reply;
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (s->last_packet_len) {
|
|
/* Waiting for a response to the last packet. If we see the start
|
|
of a new command then abandon the previous response. */
|
|
if (ch == '-') {
|
|
#ifdef DEBUG_GDB
|
|
printf("Got NACK, retransmitting\n");
|
|
#endif
|
|
put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
|
|
}
|
|
#ifdef DEBUG_GDB
|
|
else if (ch == '+')
|
|
printf("Got ACK\n");
|
|
else
|
|
printf("Got '%c' when expecting ACK/NACK\n", ch);
|
|
#endif
|
|
if (ch == '+' || ch == '$')
|
|
s->last_packet_len = 0;
|
|
if (ch != '$')
|
|
return;
|
|
}
|
|
if (vm_running) {
|
|
/* when the CPU is running, we cannot do anything except stop
|
|
it when receiving a char */
|
|
vm_stop(EXCP_INTERRUPT);
|
|
} else
|
|
#endif
|
|
{
|
|
switch(s->state) {
|
|
case RS_IDLE:
|
|
if (ch == '$') {
|
|
s->line_buf_index = 0;
|
|
s->state = RS_GETLINE;
|
|
}
|
|
break;
|
|
case RS_GETLINE:
|
|
if (ch == '#') {
|
|
s->state = RS_CHKSUM1;
|
|
} else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
|
|
s->state = RS_IDLE;
|
|
} else {
|
|
s->line_buf[s->line_buf_index++] = ch;
|
|
}
|
|
break;
|
|
case RS_CHKSUM1:
|
|
s->line_buf[s->line_buf_index] = '\0';
|
|
s->line_csum = fromhex(ch) << 4;
|
|
s->state = RS_CHKSUM2;
|
|
break;
|
|
case RS_CHKSUM2:
|
|
s->line_csum |= fromhex(ch);
|
|
csum = 0;
|
|
for(i = 0; i < s->line_buf_index; i++) {
|
|
csum += s->line_buf[i];
|
|
}
|
|
if (s->line_csum != (csum & 0xff)) {
|
|
reply = '-';
|
|
put_buffer(s, &reply, 1);
|
|
s->state = RS_IDLE;
|
|
} else {
|
|
reply = '+';
|
|
put_buffer(s, &reply, 1);
|
|
s->state = gdb_handle_packet(s, s->line_buf);
|
|
}
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
int
|
|
gdb_queuesig (void)
|
|
{
|
|
GDBState *s;
|
|
|
|
s = gdbserver_state;
|
|
|
|
if (gdbserver_fd < 0 || s->fd < 0)
|
|
return 0;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
gdb_handlesig (CPUState *env, int sig)
|
|
{
|
|
GDBState *s;
|
|
char buf[256];
|
|
int n;
|
|
|
|
s = gdbserver_state;
|
|
if (gdbserver_fd < 0 || s->fd < 0)
|
|
return sig;
|
|
|
|
/* disable single step if it was enabled */
|
|
cpu_single_step(env, 0);
|
|
tb_flush(env);
|
|
|
|
if (sig != 0)
|
|
{
|
|
snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
|
|
put_packet(s, buf);
|
|
}
|
|
/* put_packet() might have detected that the peer terminated the
|
|
connection. */
|
|
if (s->fd < 0)
|
|
return sig;
|
|
|
|
sig = 0;
|
|
s->state = RS_IDLE;
|
|
s->running_state = 0;
|
|
while (s->running_state == 0) {
|
|
n = read (s->fd, buf, 256);
|
|
if (n > 0)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < n; i++)
|
|
gdb_read_byte (s, buf[i]);
|
|
}
|
|
else if (n == 0 || errno != EAGAIN)
|
|
{
|
|
/* XXX: Connection closed. Should probably wait for annother
|
|
connection before continuing. */
|
|
return sig;
|
|
}
|
|
}
|
|
sig = s->signal;
|
|
s->signal = 0;
|
|
return sig;
|
|
}
|
|
|
|
/* Tell the remote gdb that the process has exited. */
|
|
void gdb_exit(CPUState *env, int code)
|
|
{
|
|
GDBState *s;
|
|
char buf[4];
|
|
|
|
s = gdbserver_state;
|
|
if (gdbserver_fd < 0 || s->fd < 0)
|
|
return;
|
|
|
|
snprintf(buf, sizeof(buf), "W%02x", code);
|
|
put_packet(s, buf);
|
|
}
|
|
|
|
/* Tell the remote gdb that the process has exited due to SIG. */
|
|
void gdb_signalled(CPUState *env, int sig)
|
|
{
|
|
GDBState *s;
|
|
char buf[4];
|
|
|
|
s = gdbserver_state;
|
|
if (gdbserver_fd < 0 || s->fd < 0)
|
|
return;
|
|
|
|
snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
|
|
put_packet(s, buf);
|
|
}
|
|
|
|
static void gdb_accept(void)
|
|
{
|
|
GDBState *s;
|
|
struct sockaddr_in sockaddr;
|
|
socklen_t len;
|
|
int val, fd;
|
|
|
|
for(;;) {
|
|
len = sizeof(sockaddr);
|
|
fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
|
|
if (fd < 0 && errno != EINTR) {
|
|
perror("accept");
|
|
return;
|
|
} else if (fd >= 0) {
|
|
#ifndef _WIN32
|
|
fcntl(fd, F_SETFD, FD_CLOEXEC);
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* set short latency */
|
|
val = 1;
|
|
setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
|
|
|
|
s = qemu_mallocz(sizeof(GDBState));
|
|
s->c_cpu = first_cpu;
|
|
s->g_cpu = first_cpu;
|
|
s->fd = fd;
|
|
gdb_has_xml = 0;
|
|
|
|
gdbserver_state = s;
|
|
|
|
fcntl(fd, F_SETFL, O_NONBLOCK);
|
|
}
|
|
|
|
static int gdbserver_open(int port)
|
|
{
|
|
struct sockaddr_in sockaddr;
|
|
int fd, val, ret;
|
|
|
|
fd = socket(PF_INET, SOCK_STREAM, 0);
|
|
if (fd < 0) {
|
|
perror("socket");
|
|
return -1;
|
|
}
|
|
#ifndef _WIN32
|
|
fcntl(fd, F_SETFD, FD_CLOEXEC);
|
|
#endif
|
|
|
|
/* allow fast reuse */
|
|
val = 1;
|
|
setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
|
|
|
|
sockaddr.sin_family = AF_INET;
|
|
sockaddr.sin_port = htons(port);
|
|
sockaddr.sin_addr.s_addr = 0;
|
|
ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
|
|
if (ret < 0) {
|
|
perror("bind");
|
|
return -1;
|
|
}
|
|
ret = listen(fd, 0);
|
|
if (ret < 0) {
|
|
perror("listen");
|
|
return -1;
|
|
}
|
|
return fd;
|
|
}
|
|
|
|
int gdbserver_start(int port)
|
|
{
|
|
gdbserver_fd = gdbserver_open(port);
|
|
if (gdbserver_fd < 0)
|
|
return -1;
|
|
/* accept connections */
|
|
gdb_accept();
|
|
return 0;
|
|
}
|
|
|
|
/* Disable gdb stub for child processes. */
|
|
void gdbserver_fork(CPUState *env)
|
|
{
|
|
GDBState *s = gdbserver_state;
|
|
if (gdbserver_fd < 0 || s->fd < 0)
|
|
return;
|
|
close(s->fd);
|
|
s->fd = -1;
|
|
cpu_breakpoint_remove_all(env, BP_GDB);
|
|
cpu_watchpoint_remove_all(env, BP_GDB);
|
|
}
|
|
#else
|
|
static int gdb_chr_can_receive(void *opaque)
|
|
{
|
|
/* We can handle an arbitrarily large amount of data.
|
|
Pick the maximum packet size, which is as good as anything. */
|
|
return MAX_PACKET_LENGTH;
|
|
}
|
|
|
|
static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
gdb_read_byte(gdbserver_state, buf[i]);
|
|
}
|
|
}
|
|
|
|
static void gdb_chr_event(void *opaque, int event)
|
|
{
|
|
switch (event) {
|
|
case CHR_EVENT_OPENED:
|
|
vm_stop(EXCP_INTERRUPT);
|
|
gdb_has_xml = 0;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void gdb_monitor_output(GDBState *s, const char *msg, int len)
|
|
{
|
|
char buf[MAX_PACKET_LENGTH];
|
|
|
|
buf[0] = 'O';
|
|
if (len > (MAX_PACKET_LENGTH/2) - 1)
|
|
len = (MAX_PACKET_LENGTH/2) - 1;
|
|
memtohex(buf + 1, (uint8_t *)msg, len);
|
|
put_packet(s, buf);
|
|
}
|
|
|
|
static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
|
|
{
|
|
const char *p = (const char *)buf;
|
|
int max_sz;
|
|
|
|
max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
|
|
for (;;) {
|
|
if (len <= max_sz) {
|
|
gdb_monitor_output(gdbserver_state, p, len);
|
|
break;
|
|
}
|
|
gdb_monitor_output(gdbserver_state, p, max_sz);
|
|
p += max_sz;
|
|
len -= max_sz;
|
|
}
|
|
return len;
|
|
}
|
|
|
|
#ifndef _WIN32
|
|
static void gdb_sigterm_handler(int signal)
|
|
{
|
|
if (vm_running)
|
|
vm_stop(EXCP_INTERRUPT);
|
|
}
|
|
#endif
|
|
|
|
int gdbserver_start(const char *device)
|
|
{
|
|
GDBState *s;
|
|
char gdbstub_device_name[128];
|
|
CharDriverState *chr = NULL;
|
|
CharDriverState *mon_chr;
|
|
|
|
if (!device)
|
|
return -1;
|
|
if (strcmp(device, "none") != 0) {
|
|
if (strstart(device, "tcp:", NULL)) {
|
|
/* enforce required TCP attributes */
|
|
snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
|
|
"%s,nowait,nodelay,server", device);
|
|
device = gdbstub_device_name;
|
|
}
|
|
#ifndef _WIN32
|
|
else if (strcmp(device, "stdio") == 0) {
|
|
struct sigaction act;
|
|
|
|
memset(&act, 0, sizeof(act));
|
|
act.sa_handler = gdb_sigterm_handler;
|
|
sigaction(SIGINT, &act, NULL);
|
|
}
|
|
#endif
|
|
chr = qemu_chr_open("gdb", device, NULL);
|
|
if (!chr)
|
|
return -1;
|
|
|
|
qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
|
|
gdb_chr_event, NULL);
|
|
}
|
|
|
|
s = gdbserver_state;
|
|
if (!s) {
|
|
s = qemu_mallocz(sizeof(GDBState));
|
|
gdbserver_state = s;
|
|
|
|
qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
|
|
|
|
/* Initialize a monitor terminal for gdb */
|
|
mon_chr = qemu_mallocz(sizeof(*mon_chr));
|
|
mon_chr->chr_write = gdb_monitor_write;
|
|
monitor_init(mon_chr, 0);
|
|
} else {
|
|
if (s->chr)
|
|
qemu_chr_close(s->chr);
|
|
mon_chr = s->mon_chr;
|
|
memset(s, 0, sizeof(GDBState));
|
|
}
|
|
s->c_cpu = first_cpu;
|
|
s->g_cpu = first_cpu;
|
|
s->chr = chr;
|
|
s->state = chr ? RS_IDLE : RS_INACTIVE;
|
|
s->mon_chr = mon_chr;
|
|
|
|
return 0;
|
|
}
|
|
#endif
|