qemu-e2k/hw/ppc4xx_devs.c
Avi Kivity 1eed09cb4a Remove io_index argument from cpu_register_io_memory()
The parameter is always zero except when registering the three internal
io regions (ROM, unassigned, notdirty).  Remove the parameter to reduce
the API's power, thus facilitating future change.

Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2009-06-16 15:18:37 -05:00

887 lines
25 KiB
C

/*
* QEMU PowerPC 4xx embedded processors shared devices emulation
*
* Copyright (c) 2007 Jocelyn Mayer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "ppc.h"
#include "ppc4xx.h"
#include "sysemu.h"
#include "qemu-log.h"
//#define DEBUG_MMIO
//#define DEBUG_UNASSIGNED
#define DEBUG_UIC
#ifdef DEBUG_UIC
# define LOG_UIC(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
#else
# define LOG_UIC(...) do { } while (0)
#endif
/*****************************************************************************/
/* Generic PowerPC 4xx processor instanciation */
CPUState *ppc4xx_init (const char *cpu_model,
clk_setup_t *cpu_clk, clk_setup_t *tb_clk,
uint32_t sysclk)
{
CPUState *env;
/* init CPUs */
env = cpu_init(cpu_model);
if (!env) {
fprintf(stderr, "Unable to find PowerPC %s CPU definition\n",
cpu_model);
exit(1);
}
cpu_clk->cb = NULL; /* We don't care about CPU clock frequency changes */
cpu_clk->opaque = env;
/* Set time-base frequency to sysclk */
tb_clk->cb = ppc_emb_timers_init(env, sysclk);
tb_clk->opaque = env;
ppc_dcr_init(env, NULL, NULL);
/* Register qemu callbacks */
qemu_register_reset(&cpu_ppc_reset, 0, env);
return env;
}
/*****************************************************************************/
/* Fake device used to map multiple devices in a single memory page */
#define MMIO_AREA_BITS 8
#define MMIO_AREA_LEN (1 << MMIO_AREA_BITS)
#define MMIO_AREA_NB (1 << (TARGET_PAGE_BITS - MMIO_AREA_BITS))
#define MMIO_IDX(addr) (((addr) >> MMIO_AREA_BITS) & (MMIO_AREA_NB - 1))
struct ppc4xx_mmio_t {
target_phys_addr_t base;
CPUReadMemoryFunc **mem_read[MMIO_AREA_NB];
CPUWriteMemoryFunc **mem_write[MMIO_AREA_NB];
void *opaque[MMIO_AREA_NB];
};
static uint32_t unassigned_mmio_readb (void *opaque, target_phys_addr_t addr)
{
#ifdef DEBUG_UNASSIGNED
ppc4xx_mmio_t *mmio;
mmio = opaque;
printf("Unassigned mmio read 0x" PADDRX " base " PADDRX "\n",
addr, mmio->base);
#endif
return 0;
}
static void unassigned_mmio_writeb (void *opaque,
target_phys_addr_t addr, uint32_t val)
{
#ifdef DEBUG_UNASSIGNED
ppc4xx_mmio_t *mmio;
mmio = opaque;
printf("Unassigned mmio write 0x" PADDRX " = 0x%x base " PADDRX "\n",
addr, val, mmio->base);
#endif
}
static CPUReadMemoryFunc *unassigned_mmio_read[3] = {
unassigned_mmio_readb,
unassigned_mmio_readb,
unassigned_mmio_readb,
};
static CPUWriteMemoryFunc *unassigned_mmio_write[3] = {
unassigned_mmio_writeb,
unassigned_mmio_writeb,
unassigned_mmio_writeb,
};
static uint32_t mmio_readlen (ppc4xx_mmio_t *mmio,
target_phys_addr_t addr, int len)
{
CPUReadMemoryFunc **mem_read;
uint32_t ret;
int idx;
idx = MMIO_IDX(addr);
#if defined(DEBUG_MMIO)
printf("%s: mmio %p len %d addr " PADDRX " idx %d\n", __func__,
mmio, len, addr, idx);
#endif
mem_read = mmio->mem_read[idx];
ret = (*mem_read[len])(mmio->opaque[idx], addr);
return ret;
}
static void mmio_writelen (ppc4xx_mmio_t *mmio,
target_phys_addr_t addr, uint32_t value, int len)
{
CPUWriteMemoryFunc **mem_write;
int idx;
idx = MMIO_IDX(addr);
#if defined(DEBUG_MMIO)
printf("%s: mmio %p len %d addr " PADDRX " idx %d value %08" PRIx32 "\n",
__func__, mmio, len, addr, idx, value);
#endif
mem_write = mmio->mem_write[idx];
(*mem_write[len])(mmio->opaque[idx], addr, value);
}
static uint32_t mmio_readb (void *opaque, target_phys_addr_t addr)
{
#if defined(DEBUG_MMIO)
printf("%s: addr " PADDRX "\n", __func__, addr);
#endif
return mmio_readlen(opaque, addr, 0);
}
static void mmio_writeb (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
#if defined(DEBUG_MMIO)
printf("%s: addr " PADDRX " val %08" PRIx32 "\n", __func__, addr, value);
#endif
mmio_writelen(opaque, addr, value, 0);
}
static uint32_t mmio_readw (void *opaque, target_phys_addr_t addr)
{
#if defined(DEBUG_MMIO)
printf("%s: addr " PADDRX "\n", __func__, addr);
#endif
return mmio_readlen(opaque, addr, 1);
}
static void mmio_writew (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
#if defined(DEBUG_MMIO)
printf("%s: addr " PADDRX " val %08" PRIx32 "\n", __func__, addr, value);
#endif
mmio_writelen(opaque, addr, value, 1);
}
static uint32_t mmio_readl (void *opaque, target_phys_addr_t addr)
{
#if defined(DEBUG_MMIO)
printf("%s: addr " PADDRX "\n", __func__, addr);
#endif
return mmio_readlen(opaque, addr, 2);
}
static void mmio_writel (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
#if defined(DEBUG_MMIO)
printf("%s: addr " PADDRX " val %08" PRIx32 "\n", __func__, addr, value);
#endif
mmio_writelen(opaque, addr, value, 2);
}
static CPUReadMemoryFunc *mmio_read[] = {
&mmio_readb,
&mmio_readw,
&mmio_readl,
};
static CPUWriteMemoryFunc *mmio_write[] = {
&mmio_writeb,
&mmio_writew,
&mmio_writel,
};
int ppc4xx_mmio_register (CPUState *env, ppc4xx_mmio_t *mmio,
target_phys_addr_t offset, uint32_t len,
CPUReadMemoryFunc **mem_read,
CPUWriteMemoryFunc **mem_write, void *opaque)
{
target_phys_addr_t end;
int idx, eidx;
if ((offset + len) > TARGET_PAGE_SIZE)
return -1;
idx = MMIO_IDX(offset);
end = offset + len - 1;
eidx = MMIO_IDX(end);
#if defined(DEBUG_MMIO)
printf("%s: offset " PADDRX " len %08" PRIx32 " " PADDRX " %d %d\n",
__func__, offset, len, end, idx, eidx);
#endif
for (; idx <= eidx; idx++) {
mmio->mem_read[idx] = mem_read;
mmio->mem_write[idx] = mem_write;
mmio->opaque[idx] = opaque;
}
return 0;
}
ppc4xx_mmio_t *ppc4xx_mmio_init (CPUState *env, target_phys_addr_t base)
{
ppc4xx_mmio_t *mmio;
int mmio_memory;
mmio = qemu_mallocz(sizeof(ppc4xx_mmio_t));
mmio->base = base;
mmio_memory = cpu_register_io_memory(mmio_read, mmio_write, mmio);
#if defined(DEBUG_MMIO)
printf("%s: base " PADDRX " len %08x %d\n", __func__,
base, TARGET_PAGE_SIZE, mmio_memory);
#endif
cpu_register_physical_memory(base, TARGET_PAGE_SIZE, mmio_memory);
ppc4xx_mmio_register(env, mmio, 0, TARGET_PAGE_SIZE,
unassigned_mmio_read, unassigned_mmio_write,
mmio);
return mmio;
}
/*****************************************************************************/
/* "Universal" Interrupt controller */
enum {
DCR_UICSR = 0x000,
DCR_UICSRS = 0x001,
DCR_UICER = 0x002,
DCR_UICCR = 0x003,
DCR_UICPR = 0x004,
DCR_UICTR = 0x005,
DCR_UICMSR = 0x006,
DCR_UICVR = 0x007,
DCR_UICVCR = 0x008,
DCR_UICMAX = 0x009,
};
#define UIC_MAX_IRQ 32
typedef struct ppcuic_t ppcuic_t;
struct ppcuic_t {
uint32_t dcr_base;
int use_vectors;
uint32_t level; /* Remembers the state of level-triggered interrupts. */
uint32_t uicsr; /* Status register */
uint32_t uicer; /* Enable register */
uint32_t uiccr; /* Critical register */
uint32_t uicpr; /* Polarity register */
uint32_t uictr; /* Triggering register */
uint32_t uicvcr; /* Vector configuration register */
uint32_t uicvr;
qemu_irq *irqs;
};
static void ppcuic_trigger_irq (ppcuic_t *uic)
{
uint32_t ir, cr;
int start, end, inc, i;
/* Trigger interrupt if any is pending */
ir = uic->uicsr & uic->uicer & (~uic->uiccr);
cr = uic->uicsr & uic->uicer & uic->uiccr;
LOG_UIC("%s: uicsr %08" PRIx32 " uicer %08" PRIx32
" uiccr %08" PRIx32 "\n"
" %08" PRIx32 " ir %08" PRIx32 " cr %08" PRIx32 "\n",
__func__, uic->uicsr, uic->uicer, uic->uiccr,
uic->uicsr & uic->uicer, ir, cr);
if (ir != 0x0000000) {
LOG_UIC("Raise UIC interrupt\n");
qemu_irq_raise(uic->irqs[PPCUIC_OUTPUT_INT]);
} else {
LOG_UIC("Lower UIC interrupt\n");
qemu_irq_lower(uic->irqs[PPCUIC_OUTPUT_INT]);
}
/* Trigger critical interrupt if any is pending and update vector */
if (cr != 0x0000000) {
qemu_irq_raise(uic->irqs[PPCUIC_OUTPUT_CINT]);
if (uic->use_vectors) {
/* Compute critical IRQ vector */
if (uic->uicvcr & 1) {
start = 31;
end = 0;
inc = -1;
} else {
start = 0;
end = 31;
inc = 1;
}
uic->uicvr = uic->uicvcr & 0xFFFFFFFC;
for (i = start; i <= end; i += inc) {
if (cr & (1 << i)) {
uic->uicvr += (i - start) * 512 * inc;
break;
}
}
}
LOG_UIC("Raise UIC critical interrupt - "
"vector %08" PRIx32 "\n", uic->uicvr);
} else {
LOG_UIC("Lower UIC critical interrupt\n");
qemu_irq_lower(uic->irqs[PPCUIC_OUTPUT_CINT]);
uic->uicvr = 0x00000000;
}
}
static void ppcuic_set_irq (void *opaque, int irq_num, int level)
{
ppcuic_t *uic;
uint32_t mask, sr;
uic = opaque;
mask = 1 << (31-irq_num);
LOG_UIC("%s: irq %d level %d uicsr %08" PRIx32
" mask %08" PRIx32 " => %08" PRIx32 " %08" PRIx32 "\n",
__func__, irq_num, level,
uic->uicsr, mask, uic->uicsr & mask, level << irq_num);
if (irq_num < 0 || irq_num > 31)
return;
sr = uic->uicsr;
/* Update status register */
if (uic->uictr & mask) {
/* Edge sensitive interrupt */
if (level == 1)
uic->uicsr |= mask;
} else {
/* Level sensitive interrupt */
if (level == 1) {
uic->uicsr |= mask;
uic->level |= mask;
} else {
uic->uicsr &= ~mask;
uic->level &= ~mask;
}
}
LOG_UIC("%s: irq %d level %d sr %" PRIx32 " => "
"%08" PRIx32 "\n", __func__, irq_num, level, uic->uicsr, sr);
if (sr != uic->uicsr)
ppcuic_trigger_irq(uic);
}
static target_ulong dcr_read_uic (void *opaque, int dcrn)
{
ppcuic_t *uic;
target_ulong ret;
uic = opaque;
dcrn -= uic->dcr_base;
switch (dcrn) {
case DCR_UICSR:
case DCR_UICSRS:
ret = uic->uicsr;
break;
case DCR_UICER:
ret = uic->uicer;
break;
case DCR_UICCR:
ret = uic->uiccr;
break;
case DCR_UICPR:
ret = uic->uicpr;
break;
case DCR_UICTR:
ret = uic->uictr;
break;
case DCR_UICMSR:
ret = uic->uicsr & uic->uicer;
break;
case DCR_UICVR:
if (!uic->use_vectors)
goto no_read;
ret = uic->uicvr;
break;
case DCR_UICVCR:
if (!uic->use_vectors)
goto no_read;
ret = uic->uicvcr;
break;
default:
no_read:
ret = 0x00000000;
break;
}
return ret;
}
static void dcr_write_uic (void *opaque, int dcrn, target_ulong val)
{
ppcuic_t *uic;
uic = opaque;
dcrn -= uic->dcr_base;
LOG_UIC("%s: dcr %d val " ADDRX "\n", __func__, dcrn, val);
switch (dcrn) {
case DCR_UICSR:
uic->uicsr &= ~val;
uic->uicsr |= uic->level;
ppcuic_trigger_irq(uic);
break;
case DCR_UICSRS:
uic->uicsr |= val;
ppcuic_trigger_irq(uic);
break;
case DCR_UICER:
uic->uicer = val;
ppcuic_trigger_irq(uic);
break;
case DCR_UICCR:
uic->uiccr = val;
ppcuic_trigger_irq(uic);
break;
case DCR_UICPR:
uic->uicpr = val;
break;
case DCR_UICTR:
uic->uictr = val;
ppcuic_trigger_irq(uic);
break;
case DCR_UICMSR:
break;
case DCR_UICVR:
break;
case DCR_UICVCR:
uic->uicvcr = val & 0xFFFFFFFD;
ppcuic_trigger_irq(uic);
break;
}
}
static void ppcuic_reset (void *opaque)
{
ppcuic_t *uic;
uic = opaque;
uic->uiccr = 0x00000000;
uic->uicer = 0x00000000;
uic->uicpr = 0x00000000;
uic->uicsr = 0x00000000;
uic->uictr = 0x00000000;
if (uic->use_vectors) {
uic->uicvcr = 0x00000000;
uic->uicvr = 0x0000000;
}
}
qemu_irq *ppcuic_init (CPUState *env, qemu_irq *irqs,
uint32_t dcr_base, int has_ssr, int has_vr)
{
ppcuic_t *uic;
int i;
uic = qemu_mallocz(sizeof(ppcuic_t));
uic->dcr_base = dcr_base;
uic->irqs = irqs;
if (has_vr)
uic->use_vectors = 1;
for (i = 0; i < DCR_UICMAX; i++) {
ppc_dcr_register(env, dcr_base + i, uic,
&dcr_read_uic, &dcr_write_uic);
}
qemu_register_reset(ppcuic_reset, 0, uic);
ppcuic_reset(uic);
return qemu_allocate_irqs(&ppcuic_set_irq, uic, UIC_MAX_IRQ);
}
/*****************************************************************************/
/* SDRAM controller */
typedef struct ppc4xx_sdram_t ppc4xx_sdram_t;
struct ppc4xx_sdram_t {
uint32_t addr;
int nbanks;
target_phys_addr_t ram_bases[4];
target_phys_addr_t ram_sizes[4];
uint32_t besr0;
uint32_t besr1;
uint32_t bear;
uint32_t cfg;
uint32_t status;
uint32_t rtr;
uint32_t pmit;
uint32_t bcr[4];
uint32_t tr;
uint32_t ecccfg;
uint32_t eccesr;
qemu_irq irq;
};
enum {
SDRAM0_CFGADDR = 0x010,
SDRAM0_CFGDATA = 0x011,
};
/* XXX: TOFIX: some patches have made this code become inconsistent:
* there are type inconsistencies, mixing target_phys_addr_t, target_ulong
* and uint32_t
*/
static uint32_t sdram_bcr (target_phys_addr_t ram_base,
target_phys_addr_t ram_size)
{
uint32_t bcr;
switch (ram_size) {
case (4 * 1024 * 1024):
bcr = 0x00000000;
break;
case (8 * 1024 * 1024):
bcr = 0x00020000;
break;
case (16 * 1024 * 1024):
bcr = 0x00040000;
break;
case (32 * 1024 * 1024):
bcr = 0x00060000;
break;
case (64 * 1024 * 1024):
bcr = 0x00080000;
break;
case (128 * 1024 * 1024):
bcr = 0x000A0000;
break;
case (256 * 1024 * 1024):
bcr = 0x000C0000;
break;
default:
printf("%s: invalid RAM size " PADDRX "\n", __func__, ram_size);
return 0x00000000;
}
bcr |= ram_base & 0xFF800000;
bcr |= 1;
return bcr;
}
static always_inline target_phys_addr_t sdram_base (uint32_t bcr)
{
return bcr & 0xFF800000;
}
static target_ulong sdram_size (uint32_t bcr)
{
target_ulong size;
int sh;
sh = (bcr >> 17) & 0x7;
if (sh == 7)
size = -1;
else
size = (4 * 1024 * 1024) << sh;
return size;
}
static void sdram_set_bcr (uint32_t *bcrp, uint32_t bcr, int enabled)
{
if (*bcrp & 0x00000001) {
/* Unmap RAM */
#ifdef DEBUG_SDRAM
printf("%s: unmap RAM area " PADDRX " " ADDRX "\n",
__func__, sdram_base(*bcrp), sdram_size(*bcrp));
#endif
cpu_register_physical_memory(sdram_base(*bcrp), sdram_size(*bcrp),
IO_MEM_UNASSIGNED);
}
*bcrp = bcr & 0xFFDEE001;
if (enabled && (bcr & 0x00000001)) {
#ifdef DEBUG_SDRAM
printf("%s: Map RAM area " PADDRX " " ADDRX "\n",
__func__, sdram_base(bcr), sdram_size(bcr));
#endif
cpu_register_physical_memory(sdram_base(bcr), sdram_size(bcr),
sdram_base(bcr) | IO_MEM_RAM);
}
}
static void sdram_map_bcr (ppc4xx_sdram_t *sdram)
{
int i;
for (i = 0; i < sdram->nbanks; i++) {
if (sdram->ram_sizes[i] != 0) {
sdram_set_bcr(&sdram->bcr[i],
sdram_bcr(sdram->ram_bases[i], sdram->ram_sizes[i]),
1);
} else {
sdram_set_bcr(&sdram->bcr[i], 0x00000000, 0);
}
}
}
static void sdram_unmap_bcr (ppc4xx_sdram_t *sdram)
{
int i;
for (i = 0; i < sdram->nbanks; i++) {
#ifdef DEBUG_SDRAM
printf("%s: Unmap RAM area " PADDRX " " ADDRX "\n",
__func__, sdram_base(sdram->bcr[i]), sdram_size(sdram->bcr[i]));
#endif
cpu_register_physical_memory(sdram_base(sdram->bcr[i]),
sdram_size(sdram->bcr[i]),
IO_MEM_UNASSIGNED);
}
}
static target_ulong dcr_read_sdram (void *opaque, int dcrn)
{
ppc4xx_sdram_t *sdram;
target_ulong ret;
sdram = opaque;
switch (dcrn) {
case SDRAM0_CFGADDR:
ret = sdram->addr;
break;
case SDRAM0_CFGDATA:
switch (sdram->addr) {
case 0x00: /* SDRAM_BESR0 */
ret = sdram->besr0;
break;
case 0x08: /* SDRAM_BESR1 */
ret = sdram->besr1;
break;
case 0x10: /* SDRAM_BEAR */
ret = sdram->bear;
break;
case 0x20: /* SDRAM_CFG */
ret = sdram->cfg;
break;
case 0x24: /* SDRAM_STATUS */
ret = sdram->status;
break;
case 0x30: /* SDRAM_RTR */
ret = sdram->rtr;
break;
case 0x34: /* SDRAM_PMIT */
ret = sdram->pmit;
break;
case 0x40: /* SDRAM_B0CR */
ret = sdram->bcr[0];
break;
case 0x44: /* SDRAM_B1CR */
ret = sdram->bcr[1];
break;
case 0x48: /* SDRAM_B2CR */
ret = sdram->bcr[2];
break;
case 0x4C: /* SDRAM_B3CR */
ret = sdram->bcr[3];
break;
case 0x80: /* SDRAM_TR */
ret = -1; /* ? */
break;
case 0x94: /* SDRAM_ECCCFG */
ret = sdram->ecccfg;
break;
case 0x98: /* SDRAM_ECCESR */
ret = sdram->eccesr;
break;
default: /* Error */
ret = -1;
break;
}
break;
default:
/* Avoid gcc warning */
ret = 0x00000000;
break;
}
return ret;
}
static void dcr_write_sdram (void *opaque, int dcrn, target_ulong val)
{
ppc4xx_sdram_t *sdram;
sdram = opaque;
switch (dcrn) {
case SDRAM0_CFGADDR:
sdram->addr = val;
break;
case SDRAM0_CFGDATA:
switch (sdram->addr) {
case 0x00: /* SDRAM_BESR0 */
sdram->besr0 &= ~val;
break;
case 0x08: /* SDRAM_BESR1 */
sdram->besr1 &= ~val;
break;
case 0x10: /* SDRAM_BEAR */
sdram->bear = val;
break;
case 0x20: /* SDRAM_CFG */
val &= 0xFFE00000;
if (!(sdram->cfg & 0x80000000) && (val & 0x80000000)) {
#ifdef DEBUG_SDRAM
printf("%s: enable SDRAM controller\n", __func__);
#endif
/* validate all RAM mappings */
sdram_map_bcr(sdram);
sdram->status &= ~0x80000000;
} else if ((sdram->cfg & 0x80000000) && !(val & 0x80000000)) {
#ifdef DEBUG_SDRAM
printf("%s: disable SDRAM controller\n", __func__);
#endif
/* invalidate all RAM mappings */
sdram_unmap_bcr(sdram);
sdram->status |= 0x80000000;
}
if (!(sdram->cfg & 0x40000000) && (val & 0x40000000))
sdram->status |= 0x40000000;
else if ((sdram->cfg & 0x40000000) && !(val & 0x40000000))
sdram->status &= ~0x40000000;
sdram->cfg = val;
break;
case 0x24: /* SDRAM_STATUS */
/* Read-only register */
break;
case 0x30: /* SDRAM_RTR */
sdram->rtr = val & 0x3FF80000;
break;
case 0x34: /* SDRAM_PMIT */
sdram->pmit = (val & 0xF8000000) | 0x07C00000;
break;
case 0x40: /* SDRAM_B0CR */
sdram_set_bcr(&sdram->bcr[0], val, sdram->cfg & 0x80000000);
break;
case 0x44: /* SDRAM_B1CR */
sdram_set_bcr(&sdram->bcr[1], val, sdram->cfg & 0x80000000);
break;
case 0x48: /* SDRAM_B2CR */
sdram_set_bcr(&sdram->bcr[2], val, sdram->cfg & 0x80000000);
break;
case 0x4C: /* SDRAM_B3CR */
sdram_set_bcr(&sdram->bcr[3], val, sdram->cfg & 0x80000000);
break;
case 0x80: /* SDRAM_TR */
sdram->tr = val & 0x018FC01F;
break;
case 0x94: /* SDRAM_ECCCFG */
sdram->ecccfg = val & 0x00F00000;
break;
case 0x98: /* SDRAM_ECCESR */
val &= 0xFFF0F000;
if (sdram->eccesr == 0 && val != 0)
qemu_irq_raise(sdram->irq);
else if (sdram->eccesr != 0 && val == 0)
qemu_irq_lower(sdram->irq);
sdram->eccesr = val;
break;
default: /* Error */
break;
}
break;
}
}
static void sdram_reset (void *opaque)
{
ppc4xx_sdram_t *sdram;
sdram = opaque;
sdram->addr = 0x00000000;
sdram->bear = 0x00000000;
sdram->besr0 = 0x00000000; /* No error */
sdram->besr1 = 0x00000000; /* No error */
sdram->cfg = 0x00000000;
sdram->ecccfg = 0x00000000; /* No ECC */
sdram->eccesr = 0x00000000; /* No error */
sdram->pmit = 0x07C00000;
sdram->rtr = 0x05F00000;
sdram->tr = 0x00854009;
/* We pre-initialize RAM banks */
sdram->status = 0x00000000;
sdram->cfg = 0x00800000;
sdram_unmap_bcr(sdram);
}
void ppc4xx_sdram_init (CPUState *env, qemu_irq irq, int nbanks,
target_phys_addr_t *ram_bases,
target_phys_addr_t *ram_sizes,
int do_init)
{
ppc4xx_sdram_t *sdram;
sdram = qemu_mallocz(sizeof(ppc4xx_sdram_t));
sdram->irq = irq;
sdram->nbanks = nbanks;
memset(sdram->ram_bases, 0, 4 * sizeof(target_phys_addr_t));
memcpy(sdram->ram_bases, ram_bases,
nbanks * sizeof(target_phys_addr_t));
memset(sdram->ram_sizes, 0, 4 * sizeof(target_phys_addr_t));
memcpy(sdram->ram_sizes, ram_sizes,
nbanks * sizeof(target_phys_addr_t));
sdram_reset(sdram);
qemu_register_reset(&sdram_reset, 0, sdram);
ppc_dcr_register(env, SDRAM0_CFGADDR,
sdram, &dcr_read_sdram, &dcr_write_sdram);
ppc_dcr_register(env, SDRAM0_CFGDATA,
sdram, &dcr_read_sdram, &dcr_write_sdram);
if (do_init)
sdram_map_bcr(sdram);
}
/* Fill in consecutive SDRAM banks with 'ram_size' bytes of memory.
*
* sdram_bank_sizes[] must be 0-terminated.
*
* The 4xx SDRAM controller supports a small number of banks, and each bank
* must be one of a small set of sizes. The number of banks and the supported
* sizes varies by SoC. */
ram_addr_t ppc4xx_sdram_adjust(ram_addr_t ram_size, int nr_banks,
target_phys_addr_t ram_bases[],
target_phys_addr_t ram_sizes[],
const unsigned int sdram_bank_sizes[])
{
ram_addr_t size_left = ram_size;
int i;
int j;
for (i = 0; i < nr_banks; i++) {
for (j = 0; sdram_bank_sizes[j] != 0; j++) {
unsigned int bank_size = sdram_bank_sizes[j];
if (bank_size <= size_left) {
ram_bases[i] = qemu_ram_alloc(bank_size);
ram_sizes[i] = bank_size;
size_left -= bank_size;
break;
}
}
if (!size_left) {
/* No need to use the remaining banks. */
break;
}
}
ram_size -= size_left;
if (ram_size)
printf("Truncating memory to %d MiB to fit SDRAM controller limits.\n",
(int)(ram_size >> 20));
return ram_size;
}